机械振动基础经典例题
《机械振动基础》期末复习试题5套含答案.doc
中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。
2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()的振动性质的基础。
5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。
二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。
(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。
(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。
13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。
{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。
(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。
(10 分) 4.简述线性多自由度系统动力响应分析方法。
(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。
【单元练】高中物理选修1第二章【机械振动】经典练习题(2)
一、选择题1.如图甲所示,在一条张紧的绳子上挂几个摆。
当a 摆振动的时候,其余各摆在a 摆的驱动下也逐步振动起来,不计空气阻力,达到稳定时,b 摆的振动图像如图乙。
下列说法正确的是( )A .稳定时b 摆的振幅最大B .稳定时b 摆的周期最大C .由图乙可以估算出b 摆的摆长D .由图乙可以估算出c 摆的摆长D 解析:DA .a 与c 的摆长接近,它们的固有频率接近,在a 摆的驱动下,稳定时c 摆的振幅最大,所以A 错误;B .bc 摆是在a 摆的驱动下振动起来的,则b 的周期等于外力周期,稳定时abc 摆的周期都相同,所以B 错误; CD .根据单摆的周期公式2l T g=解得224T gl π= 由图像可得a 摆周期,则可以算出a 摆的摆长,估算出c 摆的摆长,所以C 错误;D 正确; 故选D 。
2.下列说法中 不正确 的是( )A .将单摆从地球赤道移到南(北)极,振动频率将变大B .将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变C 解析:CA 、将单摆从地球赤道移到南(北)极,重力加速度增加,根据2LT gπ=,振动的周期变小,故振动频率将变大,故A 正确;B 、重力等于万有引力,故:2Mm mg Gr =,解得:2GMg r =,将单摆从地面移至距地面高度为地球半径的高度时,r 增加为2倍,故g 减小为14;根据2T π=2倍,故B 正确; C 、将单摆移至绕地球运转的人造卫星中,处于完全失重状态,不能工作,故C 错误;D 、根据2T =,振动的周期与振幅无关;在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变,故D 正确. 【点睛】本题关键是根据单摆的周期公2T =和重力加速度公式2GM g r =分析,注意周期与振幅无关.3.关于简谐运动,下列说法正确的是( )A .做简谐运动物体所受的回复力方向不变,始终指向平衡位置B .在恒力的作用下,物体可能做简谐运动C .做简谐运动物体速度越来越大时,加速度一定越来越小D .做简谐运动物体的加速度方向始终与速度方向相反C 解析:CA .回复力是使做简谐运动的物体返回平衡位置并总指向平衡位置的力,所以物体在远离和靠近平衡位置时的方向不同,A 错误;B .物体做简谐运动中回复力满足F x κ=-即回复力大小与位移大小成正比,方向与位移方向相反,所以在恒力的作用下,物体不可能做简谐运动,B 错误;C .做简谐运动物体速度越来越大,说明物体向着平衡位置运动,物体受回复力越来越小,加速度一定越来越小,C 正确;D .做简谐运动物体的加速度方向始终指向平衡位置,速度方向与物体运动方向相同,物体做简谐运动过程中,加速度方向和速度方向有时相同,有时相反,D 错误。
机械振动基础作业(有答案-全版)
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?解:前轴或后轴垂直振动的振动模型简图为图1.2所示,此时汽车振动简化为二自由度振动系统。
2m 为非悬架质量,1m 为悬架质量1. 3设有两个刚度分别为21,k k 的线性弹簧如图T-1.3所示, 试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 为:21111k k k eq +=证明:1) 如图T-1.3(a)所示,21,k k 两个弹簧受到力的作用,变形相同, 即2211k F k F k F eq ==, 而F F F =+21,故有 F F k kF k k eq eq =+21, 从而 21k k k eq +=2)如图T-1.3(b)所示,21,k k 两个弹簧受到相同的力作用 即∆=∆=∆=eq k k k F 2211 (1)且21∆+∆=∆ (2)由(1)和(2)有:)(21k Fk F k F eq += (3) 由(3)得:21111k k k eq += 1.8证明:两个同频率但不同相角的简谐运动的合成仍是同频率的简谐运动,即)cos()cos(cos θωϕωω-=-+t C t B t A ,并讨论ϕ=0,ππ,2三种特例。
证明:因t B t B t B ωϕωϕϕωsin sin cos cos )cos(+=-从而有t B t B A t B t A ωϕωϕϕωωsin sin cos )cos ()cos(cos ++=-+令 ()ϕϕϕθ222sin cos sin sin B B A B ++=则()[]t t B B A t B t A ωθωθϕϕϕωωsin sin cos cos sin cos )cos(cos 222+++=-+=())cos(sin cos 222θωϕϕ-++t B B A令C=()ϕϕ222sin cos B B A ++,则有 )cos()cos(cos θωϕωω-=-+t C t B t A当ϕ=0时,C=A+B ;当ϕ=2π时,22B A C +=,22BA arcsin +=B θ ;当ϕ=π时,B A -=C ,0=θ1.13汽车悬架减振器机械式常规性能试验台,其结构形式之一如图T-1.13所示。
机械振动习题及答案完整版.docx
1.1试举出振动设计'系统识别和环境预测的实例。
1.2如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3设有两个刚度分别为心,心的线性弹簧如图T-1.3所示,试证明:1)它们并联时的总刚度k eq为:k eq = k x+ k22)它们串联时的总刚度匕满足:丿-畔+ 土keq & k2解:1)对系统施加力P,则两个弹簧的变形相同为X,但受力不同,分别为: P x = k x x<由力的平衡有:P = ^ + P,=(k1+k2)xp故等效刚度为:k eq^- = k1+k2x2)对系统施加力P,则两个弹簧的变形为:P%i=r 111,弹簧的总变形为:x = x}+x2= P(——I ---- )故等效刚度为:k =—Xk x k2k,2+ k、1 1=—l-------k、k21.4求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为心, 解:对系统施加扭矩T,则两轴的转角为:VTrx系统的总转角为:0 = G + g = Hy- + T-)褊k,i故等效刚度为:犒=二+二1.5两只减振器的粘性阻尼系数分别为q, C2,试计算总粘性阻尼系数"在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P,则两个减振器的速度同为厂受力分别为:P{ - c x x<P2=C2X由力的平衡有:P=£ + E =(q+C2)Xp故等效刚度为:c eq=- = c]+c2X2)对系统施加力P,则两个减振器的速度为:p 1 1故等效刚度为:c eq=- = - + -1.6 一简谐运动,振幅为0. 5cm,周期为0.15s,求最大速度和加速度。
解:简谐运动的a>n= — = /5),振幅为5x10 3m ;= 5x10-cos(^_ 2/r即:—5x10'丽fsin(丽血/s)*610=(話讥。
第九章:机械振动典型例题
机械振动典型例题集锦第一节 简谐运动例题:一个质点做简谐振动,但他每次经过同一位置时,下列物理量一定相同的是:A .速度B .加速度C .动能D .动量出题目的:考查对简谐运动的基本特点的掌握情况解析:质点做简谐振动,他每次经过同一位置时,它的位移、加速度、速度大小相同,但方向不一定相同,所以它的动能相同而动量不相同。
所以B、C两选项正确。
评析:本题考查对简谐运动的基本特点的掌握情况,由于简谐运动是一个周期性的运动,所以它每经过同一位置时,有的物理量相同,有的物理量不同,因此,明确每个物理量的概念和简谐运动的特点才能做出正确判断。
例题: 已知弹簧振子的质量是2kg ,当它运动到平衡位置左侧2cm 时受到的回复力是4N ,求:当它运动到平衡位置右侧4cm 时,受到的回复力的大小和方向以及加速度的大小和方向.出题目的:本题考查对回复力及简谐运动公式的掌握.解:kx F -=,所以力1F 的大小11kx F =,由此可解得200=k N /m 则:8104200222=⨯⨯==-kx F N ,由于位移向右,回复力2F 方向向左.根据牛顿第二定律222m/s 428===m F a ,方向向左.例题:如图a 所示,将弹簧振子沿竖直方向悬挂起来,弹簧的劲度系数为k ,重物的质量为m .小球在平衡位置时,原先静止.在竖直方向将小球拉离平衡位置,松开后,小球就以平衡位置为中心上下振动.证明:小球做简谐运动.出题目的:考查简谐运动公式的运用.证明:设小球静止时,弹簧伸长为0x ,根据平衡条件mg kx =0 ①设向下为正方向,小球平衡位置为原点,小球振动过程中任一时刻,偏离平衡位置的位移为x (图b ),则在此时刻弹簧的伸长量为x x +0;小球受弹力)(0x x k f +=,方向向上.小球所受回复力为F[])(0x x k mg F +-+= ②将①代入②得kx F -=若0>x ,则0<F ,表示小球在平衡位置下方而合力方向向上;若0<x ,则0>F ,表示小球在平衡位置上方而合力方向向下.回复力满足kx F -=的条件,所以小球做简谐运动.例题: 如图所示,质量为m 的密度计,上部粗细均匀,横截面积为S ,漂浮在密度为ρ的液体中.现将密度计轻轻按下一段后放手,密度计上、下起伏.若不计液体的阻力,试证明密度计做的是简谐振动.出题目的:考查对简谐运动公式及特点的理解.解:简谐振动的重要特征是回复力大小与位移大小成正比,与位移方向相反.若密度计的振动也具有此特征,即可证明密度计做的是简谐振动.取向下为x 正方向,液面为平衡位置.密度计静止时,受重力mg 和浮力0F .mg F =0∴g V mg 0ρ= 0V ——密度计静止时浸没在液体中的体积.当密度计向下位移为x 时,所受浮力为:Sg x g V F ⋅+=ρρ0x gS mg Sg x g V mg F F ⋅-=+⋅⋅+-=+-=ρρρ)(0回当密度计向上位移为-x 时,所受浮力为:xSg g V F ρρ-='0)()(0x gS mg xSg g V mg F F -⋅-=+--=+'-='ρρρ回∴密度计所受回复力kx F -=回,其中gS k ρ=.密度计的振动是简谐振动。
高考复习——《机械振动》典型例题复习
九、机械振动1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。
(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。
(3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。
一、知识网络二、画龙点睛概念②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。
(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。
②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。
简谐运动的动力学特征是判断物体是否为简谐运动的依据。
③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
简谐运动加速度的大小和方向都在变化,是一种变加速运动。
简谐运动的运动学特征也可用来判断物体是否为简谐运动。
例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。
证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。
3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。
②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
③单位:在国际单位制中,振幅的单位是米(m)。
机械振动基础
第4章 机械振动基础4-1 图示两个弹簧的刚性系数分别为k 1 = 5 kN/m ,k 2 = 3 kN/m 。
物块重量m = 4 kg 。
求物体自由振动的周期。
解:根据单自由度系统自由振动的固有频率公式 mk =n ω 解出周期 nπ2ω=T图(a )为两弹簧串联,其等效刚度 2121eq k k k k k +=所以 )(2121n k k m k k +=ω2121n)(π2π2k k k k m T +==ω代入数据得s 290.0300050003000)4(5000π2=⨯+=T图(b )为两弹簧串联(情况同a ) 所以 T = 0.290 s图(c )为两弹簧并联。
等效刚度 k eq = k 1 + k 2 所以 mk k 21n +=ω21nπ2π2k k mT +==ω代入数据得 T = 0.140 s图(d )为两弹簧并联(情况实质上同(c ))。
所以 T = 0.140 s4-3 如图所示,质量m = 200 kg 的重物在吊索上以等速度v = 5 m/s 下降。
当下降时,由于吊索嵌入滑轮的夹子内,吊索的上端突然被夹住,吊索的刚度系数k = 400 kN/m 。
如不计吊索的重量,求此后重物振动时吊索中的最大张力。
解:依题意,吊索夹住后,重物作单自由度自由振动,设振幅为A ,刚夹住时,吊索处于平衡位置,以平衡位置为零势能点,当重物达到最低点时其速度v = 0。
根据机械能守恒,系统在平衡位置的动能与最低点的势能相等。
即 T max = V max 其中 2max 2v m T = , 2max 21kA V =v km A =吊索中的最大张力 mk v mg kA mg F +=+=max 代入数据得 kN 7.461040020058.92003max =⋅⋅+⋅=F4-5 质量为m 的小车在斜面上自高度h 处滑下,而与缓冲器相碰,如图所示。
缓冲弹簧的刚性系数为k ,斜面倾角为θ。
机械振动试题(含答案)(1)
机械振动试题(含答案)(1)一、机械振动 选择题1.如图所示,在一根张紧的水平绳上,悬挂有 a 、b 、c 、d 、e 五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动,当振动稳定后,下列说法中正确的有( )A .各摆的振动周期与a 摆相同B .各摆的振动周期不同,c 摆的周期最长C .各摆均做自由振动D .各摆的振幅大小不同,c 摆的振幅最大2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍 B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。
已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( )A .212()x x g L π-B .212()2x x g L π-C .212()4x x g L π-D .212()8x x g Lπ- 4.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA5.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )6.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A .适当加长摆线B .质量相同,体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度要适当大一些D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期7.图(甲)所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在t=0.2s时,弹簧振子可能运动到B位置B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同8.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值9.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
高三物理总复习—机械振动经典例题及练习
一、简谐振动1、如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
简谐运动的回复力:即F = – kx2、简谐运动的表达式: “x = A sin (ωt +φ)”3、简谐运动的图象:A 、简谐运动(关于平衡位置)对称、相等①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同.②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反.③对称段:经历时间相同④一个周期内,振子的路程一定为4A (A 为振幅); 半个周期内,振子的路程一定为2A ; 四分之一周期内,振子的路程不一定为A每经一个周期,振子一定回到原出发点;每经半个周期一定到达另一侧的关于平衡位置的对称点,且 速度方向一定相反B 、振幅与位移的区别:⑴位移是矢量,振幅是标量,等于最大位移的数值⑵对于一个给定的简谐运动,振子的位移始终变化,而振幅不变4、受迫振动和共振1、受迫振动:在周期性外力作用下、使振幅保持不变的振动,又叫无阻尼振动或等幅振动。
f 迫 = f 策,与f 固无关。
A 迫 与∣f 策—f 固∣有关,∣f 策—f 固∣越大,A 迫越小,∣f 策—f 固∣越小,A 迫越大。
当驱动力频率等于固有频率时,受迫振动的振幅最大(共振)2、共振的防止与应用二、单摆的周期与摆长的关系(实验、探究)1)单摆的等时性(伽利略);即周期与摆球质量无关,在振幅较小时与振幅无关2)单摆的周期公式(惠更斯)gl T π2=(l 为摆线长度与摆球半径之和;周期测量:测N 次全振动所用时间t ,则T=t/N )3)数据处理:(1)平均值法;(2)图象法:以l 和T 2为纵横坐标,作出224T gl π=的图象(变非线性关系为线性关系);4)振动周期是2秒的单摆叫秒摆摆钟原理:钟面显示时间与钟摆摆动次数成正比三、机械波 横波和纵波 横波的图象1)机械波⑴产生机械波的条件:振源,介质——有机械振动不一定形成机械波有机械波一定有机械振动⑵机械波的波速由介质决定,同一类的不同机械波在同一介质中波速相等。
机械振动试题(含答案)(1)
机械振动试题(含答案)(1)一、机械振动选择题1.如图所示,弹簧下端挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长,则物体在振动过程中( )A.物体在最低点时的弹力大小应为2mgB.弹簧的弹性势能和物体动能总和不变C.弹簧的最大弹性势能等于2mgAD.物体的最大动能应等于mgA2.某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会()A.偏大B.偏小C.一样D.都有可能3.如图为某简谐运动图象,若t=0时,质点正经过O点向b运动,则下列说法正确的是()A.质点在0.7 s时的位移方向向左,且正在远离平衡位置运动B.质点在1.5 s时的位移最大,方向向左,在1.75 s时,位移为1 cmC.质点在1.2 s到1.4 s过程中,质点的位移在增加,方向向左D.质点从1.6 s到1.8 s时间内,质点的位移正在增大,方向向右4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
已知弹簧的劲度系数为k,则下列说法中正确的是()A .细线剪断瞬间A 的加速度为0B .A 运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mgk5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值6.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零7.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( )A .两小球同时到达B 点 B .A 点释放的小球先到达B 点C .O 点释放的小球先到达B 点D.不能确定8.如图所示,弹簧振子在A、B之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x轴的正方向.若振子位于B点时开始计时,则其振动图像为()A.B.C.D.9.如图所示,为一质点做简谐运动的振动图像,则()A.该质点的振动周期为0.5sB.在0~0.1s内质点的速度不断减小C.t=0.2 s时,质点有正方向的最大加速度D.在0.1s~0.2s内,该质点运动的路程为10cm10.如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C、D两点之间做周期为T的简谐运动。
机械振动基础习题
机械振动分析与应用习题第一部分问答题1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。
2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。
3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。
4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。
6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。
第二部分计算题1.求图2-1所示两系统的等效刚度。
图2-1 图2-2 图2-32.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。
3.如图2-3所示系统,求轴1的等效转动惯量。
图2-4 图2-5 图2-6 图2-74.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。
现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。
(注:飞轮外径100mm,R=150mm。
)5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。
6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。
7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。
8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。
图2-8 图2-99.长度为L 、重量为W 的均匀杆对称地支承在两根细绳上,如图2-8所示。
试建立杆相对于铅垂轴线o-o 的微角度振动方程并确定它的周期。
10.求图2-9所示系统的等效刚度和固有频率。
11.用能量法求图2-10所示均质圆柱体振荡的固有频率。
(完整版)机械振动知识点及习题练习+单元练习(含答案)
1、简谐运动的概念①简谐运动的定义:____________________________________________________________。
②简谐运动的物体的位移x、回复力F、加速度a、速度v、动能E K、势能E P的变化规律:A.在研究简谐运动时位移的起点都必须在处。
B.在平衡位置:位移最、回复力最、加速度最;速度最、动能最。
C.在离开平衡位置最远时:_________________________________________。
D.振动中:注意以上各量的矢量性和对称性。
③简谐运动机械能守恒,但机械能守恒的振动不一定时简谐运动。
④注意:A.回复力是效果力。
B.物体运动到平衡位置不一定处于平衡状态(如单摆,最低点有向心力)。
C.简谐运动定义式F=-K x中的K不一定是弹簧的劲度系数,是振动系数(如双弹簧)。
1.A关于回复力,下列说法正确的是( )A.回复力一定是物体受到的合外力B.回复力只能是弹簧的弹力提供C.回复力是根据力的作用效果命名的D.回复力总是指向平衡位置答案:CD2.A下列的运动属于简谐运动的是( )A.活塞在气缸中的往复运动B.拍皮球时,皮球的上下往复运动C.音叉叉股的振动D.小球在左右对称的两个斜面上来回滚动答案:C3.A一质点做简谐运动,当位移为正的最大值时,质点的( )A.速度为正的最大值,加速度为零B.速度为负的最大值,加速度为零C.速度为零,加速度为正的最大值D.速度为零,加速度为负的最大值答案:D4.A关于简谐运动的位移、加速度和速度的关系,正确的说法是( )A.位移减小时,加速度增大,速度增大B.位移方向总和加速度方向相反,和速度方向相同C.物体的速度增大时,加速度一定减小D.物体向平衡位置运动时,速度方向和位移方向相同答案:C6.B关于简谐运动中的平衡位置,下列说法正确的是( )A.平衡位置就是物体所受合外力为零的位置B.平衡位置就是加速度为零的位置C.平衡位置就是回复力为零的位置D.平衡位置就是受力平衡的位置答案:C7.B一平台沿竖直方向做简谐运动,一物体置于平台上随台一起运动,当振动平台处于什么位置时,物体对台面的压力最大( )A.振动平台在最高位置时B.振动平台向下振动经过平衡位置时C.振动平台在最低位置时D.振动平台向上运动经过平衡位置时答案:C8.B简谐运动是下列哪一种运动( )A.匀速直线运动B.匀加速运动C.匀变速运动D.变加速运动答案:D9.B做简谐运动的物体每次经过同一位置时,一定相同的物理量是( )A.速度B.位移C.回复力D.加速度答案:BCD10.B 对于弹簧振子,其回复力和位移的关系,在下图中正确的是()答案:C11.C 对简谐运动的回复力F=-kx 的理解,正确的是()A.k 只表示弹簧的劲度系数B.式中负号表示回复力总是负值C.位移x 是相对平衡位置的位移D.回复力只随位移变化,不随时间变化答案:C12.C 弹簧振子的质量是0.2kg,在水平方向做简谐运动,当它运动到平衡位置左侧x 1=2cm 的位置时,受到的回复力大小F 1=4N,则当它运动到平衡位置右侧x 2=4cm 的位置时,它的加速度是()A.20m/s 2,方向向左 B20m/s 2,方向向右C.40m/s 2,方向向左 D.40m/s 2,方向向右答案:C二、计算题(共16分)13.C 试证明:用轻弹簧悬挂一个振子,让它在竖直方向振动起来,在弹性限度内,振子是做简谐运动.(如图)答案:设振子的平衡位置为O,令向下为正方向,此时弹簧的形变为x 0,根据胡克定律及平衡条件有mg-kx 0=0.当振子向下偏离平衡位置x 时,有F=mg-k(x+x 0) 整理可得F=-kx(紧扣简谐运动特征及对称性)故重物的振动满足简谐运动的条件 2、总体上描述简谐运动的物理量①振幅A :_ _称为振幅。
机械振动试题(含答案)
机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
胡海岩主编机械振动基础课后习题解答第2章习题
胡海岩主编---机械振动基础课后习题解答_第2章习题第2章习题含答案习题2-1 定常力作用下的单自由度系统1. 一个单自由度系统的质量m=2kg,刚度k=1000N/m,阻尼系数c=10N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(1000/2) ≈ 22.36 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 10/(2√(2×1000)) ≈ 0.158振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
2. 一个单自由度系统的质量m=5kg,刚度k=500N/m,阻尼系数c=20N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(500/5) = 10 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 20/(2√(5×500)) ≈ 0.141振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
习题2-2 强迫振动的幅值和相位1. 一个单自由度系统的质量m=3kg,刚度k=2000N/m,阻尼系数c=30N·s/m。
给定的外力F(t) = 10sin(5t)N。
试求该系统在稳态时的振动幅值和相位。
解:首先求解系统的强迫响应,即对外力F(t)进行拉氏变换:F(s) = L{F(t)} = L{10sin(5t)} = 10L{sin(5t)} = 10×(5/(s^2+25))根据公式,系统的强迫响应可计算为:X(s) = F(s)/((s^2+ωn^2)+2ξωns)其中,ωn=√(k/m)为系统的固有频率,ξ=c/(2√(mk))为系统的阻尼比。
机械振动试题(含答案)(1)
机械振动试题(含答案)(1)一、机械振动 选择题1.如图所示,一根不计质量的弹簧竖直悬吊铁块M ,在其下方吸引了一磁铁m ,已知弹簧的劲度系数为k ,磁铁对铁块的最大吸引力等于3m g ,不计磁铁对其它物体的作用并忽略阻力,为了使M 和m 能够共同沿竖直方向作简谐运动,那么 ( )A .它处于平衡位置时弹簧的伸长量等于()2M m gk + B .振幅的最大值是()2M m gk +C .弹簧弹性势能最大时,弹力的大小等于()2M m g +D .弹簧运动到最高点时,弹簧的弹力等于02.甲、乙两单摆的振动图像如图所示,由图像可知A .甲、乙两单摆的周期之比是3:2B .甲、乙两单摆的摆长之比是2:3C .t b 时刻甲、乙两摆球的速度相同D .t a 时刻甲、乙两单摆的摆角不等3.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin 4πt (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值4.下列叙述中符合物理学史实的是( )A .伽利略发现了单摆的周期公式B .奥斯特发现了电流的磁效应C .库仑通过扭秤实验得出了万有引力定律D .牛顿通过斜面理想实验得出了维持运动不需要力的结论5.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 6.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T 形支架在竖直方向振动, T 形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是( )A .小球振动的固有频率是4HzB .小球做受迫振动时周期一定是4sC .圆盘转动周期在4s 附近时,小球振幅显著增大D .圆盘转动周期在4s 附近时,小球振幅显著减小7.质点做简谐运动,其x —t 关系如图,以x 轴正向为速度v 的正方向,该质点的v —t 关系是( )A .B .C .D .8.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm ,周期为3.0 s .当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm 时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间是( )A .0.5 sB .0.75 sC .1.0 sD .1.5 s9.下列说法中 不正确 的是( )A .将单摆从地球赤道移到南(北)极,振动频率将变大B .将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变10.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是( )A .在1~2T t 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来4T 内,两物块通过的路程为A C .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小 D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变 11.如图所示,弹簧振子在光滑水平杆上的A 、B 之间做往复运动,O 为平衡位置,下列说法正确的是( )A .弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B .弹簧振子运动过程中受重力、支持力、弹簧弹力和回复力作用C .振子由A 向O 运动过程中,回复力逐渐增大D .振子由O 向B 运动过程中,回复力的方向指向平衡位置12.沿某一电场方向建立x 轴,电场仅分布在-d ≤x ≤d 的区间内,其电场场强与坐标x 的关系如图所示。
机械振动——典型例题
第十一章机械振动本章知识复习归纳二. 重点、难点解析(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m1 1.0 m2
因此得到空载时的阻尼比为:
满载和空载时的频率比: r1
r2
m 1 1.87 n1 k m2 0.93 n 2 k
满载时阻尼比 1 0.5
空载时阻尼比 2 1.0 满载时频率比 r1 1.87 空载时频率比 r2 0.93
1 2 2 1 ka mgl mgl 2 2 2 1 (ka 2 mgl ) 2 mgl 2
d T U 0 dt
2ml 2 2 (ka 2 mgl ) 0 2ml 2 2(ka 2 mgl ) 0
ka 2 mgl n ml 2
系统最大动能
Tmax
m
1 ) 2 1 mA2 2 c 2 m(c n 2 2
1 1 2 U1 k1 ( max a ) k2 ( max b) 2 最大弹性势能 2 2 1 1 2 U 2 mg (1 cos max )c mgc max mgcA2 最大重力势能 2 2
解: (1)系统的固有频率
共振时
1 X 2 F / k
1 n 2 10 0.20
有
c
F 25 62.66 2 X 1.27 10 10
c 62.66 0.51 2mn 2 1.95 10
(2)振动频率为 f = 4Hz , 频率比 r f 4 0.8
解法2: 广义坐标θ,零平衡位置2 动能 势能
1 2 1 2 2 T J ml 2 2
11 2 U 2 k a mgl cos 22
m k/2
k/2
l
a
零平衡位置2
1 2 2 ka mgl 1 2sin 2 2 2
n 1
4 F0
1 n sin nt n 1,3,5
n t1
x0e
1 2
d
x1 x(t1 ) x0e
n t1
x0e
1 2
由题设质量块最大位移为初始位移的 10%,可知
x1 e x0
1 2
10%
解得:
0.59
例: 小球质量 m , 刚杆质量不计 求:
a b l c k m
T
t
求系统响应
解:
F0 a0 F (t ) (an cos nt bn sin nt ) 2 n 1 0
bn sin nt
n 1
F (t )
F0
T /2
T
t
2 T =0 a0 T 0 F (t )dt 2 T an 0 F (t ) cos ntdt T 2 T bn T 0 F (t ) sin ntdt
3)传到地基上的力幅 :
FT TF F 0.149 1470 219 N
例:弹簧-质量系统受到周期为T 的方波激励, 系统固有频率为ωn
F (t )
T 0t F0 , 2 F (t ) F , T t T 0 2
F0
0 T /2
F0
f A
动力学方程
mx k ( x x f ) 0
mx kx (kbd / a ) sin t
X
振幅:
kbd / a 1 bd 1 k 1 r2 a 1 r2
例题:机器安装在弹性支承上 ,已测得固有频率 fn=12.5Hz ,阻尼比 =0.15 ,参与振动的质量是 880kg ,机器转速 n=2400r/min ,不平衡力的幅值 1470N ; 求:1)机器振幅 2)主动隔振系数 3)传到地基 上的力幅 2 n 1 解:1)频率比: r 60 2 f 3.2 n n
l =5 m
a
z
求: 拖车在满载和空载时的振幅比
解:汽车行驶的路程可表示为:
2 v x f a sin t 因此: l
z vt
m
x
0 k/2 l =5 m
k/2
c
路面的激励频率:
2 v 34.9 rad / s l
x
f
x
f
a
z
l
有 c 2 km
c、k 为常数,因此 与 m 成反比
例题:偏心质量系统,共振时 测得最大振幅为0.1m,由自由 衰减振动测得阻尼系数为
m 10% 0.05 ,假定 M
k 2
c e m
t
x
k 2
求:
(1)偏心距 e,
me 2 sin t
M
x
(2)若要使系统共振时振幅为
0.01m,系统的总质量需要增加多少?
k
c
解:(1)共振时最大振幅
n
fn 1/ 20
无阻尼时系统振幅
F 1 X k 1 r2
X F 1 k (1 r 2 ) 2 (2 r ) 2
有阻尼时系统振幅
无阻尼与有阻尼系统振幅比为
X 2 r 2 2 0.51 0.8 2 1 ( ) 1 ( ) 2.48 2 2 X 1 r 1 0.8
k mn 2 880 (2 12.5) 2 5.43 106 N 弹性支承的刚度:
F 1 X 0.0291(mm) 机器振动的振幅 : k 2 2 2 (1 r ) (2 r )
2)主动隔振系数 :
1 (2 r ) 2 TF 0.149 2 2 2 (1 r ) (2 r )
因此满载和空载时的振幅比:
X1 0.6 X2
例题2:已知梁截面惯性矩I, B A m 弹性模量E,梁质量不计, yA 支座A产生微小竖直振动 b a y A d sin t ,支座B不动 求:质量m的稳态振动振幅 解:在质量m作用下,由材料力学可求出静挠度δ n g / 固有频率: xf 是因 yA 的运动而产生的质量m处的运动 x (b / a ) y (bd / a ) sin t
由
Tmax U max
得
b k2
1 1 1 1 2 2 2 2 2 2 2 mA n c k1 A a k2 A b mgcA2 2 2 2 2
θ
整理得
k1
a c θ
k1a 2 k2b 2 mgc n mc 2
m
例:在图示系统中,弹簧长l,其质量ms ,质量块m, 求弹簧的等效质量及系统的固有频率。
n
平衡位置
P m k x0
0
求导
n 2 x0 t x(t ) e sin d t d
n
x c
设在时刻 nt21x0 t 质量越过平衡位置到达最大位移,这时
x(t1 )
速度为:
d
e
n1
sin d t1 0
t1
x1 x(t1 ) x0e
a0在一个周期内总面积为0 ;
=0
区间[0,T]内,F(t)关于T/2为反
对称,而cosnωt关于T/2对称。
F (t ) bn sin nt
n 1
F (t )
F0
0 T /2
2 bn F (t ) sin ntdt T 0
T
F0
T 4
T
t
区间
内,F(t)关于 对称, T sin nt 4 而 n 取偶数时, 关于 反对称; T 3T 区间 内,F(t) 关于 对称, 3T sin nt 4 而 n 取偶数时, 关于 反对称; 因此 bn=0, n=2,4,6 …
2 ,T
4
T 0, 2
当 n 取奇数时
8 2 T bn F (t ) sin ntdt T 0 T
T 4 0
4F0 F0 sin ntdt n
n 1,3,5
于是,周期性激励F(t)可写为:
F (t ) bn sin nt
a
l
势能
1 2 2 ka mgl 1 1 2sin 2 2 2
1 (ka 2 2 mgl 2 ) 2
1 (ka 2 mgl ) 2 2
Tmax U max
max
n max
ka 2 mgl n ml 2
例1:如图所示是一个倒置的摆, 摆球质量 m,刚杆质量忽略不计, 每个弹簧的刚度是k/2, 求:倒摆作微幅振动时的 固有频率 可以有几种解法?
m k/2 k/2 a l
解法1:
m k/2
零平衡位置1
k/2
广义坐标θ,零平衡位置1
动能
1 2 1 2 2 T J ml 2 2
11 2 U 2 k a mgl 1 cos 22
ca 2 m 1 2mlb k
2bl ccr 2 mk a
例题:一个质量为1.95kg的物体在粘性阻尼介质中 作强迫振动,激励力为 F 25sin(2 ft )N, (1)测得系统共振时的振幅为1.27cm,周期为0.20s, 求系统的阻尼比及阻尼系数;(2)如果 f = 4Hz,无 阻尼时振幅是有阻尼时振幅的多少倍
无阻尼固有频率:
kb 2 b k n 2 ml l m
c a
k b
m
ml
ca 2n 2 ml
2
ca 2 ca 2 m 2 2ml n 2mlb k
阻尼固有频率:
d n
1 1 4kmb 2l 2 c 2 a 4 2ml 2