数字信号处理 第二章

合集下载

数字信号处理第2章

数字信号处理第2章

Z变换与拉氏变换的关系:
这一关系实际上是通过 到了Z平面。
若将Z平面用极坐标表示
标表示
,代入
将S平面的函数映射
,S平面用直角坐 ,得:
上述关系表明: z 的模 r 仅与 s 的实部 相对应, z 的幅角 则仅与 s 的虚部 对应。
映射关系:
Z变换与拉氏变换的关系
0 0,2 (S平面实轴映射到Z平面的正实轴)
解:
,求它的傅立叶变换。
其幅度谱和相位谱分别为:
典型例题
❖ 例2 已知序列的傅立叶变换如下,求它的反变换。
解:
显然序列 h(n)不是绝对可和的,而是平方可和 的 ,但其依然存在傅立叶变换。 Parseval定理
典型例题
❖ 例3 证明复指数序列 x(n) e j0n 的傅立叶变换为:
证:根据序列的傅立叶反变换定义,利用冲击函 数 的性质,有:
即序列绝对可和
某的有 立些序些叶既列序变不,列换满若虽依足引然然绝入不存对频满在可 域足。和的以见的冲上后条击条例件函件。也数,不但满满,足足其平平傅方方立可可叶和和变条,换件其傅
也存在。如
、某些周期序列,见后例。
序列傅立叶变换的定义
5.常用序列的傅立叶变换
序列
(n)
傅立叶变换
1
1
典型例题
❖ 例1 已知
A形k(式k=求0,X取1(…:z),N)B,(此z) A( z )

为了方bi 便z i通常利用
i0
N
1 ai z i
X(z)/z的
i 1
若序列为因果序列,且N≥M,当X(z)的N个极点都是单
极点时,可以展开成以下的部分分式的形式:
则其逆Z变换为:

数字信号处理第二章

数字信号处理第二章

回到本节
返回
2.2.4 时域离散信号傅里叶变换的性质
时域离散信号傅里叶变换有很多重要的性质,其中一些 性质和模拟信号的傅里叶变换性质类似,参考教材中表 。 本小节重点介绍: 傅里叶变换的周期性 频域卷积定理 傅里叶变换的对称性
回到本节
返回
此定理亦称为调制定理
傅里叶变换的周期性:
1
频域卷积定理:
2
回到本节
返回
傅里叶变换的对称性: 一般不做特殊说明,序列x(n)就是复序列。用下标r表 示它的实部,用下标i表示它的虚部: 复序列中有共轭对称序列和反共轭对称序列,分别用下 标e和o表示 共轭对称序列满足 复反共轭对称序列满足
返回
回到本节
一般序列傅里叶变换的对称性质ຫໍສະໝຸດ 一般序列可以表示为返回
回到本节
左序列Z变换的收敛域
01
回到本节
返回
上式右边:
第一项的收敛域为0 ≤|z|<Rx+, 第二项的收敛域为0<|z|≤∞, 将两个收敛域相与,得到左序列的收敛域为0<|z|< Rx+ 。 如果n1<0,则收敛域为0 ≤|z|<Rx+。
回到本节
返回
双边序列Z变换的收敛域 双边序列就是在-∞~+∞之间均有非零值的序列。 双边序列的Z变换
回到本节
返回
例2.4: ,求Z反变换
回到本节
返回
Z变换和傅里叶变换之间的关系 Z变换 令上式中的 ,得到 式中,r是z的模,ω是它的相位,也就是数字频率。这 样, 就是序列x(n)乘以实指数序列r-n后的傅里叶 变换。
回到本节
返回
如果r= =1,Z变换就变成了傅里叶变换了,即 r=1指的是Z平面上的单位圆,因此傅里叶变换就 是Z平面单位圆上的Z变换。

数字信号处理第二章

数字信号处理第二章
0 1 2 N − 1T
Ω0
kΩ 0
此时,时域是连续变量的周期信号,而频域是离散等间 隔的。频域谱线的间隔与时域重复的周期之间的关系:
2π Ω0 = T0
3
0
n
0 1 2 N − 1N
n
时域周期化,使对应着频域离散化。频域离散的间隔:
2π N
6
1
第2章
离散傅里叶变换(DFT)
1、时域周期化→频域离散化
~ x(t)
& (kΩ ) = 1 X 0 T0
T0 2
0 −2
x (t )e ∫~
T
− jkΩ0t
dt
− T0
T0
2T0
t
& ( jΩ) X
~ x (t ) =
k = −∞
& ( kΩ ∑X

0
) e jk Ω 0 t
• 一、时域频域离散与离散傅里叶级数(DFS) • 1、时域周期化→频域离散化: • 离散时间傅里叶变换是连续变量ω的函数,不方便与 计算机处理,为此将它离散化,也变成离散信号处理。 为此,将离散时间信号周期延展。 x ( n) ⎯ ⎯→ ~ x (n) ~ x(n) x(n)
n=0
N −1
2π − j kn N
0 1 2 N − 1N
n
1 ~ x ( n) = N
N −1 k =0
∑ X ( k )e
~
j
2π kn N
−N
⎛ j 2πk ⎞ ~ X⎜e N ⎟ = X (k) ⎜ ⎟ 1 ⎝ ⎠
Ts
~ x ( n) = x (( n)) N
0 1 2
N −1
N
n
0 1 2

数字信号处理第三版第2章.ppt

数字信号处理第三版第2章.ppt

| z | 2
试利用部分分式展开法求其Z反变换。
解:
X (z)

A1 1 2z 1

1

A2 0.5
z
1
4 1 1 1 3 1 2z1 3 1 0.5z1
x(n)


4 3

2n

1 3
(0.5)n
u(n)
第2章 时域离散信号和系统的频域分析
例: 设
X (z)
7)终值定理:设x(n)为因果序列,且X(z)=Z[x(n)]的全部
极点,除有一个一阶极点可以在z=1 处外,其余都在单位
圆内,则 : lim x(n) lim[(z 1)X (z)]
n
z1
第2章 时域离散信号和系统的频域分析
8)序列卷积(卷积定理)
若: y(n) x(n) h(n) x(m)h(n m) m
3z (z 3)2

z2
3z , 6z 9
试利用长除法求其Z反变换。
解:
| z | 3
第2章 时域离散信号和系统的频域分析
2.5.4 Z 变换的性质和定理
1)线性性质
Z[ax(n)+by(n)]=aX(z)+bY(z)
2)序列的移位 Z[x(n m)] zm X (z) Rx | z | Rx
2 j c
c (Rx , Rx )
直接利用围线积分的方法计算逆Z变换比较麻烦。 下面介绍几种常用的逆Z变换计算方法: 1)用留数定理求逆Z变换(了解) 2)部分分式展开法(掌握) 3)幂级数展开法(长除法)
第2章 时域离散信号和系统的频域分析
例: 设
1

数字信号处理第三版第二章

数字信号处理第三版第二章

(2.2.23) (2.2.24)
第1章 时域离散信号和时域离散系统
FT的对称性
(a) 将序列x(n)分成实结部论xr(:n)与虚部xi(n)
进行FT,得: x(nx) (=n)xr(=n)x+r(njx)i(+n)jxi(n)
X(e jω) X(e
j=ω)X=e(Xe ejω(e)
j+ω)X+o(Xe ojω(e)
第1章 时域离散信号和时域离散系统
[例2.3.1] 设x(n)=R4(n),将x(n)以N=8为周期进行
周期延拓,得到如图2.3.1(a)所示的周期序列

周期x(为n)8,求DFS[
]。 x(n)

jπ k4
7
j2π kn
3 jπ kn
X (k) x(n)e 8 e 4
n0
பைடு நூலகம்
n0
1
e
4 jπk
定义:设序列xe(n)满足 xe(n)=x*e(-n) 则称xe(n)为共轭 对称序列。
共轭对称序列的性质:
将xe(n)用其实部与虚部表示: xe(n) = xer(n)+jxei(n)
两边 n 用 –n 代替,并取共轭,得:
对比两式,
x*e(-n)=xer(-n)-jxei(-n)
得:
xer(n) = xer(-n)
jω)
式中
xr(n)和xi(n)都是实数序列。
Xe(ejω) 具有共轭对称性,其实部是偶函数,虚部是奇函数。 Xo(ejω) 具有共轭反对称性质,其实部是奇函数,虚部是偶函数。
第1章 时域离散信号和时域离散系统
(b) 将序列分成共轭对称部分xe(n)和共轭反对称部 分xo(n),即:

数字信号处理____第二章 离散时间傅里叶变换(DTFT)

数字信号处理____第二章  离散时间傅里叶变换(DTFT)


x a (t )e
st
e
jk
2 T
t
dt
用傅里叶级数表示
即:Z变换可看成是x(n)乘以指数序列r-n后的傅里叶变换。 2、单位圆上的Z变换就是序列的傅里叶变换
X a ( s jk s )
k
周期延拓

z re
j
r 1 z e
j
X (z)
ze
sT
X (e
M N
y (n)

m 0
bm x (n m )

k 1
ak y (n k )
23
24
4
§2.3 离散线性移不变(LSI)系统的频域特征
2、变换域中的表述 用系统函数H(z)来表征(指明收敛域)

§2.3 离散线性移不变(LSI)系统的频域特征

用频率响应来H(ejω)表征
H (e
x ( n )e
j ( n )
]

X (e
*
j
)
满足共轭反对称性
X o (e
j
) X o (e
)
19
20
§2.2 离散时间傅里叶变换(DTFT)
4、信号的实部和虚部的傅里叶变换
x ( n ) Re[ x ( n )] j Im[ x ( n )]
§2.2 离散时间傅里叶变换(DTFT)

j
)] X e ( e
j
)
Im[ X ( e
j
)] Im[ X ( e
j
奇函数
j Im[ x ( n )]
1 2
[ x ( n ) x ( n )] 1 2

数字信号处理第二章

数字信号处理第二章
x[n]
Input sequence Discrete-time system
y[n]
O Output sequence
§2.2 2 2 Operations O ti on Sequences S
• For example, the input may be a signal p with additive noise corrupted • Discrete-time system is designed to generate an output by removing the noise component from the input • In most cases, the operation defining a particular discrete-time discrete time system is composed of some basic operations
§2.1 Discrete-Time Signals: g Time-Domain Representation
• A complex sequence {x[n]} can be written as {x[n]} ]}={ {xre[n]} ]}+j{xim[n]} where xre and xim are the real and imaginary parts of x[n] • The complex conjugate sequence of {x[n]} is given by {x*[n]}={xre[n]} - j{xim [n]} • Often Of the h b braces are i ignored d to d denote a sequence if there is no ambiguity

数字信号处理 答案 第二章

数字信号处理 答案 第二章
n n
(4) h(n)=( (5) h(n)=
1 n ) u(n) 2
1 u(n) n
n
(6) h(n)= 2 R n u(n)
解 (1)因为在 n<0 时,h(n)= 2 ≠0,故该系统不是因果系统。
n
因为 S=
n =−∞


|h(n)|=

n =0

|2 |=1< ∞ ,故该系统是稳定系统。
n
(2) 因为在 n<O 时,h(n) ≠0,故该系统不是因果系统。 因为 S=
n =−∞
n =−∞
(4) 因为在 n<O 时,h(n)=0,故该系统是因果系统 。 因为 S= |h(n)|=
n =−∞

n=0
|(
1 n ) |< ∞ ,故该系统是稳定系统。 2
(5) 因为在 n<O 时,h(n)=
1 u(n)=0,故该系统是因果系统 。 n
因为 S=
n =−∞
∑ ∑


|h(n)|=
第二章
2.1 判断下列序列是否是周期序列。若是,请确定它的最小周期。 (1)x(n)=Acos( (2)x(n)= e (
j
π 5π n+ ) 8 6
n −π) 8 π 3π (3)x(n)=Asin( n+ ) 4 3
(1)对照正弦型序列的一般公式 x(n)=Acos( ωn + ϕ ),得出 ω =

=
k =0
∑ u(k )u(n − k ) =(n+1),n≥0
即 y(n)=(n+1)u(n) (2) y(n)= ∑ λ k u (k )u (n − k )

第二章 时域离散信号和系统(数字信号处理)

第二章  时域离散信号和系统(数字信号处理)

第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4

上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非

令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统

数字信号处理 第二章 DFT

数字信号处理 第二章 DFT

~ N=16:x (4) x((4))16 x((12 16))16 x(12)
例2:
x (n ) x (n ) 0
~ 1 X (k ) k 0 N ~ X (r )
e
j

15
周期序列的傅里叶级数表示:
正变换:
2 N 1 N 1 j nk ~ ~(n) ~(n)e N ~(n)W nk X (k ) DFS x x x N n 0 n 0
反变换:
~ ~(n) IDFS X (k ) 1 x N
j
2 kN N
k mN , m为整数 其他k
W
n 0
N 1
( m k ) n N
1W 1W
( k m ) N N ( k m ) N

1 e
j
1 e
N m k rN 0 mk
此外,复指数序列还有如下性质:
0 WN 1, W N 2 N r 1 1, WN WN r
ek (n)
ek (n) 是以N为周期的周期序列,所以基序
列 {e }(k=0,…,N-1) 只有N个是独立 的,可以用这N个基序列将 ~ ( n) 展开。 x
j 2 nk N
12
复指数序列 ek (n) e
周期性:
j
2 nk N
W
nk N
的性质:
无论对k还是n,复指数序列都具备周期性。
时间函数 连续和非周期 连续和周期(T0) 离散(Ts)和非周期 离散(Ts)和周期(T0) 非周期和连续 非周期和离散(Ω 0=2π /T0) 周期(Ω s=2π /Ts)和连续 周期(Ω s=2π /Ts)和离散(Ω 0=2π /T0) 频率函数

数字信号处理-第2章-精品文档精选文档PPT课件

数字信号处理-第2章-精品文档精选文档PPT课件
第2章. 连续时间信号的离散处理
2.1、数字信号处理系统的基本组成
•大多数数字信号处理的应用中,信号为来自不同模拟信号源,这些模拟 信号(电压或电流)通常为连续时间信号。
•应用数字信号处理(DSP)主要有三个原因: 1)滤波:滤除信号中来自周围环境的干扰或噪声; 2)检测:检测淹没在噪声中的特定信号(如雷达或声纳系统中),当检测 到的信号超过给定的阈值则认为目标信号存在,反之认为不存在; 3)压缩:当信号转换到另外一个域后,在变换域上更容易分辨信息的重 要程度,对重要部分分配多的比特数,次要部分分配尽可能少的比特 数,达到压缩的目的(如DCT算法)。
的是离散时间信号。将连续时间信号转换成离散时间信号的过程叫抽样。
抽样可由称为A/D变换器的器件完成:
量化结果
声卡
5
模拟输入 xa (t)
Ts
抽样器
抽样输出
xˆa (t)
xˆa(t) xa(t)•P (t)
xa(t)(t nTs)
n
xˆa (t)
周期性抽样函数 P (t )
xˆa (t)
Ts
P(t) (tnTs)
是否可以根据抽样后的离散时间序列恢复原始信号? •奈奎斯特抽样频率:能够再恢复出原始信号的最低抽样频率(使 抽样后的信号频谱不发生混叠的最低抽样频率,即信号最高频率的 二倍)
0 s/2 s2 0
•满足奈奎斯特抽样频率的抽样信号可由理想低通滤波器恢复出原 始信号。此后将推导这个过程。
xˆa(t) G (j )/g (t( ) 低 通 y滤 (t) 波 xa) (t)
X a ( j)
xa
(t )e
jt dt
[xa
(t )

P
(t )]e

数字信号处理(第三版)第2章习题答案

数字信号处理(第三版)第2章习题答案

第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析

《数字信号处理》第二章 离散信号和抽样定理

《数字信号处理》第二章 离散信号和抽样定理
性延拓,因而采样信号xs(t)就包含了的原信号x(t)全部
信息。
重要结论
第三节 抽样定理
*带限信号抽样定理:
要想连续信号抽样后能够不失真的还原 出原信号,则抽样频率必须大于或等于两 倍原信号频谱的最高频率(2fm≤ fs),这就是 奈奎斯特抽样定理。
第三节 抽样定理
二、如何从抽样信号恢复出带限信号x(t)
n
其中
1 g (t)
0
t
2
t


2
Ts
第二节 连续信号的离散化
xa (t)
抽样器
(电子开关) P(t)
T
xa (t)
xˆs (t)
fs

1 T
xˆs (t)
第二节 连续信号的离散化
理想抽样:当τ 趋于零的极限情况时,抽样脉冲
方波p(t)变成了冲激函数序列δT(t),这些冲击函数 的强度准确地为采样瞬间的xa(t)幅值,这样的抽 样称为理想抽样。
余弦与正弦序列示意图如下:
第一节 离散时间信号
5、 用单位脉冲序列表示任意序列
任意序列x(n)都可用单位脉冲序列δ(n)表示成 加权和的形式,即

x(n) x(m) (n m) m
如:
a n x(n)
可表示为 0
10 n 10 其他
10
x(n) am (n m)
样品集合可以是本来就存在的,也可以是由模拟 信号通过采样得来的或者是用计算机产生的。
第一节 离散时间信号
离散时间信号的时域表示 1) 表示离散时间信号可采用枚举的方式。例如
{x(n)}={…,-1.5,-8.7,2.53,0.0,6,7.2, …}

数字信号处理-时域离散随机信号处理(丁玉美)第2章

数字信号处理-时域离散随机信号处理(丁玉美)第2章

rxx (0) rxx (0) Rxx r ( M 1) xx
第二章 维纳滤波和卡尔曼滤波 (2.2.22)式可以写成矩阵的形式, 即
Rxd Rxxh
对上式求逆,得到
h Rxx1Rxd
(2.2.23)
(2.2.24)
第二章 维纳滤波和卡尔曼滤波 上式表明已知期望信号与观测数据的互相关函数及观测 数据的自相关函数时,可以通过矩阵求逆运算, 得到维纳滤
E[| e(n) |2 ] E[| e(n) |2 ] j 0 a j b j

j=0, 1, 2, … (2.2.6)
j j a j b j
j=0, 1, 2, …
(2.2.7)
第二章 维纳滤波和卡尔曼滤波 则(2.2.6)式可以写为
j E[| e(n) |2 ] 0
j 0

(2.2.16)
假定滤波器工作于最佳状态,滤波器的输出yopt(n)与期望信号d(n) 的误差为eopt(n),把(2.2.15)式代入上式,得到
* E[ yopt (n)eopt (n)] 0
(2.2.17)
第二章 维纳滤波和卡尔曼滤波
d(n) eo pt(n)
yo pt(n)
图 2.2.1 期望信号、 估计值与误差信号的几何关系
方法求解,简单易行,具有一定的工程实用价值,并且物理概
念清楚,但不能实时处理;维纳滤波的最大缺点是仅适用于一 维平稳随机信号。这是由于采用频域设计法所造成的, 因此人 们逐渐转向在时域内直接设计最佳滤波器的方法。
第二章 维纳滤波和卡尔曼滤波
2.2 维纳滤波器的离散形式——时域解
2.2.1 维纳滤波器时域求解的方法 根据线性系统的基本理论,并考虑到系统的因果性,可以 得到滤波器的输出y(n),

数字信号处理第2章Z变换

数字信号处理第2章Z变换

s=jΩ X(S)
z=esT
X(z) z=ejω
模拟:x(t)
X(j) =T
X(ejω)
t=nT
s
数字:x(n)
§2.6 离散系统的系统函数和 系统的频率响应
一、离散系统的系统函数
1、差分方程和系统函数的关系
系统的差分方程为:
对方程两边做z变换,得:
整理得系统函数为:
2、 H(z)和单位抽样响应h(n) 的关系
(2)与的关系(=T)
的取值范围是从-→(负频端无意义,只是
用于数学分析),而在圆周上变化,具有明显 的周期性,以2为周期,这样的对应关系非单值
关系,所以要把限制在一个周期内。
= T,从–→, 所以在一个周期内:为–/T→/T
=0,S平面的实轴,
=0,z平面正实轴;
=0(常数), S:平行实轴的直线,
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
系统函数:
§2.4 z反变换
部分分式法:
X(z)一般是z的有理分式,可写成X(z)=N(z)/D(z),而N(z)、
D(z)一般是实系数多项式,则X(z)可以写成部分分式之和的形 式
再利用已知的z变换:
结合收敛域写出反变换:
需要注意的问题:
①极点zk,为D(z)=0的根 ②计算系数Ak时,要写成:
③利用已知z变换时,注意收敛域
配分法: 例2-4-1:
(在滤波器的设计中,分子、分母通常写成负幂的形式)
求系数Ak
例2-4-2:
利用z变换的时移性质: 令: 则:
长除法-原理
即D(z)除以N(z)的商为z的多项式,多项式的系数即为序列x(n) 左边序列对应z的正次幂的系数,右边序列对应z的负次幂的系数

数字信号处理——第2章 离散时间傅里叶变换与Z变换

数字信号处理——第2章 离散时间傅里叶变换与Z变换

• 总结:
①序列ZT的收敛域以极点为边界(包含0 和 ②收敛域内不含任何极点,可以包含0 ③相同的零极点可能对应不同的收敛域,即: 不同的序列可能有相同的ZT ④收敛域汇总:右外、左内、双环、有限长z平面


常见典型序列z变换
序列 Z变换 收敛域
z a
z b
注意:只有z变换和它的收敛域两者在一起才和序列相对应。 其它序列见P54: 表2-1 几种序列的z变换
2.3
z反变换

Z反变换: 从X(z)中还原出原序列x(n)
X ( z ) ZT [ x ( n)]
n

x (n) z n
实质:求X(z)幂级数展开式
Z反变换的求解方法: 留数定理法
部分分式法
长除法
1. 留数定理法
根据复变函数理论,可以推导出
x ( n)
1 2 j
X ( z ) z n 1dz
1 1 3z 1
n
z 2
2 n u ( n)
z 3
3
n
n
u (n 1)
x n 2 u n 3 u n 1
3. 幂级数法(长除法)
如果序列的ZT能表示成幂级数的形式,则序列x(n) 是幂 级数 说明: ①这种方法只对某些特殊的ZT有效。 ②如果ZT为有理函数,可用长除法将X(z)展开成幂级 数。 若为右边序列(特例:因果序列),将X(z)展开成负幂 级数; 若为左边序列(特例:反因果序列),将X(z)展开成正 幂级数; 中
z z 1 1 X z 1 z 2 z 3 1 2z 1 3 z 1
1 ZT [a u (n)] z a 1 1 az 1 n ZT [a u (n 1)] z a 1 1 az

数字信号处理课件第2章

数字信号处理课件第2章
k 1
| e jZ pk |
M
r 1 N
z
e jw
| H (e jZ ) | g
| e jZ zr |
M
| e
k 1
r 1 N
e jZ
0
| e jZ zr |
0
pk
Zc Z
jZ
e jZ
pk |
zr
arg[ H (e )] arg[e
'
n f
¦
f
x ( nTs )e snTs
X ( e sTs )
z e
X ( z)
z
re
jZ
e
V Ts
(V j: ) Ts
n f
x ( n ) z n ¦
f
e
s
V Ts
e
j:Ts
^
e Z :Ts
r
z
z
re jZ |r :Ts
1
e jZ
Z
2S f f s
n f
X (e jZ )
¦
f
­1, n 0 ° ® 1, n 5 °0, n ¯
Y z
X z X z z 5
X z 1 z 5
H z Y z X z 1 z 5
z
H e
jw
e jw
j 5w
1 e
e

j 5w 2
j 5w § j 5w · e 2 e 2 ¸ ¨ © ¹
n 0 f S
c n 0 f
x( n) z n z m 1dz ¦
S
x( n) v z m n 1dz ¦ ³
c
¦ x(n) jR

数字信号处理(程佩青)_第二章_Z变换

数字信号处理(程佩青)_第二章_Z变换
17
2. z变换的收敛域
一种最重要的右边序列:因果序列——是指在 n≥0时x(n)有值,n<0时x(n)=0的序列。其收敛
序列为:
在|z|=∞处z变换收敛是因果序列的特征。
18
2. z变换的收敛域
因果序列及其收敛域(包括z=∞ )
19
2. z变换的收敛域
(3)左边序列
在 时 有值,在 时 的序列 。其z变换为:
有一个
一阶极点。所以
31
1.围线积分法(留数法)
(2)当n≤-2时:函数 有一个 4 一阶极点。所以 在围线C外只
综合可得:
32
2.部分分式展开法
当X(z)为有理函数时,可以表示成
X(z) 可以展成下面的部分分式形式:
其中zi是X(z)的一个r阶极点 ,zk是X(z)的单极点(k=1,2……N-r),Bn是 整式部分的系数(M≥N时存在,M=N时,只有B0 项;M<N时Bn =0)。
59
任一序列总能表示成一个共轭对称序列与 一个共轭反对称序列之和。
要证明这一点,需要找到xe(n) 和xo(n) ,这 只要令xe(n) 和xo(n)满足下式即可 :
60
同样,一个序列x(n)的傅里叶变换也可以分 解成共轭对称分量与共轭反对称分量之和:
其中 ,是共轭对称的, 轭反对称的。
是共
61
(5)
若已知 X(z) = Z[x(n)] Rx_<|z|<Rx+
则有: Z [ x * (n)] X * ( z * )
(6)
若已知 则有: X(z) = Z[x(n)] Rx_<|z|<Rx+
1 Z [ x(n)] X ( ) z
48
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上抽样 (up-sampling)
L:上采样因子
上抽样器 (up-sampler)
(up-sampling factor)
抽样率扩展器 (sampling rate expander)
x[n]
3
xu [n]
xu
[n]
=
⎧x[n
⎨ ⎩
0,
3],
n = 0, ±3, ±6,…, otherwise
x[n]
2.2.1 基本运算
调制器 (modulator)
h∞ [k]
布莱克曼窗函数
w[k]
积 (product)
windowing (加窗)
调制 (modulation)
h[k]
乘法器 (multiplier) 标乘 (scalar multiplication)
加法器 (adder)
-
-
加法 (addition) 减法 (subtraction)
1 K
K i =1
xi
=1 K K i=1
s + di
=s+ 1 K K i=1
di
若K的取值很大,则
∑ ( ) 1 K
K i=1 di
0
xave s
Xave为信号向量s的合理近似。
Example 2.1: s
xi = s + di
di x ave
Example 2.2: x[n-3]=? x[n+2]=?
FT
=
1 T
sampling frequency (抽样频率) sampling rate (抽样率)
x[n] =
xa
(t) t =nT
=
xa (nT ),
n = , −2, −1, 0,1, 2,
{x[n]} ={ , 0.95, −0.2, 2.17,1.1, 0.2, −3.67, 2.9, −0.8, 4.1, }
如何移位?
N点序列的圆周平移:
xc [n] = x ⎡⎣ n − n0 N ⎤⎦ , n0 is an arbitrary integer
模运算 (Modulo operation): mod: 模运算的Matlab函数 m = m modulo N
N
令 r= m N, 则 余数 (residue) r = m + lN , l 是一个使 m + lN 的值位于0 和 N −1之. 间的整数.
zero-padding 定义在有限区间内:N1 ≤ n ≤ N2 (−∞ < N1, N2 < ∞, N1 ≤ N2 )
(补零)
长度(时宽):N = N2 − N1 +1, 称为N点序列。
Z infinite-length sequence (无限长序列)
Left-sided sequence (左边序列) e.g., anticausal sequence (非因果序列)
n: 0
1
2
3
4
5
g [n] : g [0] g [1] g [2] g [3]
h[n]: h[0] h[1]
h[2] −
g [0]h[0] g [1]h[0] g [2]h[0] g [3]h[0]
− g [0]h[1] g [1]h[1] g [2]h[1] g [3]h[1]

− g [0]h[2] g [1]h[2] g [2]h[2] g [3]h[2]
4
5
6
7
3

−2 0
1
−4 0
0 +
−1 3
2
−2 6
0
0
00
2
0
−1 1 −3
y[n]: − 2 − 4
1
3
1
5
1
−3
y[n] = {-2 − 4 1 3 1 5 1 -3}, 0 ≤ n ≤ 7
Example 2.7: 用列表法计算双边序列的线性卷积
{x[n]} = {3 -2 4}
{h[n]} ={4 2 -1}
y[n]: y[0] y[1] y[2] y[3] y[4] y[5]
Example 2.6: 用列表法计算两个单边序列的线性卷积
{x[n]} = {-2 0 1 -1 3}, 0 ≤ n ≤ 4
解:
n: 0
1
2
3
x[n]: − 2
0
1
−1
h[n]: 1
2
0
−1
{h[n]} = {1 2 0 -1}, 0 ≤ n ≤ 3
舍入或截尾
{xˆ[n]} ={ ,1, 0, 2,1, 0, − 4, 3, −1, 4, }
为简单起见,对于定义在从时间序号n=0开始且n为 正值的有限长序列,序列的第一个样本通常假定其 对应的时间序号为n=0,而不再用箭头在下面明确表 示。
后面章节在表示序列时,将不再加大括号。
若对于所有的n,x[n]均为实数,则{x[n]}是实序列。
解:
补零 (zero-padding) {ge [n]} = {−21, 1.5, 3, 0, 0}.
{c[n]⋅ ge [n]} = {−67.2, 61.5, 108, 0, 0}. {c[n] + ge [n]} = {−17.8, 42.5, 39, − 9.5, 0}.
2.2.2 基本运算的组合
离散时间序列{x[n]}的图形表示
{x[n]} ={ , 0.95, −0.2, 2.17,1.1, 0.2, −3.67, 2.9, −0.8, 4.1, }
n=0 samples (样本)
对连续时间信号xa(t)抽样产生的序列
T : sampling interval or sampling period (抽样间隔或抽样周期)
离散时间信号的强度由其范数给出。
序列的 Lp范数 ( Lpnorm of a sequence) 定义为:
∑ [ ] x
p
=
⎛ ⎜⎝
∞ n=−∞
x
n
p ⎞1 p ⎟⎠
p is an positive integer (正整数)

∑ L1-norm ( L1范数):
x= 1
x[n]
norm (x,1)
xu [n]
下抽样 (down-sampling)
下抽样器 (down-sampler)
M:下采样因子 (down-sampling factor)
抽样率压缩器(sampling rate compressor)
x[n]
3
y[n] y [n ] = x [3 n ],
x[n]
y[n]
2.3 有限长序列的运算
节点 (pick-off node)
单位延时 (unit delay)
单位超前 (unit advance)
W4 ( z) = z−1X ( z)
W5 ( z) = zX ( z)
w4 [n] = x[n − N ] 时移 (time-shifting)
N >0
N <0
延时(delaying) 超前(advancing)
x[n] = 0 for n > N2, N2 ≤ 0
Righ-sided sequence (右边序列) e.g., causal sequence (因果序列)
x[n] = 0 for n < N1, N1 ≥ 0
Two-sided sequence (双边序列)
2.1.2 离散时间信号的强度
2.3.2 圆周时间反转(circular time-reversal )
N点序列 x[n], 0 ≤ n ≤ N −1 的圆周时间反转:
x ⎡⎣
−n
N
⎤⎦
=
⎧⎪x[N − n],
⎨ ⎪⎩
x[n],
for 1 ≤ n ≤ N −1, for n = 0.
circshift1: 圆周时移运算的Matlab函数


= ∑ x[k]h[n− k] = ∑ x[n − k]h[k]
k =−∞
k =−∞
通常,若被卷积的两个序列的长度分别为M和N, 则卷积得到的序列长度是M+N-1。
卷积和的性质:
交换律 (commutative)
x1 [n]∗ x2 [n] = x2 [n]∗ x1 [n]
结合律 (associative)
Example 2.5: 基本运算的组合示例
解:
y [n] = b0x[n] + b1x[n −1] + b2x[n − 2] + a1y[n −1] + a2 y[n − 2].
2.2.3 卷积和
两个序列x[n]和h[n]的卷积和产生的序列y[n]记为:
y[n] = x[n]∗ h[n] 线性卷积
用数字化方式改变信号抽样频率
x[n]
x′[n]
抽样率转换
FT
FT′
FT′ > FT : 抽样频率
内插 (interpolation) 内插器 (interpolator)
FT′ < FT : 抽样频率
抽取 (decimation) 抽取器 (decimator)
抽样率变换过程中利用的两种基本运算:上抽样和下抽样。
绝对值的峰值 (peak absolute value) of x[n]
范数的应用——估计一个离散时间信号x[n]逼近另一个离散 时间信号y[n]所产生的误差
均方误差 (MSE) :
( ) ( ) ∑ MSE = 1 ∞ y[n] − x[n] 2 = 1
相关文档
最新文档