第八章 非平稳和季节时间序列模型分析方法讲解

合集下载

非平稳时间序列建模步骤

非平稳时间序列建模步骤

非平稳时间序列建模步骤介绍非平稳时间序列是指其统计特性在时间上发生变化的序列。

在实际应用中,我们经常面临非平稳时间序列的建模问题,如股票价格、气温变化等。

本文将探讨非平稳时间序列建模的步骤和方法。

为什么要建立模型非平稳时间序列在其统计特性的变化中存在一定的规律性,因此建立模型可以帮助我们理解和预测序列的行为。

模型可以从数据中提取有用的信息,揭示序列的规律和动态特征。

步骤一:观察时间序列的特性在建立模型之前,我们首先需要观察时间序列的特性,包括趋势、周期性、季节性和随机性等。

这些特性是决定时间序列模型选择的重要因素。

步骤二:平稳化处理由于非平稳时间序列的统计特性随时间变化,不利于建模和分析。

因此,我们需要对时间序列进行平稳化处理。

常用的平稳化方法包括差分法和变换法。

2.1 差分法差分法是通过计算相邻两个观测值的差异来实现序列的平稳化。

一阶差分是指相邻观测值之间的差异,二阶差分是指一阶差分的差异,以此类推。

差分法可以有效地去除序列的趋势和季节性,使序列平稳。

2.2 变换法变换法是通过对时间序列进行数学变换,将非平稳序列转化为平稳序列。

常用的变换方法包括对数变换、平方根变换和 Box-Cox 变换等。

变换法可以改变序列的分布特性,使序列满足平稳性的要求。

步骤三:选择模型平稳化处理后,我们需要选择合适的模型进行建模。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。

3.1 自回归移动平均模型(ARMA)ARMA 模型是描述时间序列随机变动的经典模型,其包括自回归和移动平均两个部分。

自回归部分考虑了序列的历史值对当前值的影响,移动平均部分考虑了序列的误差对当前值的影响。

ARMA 模型适用于没有趋势和季节性的平稳序列。

3.2 自回归积分移动平均模型(ARIMA)ARIMA 模型是在 ARMA 模型基础上引入了积分项,用于处理非平稳序列。

时间序列、动态计量与非平稳性

时间序列、动态计量与非平稳性

时间序列、动态计量与非平稳性时间序列分析是一种研究时间上观测到的数据的方法,它通常用来预测未来的数据走势,或者揭示数据背后的规律和模式。

时间序列分析的基本假设是数据是按照时间顺序收集和记录的,因此数据中的观测值之间存在一定的内在关联。

动态计量是时间序列分析的一种方法,它关注变量之间的相互影响和动态调整过程。

动态计量的核心思想是当前时刻的变量取值受到过去时刻的变量取值的影响,而且这种影响是不断调整和改变的。

动态计量模型通常使用回归分析、向量自回归(VAR)模型、脉冲响应分析等方法,来研究变量之间的时序关系和相互作用。

然而,时间序列和动态计量在实际应用中都面临一个重要的问题,那就是非平稳性。

非平稳性是指时间序列数据在整个时间范围内存在明显的长期趋势、季节性变化、周期性波动等,这会导致时间序列的统计性质发生变化,使得传统的时间序列模型无法有效地拟合和预测数据。

非平稳性在金融、经济学、气象学等领域中普遍存在,因此如何处理非平稳性是时间序列分析的重要课题。

为了处理非平稳性,可以使用一系列的技术,如差分、变换、季节调整和模型拟合等。

其中,差分是最常见的一种方法,它通过计算相邻时刻的观测值之间的差异,来消除数据中的趋势和季节性变化。

变换则是将原始数据进行数学变换,如对数变换、平方根变换等,以改变数据的统计性质。

季节调整是将季节性因素从数据中剔除,以便更好地研究数据的长期趋势。

而模型拟合则是利用时间序列模型来拟合和预测非平稳数据,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

非平稳性的处理不仅能够改善模型的拟合效果,还能够提高模型的预测准确性和可解释性。

通过去除非平稳性的影响,我们可以更好地理解数据的本质和规律,更准确地进行预测和决策。

对于金融市场而言,处理非平稳性可以帮助投资者更好地判断市场趋势和价值,从而制定更科学和有效的投资策略。

总之,时间序列、动态计量和非平稳性是现代统计学中重要的研究领域。

第八章季节性时间序列分析方法

第八章季节性时间序列分析方法

81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。

如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。

S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。

对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。

影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。

t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。

❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。

比如对于月度数据S 12比如,对于月度数据则与相关性较强。

我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。

简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。

平稳性和非平稳时间序列分析93页PPT

平稳性和非平稳时间序列分析93页PPT
平稳性和非平稳时间序列分析
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法时间序列是指观测值按照时间顺序排列的一组数据,其中具有季节性和非平稳性的时间序列数据具有特殊的分析需求。

本文将介绍非平稳和季节时间序列的分析方法。

一、非平稳时间序列分析方法非平稳时间序列是指其统计特征在时间上发生了变化,无法满足平稳性的要求。

非平稳时间序列具有趋势性、周期性、季节性和不规则性等特征。

对于非平稳时间序列的分析,我们可以采用以下方法:1.差分法:差分法是通过对时间序列取一阶或多阶差分来消除趋势性的影响。

通过差分后的时间序列进行分析,我们可以得到一个稳定的时间序列,并进行后续的建模和预测。

2.移动平均法:移动平均法是通过计算一定窗口范围内的观测值的平均值来消除短期波动的影响,从而得到一个平滑的时间序列。

通过移动平均后的时间序列进行分析,我们可以在一定程度上消除非平稳性的影响。

3.分解法:分解法是将非平稳时间序列分解为趋势项、季节项和随机项三个部分。

通过分解后的各个部分进行分析,我们可以了解趋势、季节和随机成分在时间序列中的作用,从而更好地进行建模和预测。

二、季节时间序列分析方法季节时间序列是指具有明显季节性的时间序列数据。

对于季节时间序列的分析,我们可以采用以下方法:1.季节性指数:季节性指数是用来描述季节性的强度和方向的指标。

通过计算每个季节的平均值与总平均值之比,可以得到季节性指数。

根据季节性指数的变化趋势,我们可以判断时间序列的季节性变化情况,并进行后续的建模和预测。

2.季节性趋势模型:季节性趋势模型是一种常用的季节时间序列建模方法。

该模型将时间序列分解为趋势项、季节项和随机项三个部分,并通过对这三个部分进行建模来分析季节性时间序列。

常用的季节性趋势模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。

总结起来,非平稳和季节时间序列模型的分析方法主要包括差分法、移动平均法和分解法等对非平稳时间序列进行分析,以及季节性指数和季节性趋势模型等对季节性时间序列进行分析。

季节性时间序列分析方法(PPT37张)

季节性时间序列分析方法(PPT37张)
(1 1B S B S 1S B S 1 ) X t at 。
(1 1B n B n )(1 S B S ) X t at
(7.3.8)
由此可求得偏自相关函数。这种方法可以推广到 AR(n)模型
( B)U ( B S ) X t at ,
或更一般的情形 即
(7.2.6a)
只考虑不同年份同月的资料之间的相关关系。 (7.2.6b)
表示同年不同月之间几乎不存在依赖关系,但受前一期 扰动的影响。即时间序列资料消除了季节因素之后适合于一 个 MA(1)模型。 更一般的是模型(7.2.5)和(7.2.6)中的周期长度 12 可以用 S 替代。
3. (1 B S ) X t C (1 1B)(1 S B S )at 4. (1 B) X t (1 S B S )at 5. (1 B S ) X t (1 S B S )at 6. (1 1B)(1 B S ) X t (1 S B S )at 7. (1 1B S ) X t C (1 1B)at 8. (1 B S )2 X t C 2 S ( B)at
D (1 1 B S ) S X t et
一阶移动平均季节模型 Wt et 1et S ,或Wt (1 1B S )et
D S X t (1 1B S )et
一般的季节性 ARMA 模型 U ( B S )Wt V ( B S )et
D U ( B S ) S X t V ( B S )et
D X t V ( B S )et 在随机季节模型 U ( B S ) S
(7.1.6)
中,由于 et 不是独立的,因此不妨假设 et 适合一个 ARIMA(n,d,m): ( B) d et ( B)at ,

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。

因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。

第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。

二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。

因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。

所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。

第八章季节性时间序列模型

第八章季节性时间序列模型
第八章季节性时间序列模型
n
表4.1 单变量时间序列观测数据表
n 例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。
第八章季节性时间序列模型
n 二、季节时间序列的重要特征 n 季节性时间序列的重要特征表现为周期性。在一个序列
第八章季节性时间序列模型
第八章季节性时间序列模型
第八章季节性时间序列模型
n 可见当得到样本的自相关函数后,各滑动平均参数的矩 法估计式也就不难得到了。
n 更一般的情形,如果一个时间序列服从模型
n
n
(8.18)
n 其中,
。整理后可以看出该时间
序列模型是疏系数MA(ms+q),可以求出其自相关函数,
2348 2454.9 2881.7
1998 2549.5 2306.4 2279.7 2252.7 2265.2
2326 2286.1 2314.6 2443.1
2536 2652.2 3131.4
1999 2662.1 2538.4 2403.1 2356.8
2364 2428.8 2380.3 2410.9 2604.3 2743.9 2781.5 3405.7
n 如果这个比值小于1,就说明该季度的值 常常低于总平均值
n 如果序列的季节指数都近似等于1,那就 说明该序列没有明显的季节效应
第八章季节性时间序列模型源自例1 季节指数的计算第八章季节性时间序列模型
季节指数图
第八章季节性时间序列模型
二、综合分析
n 常用综合分析模型
n 加法模型
n 乘法模型
n 混合模型
个模型组合而成。由于序列存在季节趋势,故先

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析很多时间序列表现出非平稳的特性:随机变量的数学期望和方差随时间的变化而变化。

宏观经济数据形成的时间序列中有很多是非平稳时间序列。

非平稳时间序列与平稳时间序列具有截然不同的特征,研究的方法也很不一样。

因此,在对时间序列建立模型时,必须首先进行平稳性检验,对于平稳时间序列,可采用第七章的方法进行分析,对于非平稳时间序列,可以将采用差分方法得到平稳时间序列,然后采用平稳时间序列方法对差分数据进行研究,对于多个非平稳时间序列则可以采用协整方法对其关系进行研究。

8.1 随机游动和单位根8.1.1随机游动和单位根如果时间序列t y 满足模型t t t y y ε+=-1 (8.1)其中t ε为独立同分布的白噪声序列, ,2,1,)(2==t Var t σε,则称t y 为标准随机游动(standard random walk )。

随机游动表明,时间序列在t 处的值等于1-t 时的值加上一个新息。

如果将t y 看作一个质点在直线上的位置,当前位置为1-t y ,则下一个时刻质点将向那个方向运动、运动多少(t ε)是完全随机的,既与当前所处的位置无关(t ε与1-t y 不相关),也与以前的运动历史无关(t ε与 ,,32--t t y y 不相关),由质点的运动历史和当前位置不能得出下一步运动方向的任何信息。

这便是 “随机游动”的由来。

随机游动时间序列是典型的非平稳时间序列。

将(8.1)进行递归,可以得出010211y y y y t s s t t t t t t t +==++=+=∑-=----εεεε (8.2)。

如果初始值0y 已知,则可以计算出t y 的方差为2)(σt y Var t =。

由此看出随机游动在不同时点的方差与时间t 成正比,不是常数,因此随机游动是非平稳时间序列。

下图给出了随12机游动时间序列图:图8.1 随机游动时间序列图将随机游动(8.1)用滞后算子表示为t t y L ε=-)1( (8.3),滞后多项式为L L -=Φ1)(。

平稳时间序列与非平稳时间序列的区别

平稳时间序列与非平稳时间序列的区别

平稳时间序列与非平稳时间序列的区别时间序列是统计学中一种重要的数据形式,用于研究随时间变化的现象。

在时间序列分析中,平稳性是一个关键概念。

平稳时间序列与非平稳时间序列在特征和性质上存在着显著的区别。

本文将讨论平稳时间序列与非平稳时间序列的定义、特征和分析方法。

一、平稳时间序列的定义及特征平稳时间序列是指其概率分布不随时间推移而发生改变的时间序列。

具体来说,对于平稳时间序列,它的均值、方差和自相关函数等统计特征在不同时刻保持不变。

平稳时间序列的特征可以总结为以下几点:1. 均值稳定性:平稳时间序列的均值在时间上保持不变。

2. 方差稳定性:平稳时间序列的方差在时间上保持不变。

3. 自相关性:平稳时间序列的自相关函数只依赖于时间的间隔,而不依赖于具体的时间点。

二、非平稳时间序列的定义及特征非平稳时间序列是指其概率分布随时间推移而发生改变的时间序列。

具体来说,非平稳时间序列的均值、方差和自相关函数等统计特征会随时间发生变化。

非平稳时间序列的特征可以总结为以下几点:1. 趋势性:非平稳时间序列存在明显的增长或下降趋势。

2. 季节性:非平稳时间序列可能会呈现出周期性的变动,如一年内的季节变化。

3. 自相关性的变化:非平稳时间序列的自相关函数不仅依赖于时间的间隔,还依赖于具体的时间点。

三、分析方法的区别针对平稳时间序列和非平稳时间序列,我们在分析方法上有不同的选择。

对于平稳时间序列,我们可以使用经典的时间序列分析方法,如自回归移动平均模型(ARMA)、自回归模型(AR)和移动平均模型(MA)等。

这些方法基于平稳性的假设,能够准确地对平稳时间序列进行建模和预测。

对于非平稳时间序列,由于其不具备平稳性,我们需要采取一些转换方法来处理。

常见的方法包括一阶差分、对数转换和季节性调整等。

此外,我们还可以使用更加复杂的模型,如自回归积分移动平均模型(ARIMA)、差分自回归移动平均模型(DARIMA)和趋势-季节性分解模型等。

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法季节性时间序列分析方法通常包括以下几个主要步骤:数据预处理、模型选择、参数估计和模型检验、预测和评估。

首先,在数据预处理阶段,需要对原始数据进行检测和清理。

通常会对数据进行平滑处理,以去除噪声和异常值,使其更加平稳。

平滑处理方法可以采用移动平均法、指数平滑法等。

其次,在模型选择阶段,需要选择适合的模型来描述数据中的季节性变化。

常用的季节性时间序列模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。

选择模型的时候需要考虑数据的季节性周期、趋势以及其他可能影响数据的因素。

然后,在参数估计和模型检验阶段,需要对选定的模型进行参数估计,并对模型的拟合效果进行检验。

参数估计通常采用最大似然估计法、最小二乘法等。

模型检验可以采用残差分析、自相关函数(ACF)和偏自相关函数(PACF)等方法来评估模型的拟合程度。

最后,在预测和评估阶段,可以利用已建立的模型对未来的季节性数据进行预测。

预测方法一般有自回归模型、滑动平均模型等。

同时,需要对预测结果进行评估,通过比较预测值和实际值之间的误差来评估模型的准确性。

季节性时间序列分析方法的应用非常广泛。

在商业领域,可以用于销售量、股票价格等的预测和分析;在气象学中,可以用于气温、降水量等的预测和分析;在经济学中,可以用于人口数量、GDP等的预测和分析。

这些分析结果可以帮助决策者制定合理的决策和策略。

总结来说,季节性时间序列分析方法是一种对时间序列数据中的季节性变化进行模型建立和预测的统计方法。

它可以帮助我们理解和预测季节性数据的变化趋势,从而指导我们进行决策和策略制定。

但是,在使用该方法时需要注意选择适合的模型,并进行充分的参数估计和模型检验,以确保分析结果的准确性和可靠性。

在季节性时间序列分析方法中,还有一些其他的技术和工具可以应用。

下面我们将继续探讨这些内容。

首先,时间序列分解是季节性时间序列分析的重要步骤之一。

它将原始时间序列分解为趋势、季节性和随机成分三个部分,以更好地理解和建模季节性变化。

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法时间序列分析是指对时间序列数据进行建模和预测的统计方法。

根据数据的特点,时间序列可以分为平稳序列和非平稳序列。

在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。

非平稳序列分析的方法之一是差分法。

差分法的基本思想是通过对原始序列进行差分,得到一个新的序列,使其成为平稳序列。

差分法可以通过一阶差分、二阶差分等方法来实现。

一般来说,一阶差分可以用来处理线性趋势,而二阶差分可以用来处理二次趋势。

另一种非平稳序列分析的方法是趋势-季节分解法。

这种方法首先对时间序列进行趋势分解,将原始序列拆分为趋势、季节和残差三个部分。

然后对残差序列进行平稳性检验,判断是否需要进一步进行差分。

最后,可以利用拆分后的趋势和季节序列进行预测。

对于带有季节性的时间序列数据,还可以采用季节时间序列模型进行分析。

常见的季节时间序列模型包括季节自回归移动平均模型(SARIMA)和季节指数平滑模型。

这些模型可以对季节性进行建模,并利用历史数据进行预测。

总结起来,非平稳和季节时间序列的分析方法可以包括差分法、趋势-季节分解法和季节时间序列模型。

这些方法能够有效地处理和分析非平稳和带有季节性的时间序列数据,为实际应用提供了重要的参考。

时间序列分析是一种广泛应用于金融、经济、气象、销售、股票市场等领域的数据分析方法,它的目标是根据过去的数据模式,预测未来的趋势和行为。

在时间序列分析中,平稳性是一个重要的概念,指的是在时间序列的整个时间范围内,序列的统计特性不会随着时间的推移而发生显著的变化。

然而,在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。

非平稳序列的特点是随着时间的推移,其均值、方差和协方差等统计特性会发生显著的变化。

这使得对其进行建模和预测变得困难。

因此,我们需要采取一些方法来处理非平稳序列,使其满足平稳性的假设。

差分法是一种常用的处理非平稳序列的方法。

时间序列分析方法精讲课件

时间序列分析方法精讲课件
(1- 1L - 2 L2 - …- p Lp ) xt = L) xt = ut 其中 L) = 1- 1L - 2 L2 - …- p Lp称为特征多项式或自回归算子。 与自回归模型常联系在一起的是平稳性问题。对于自回归过程AR(p),如果其特征方 程 z) = 1- 1 z - 2 z2 - …- p z p = (1 – G1 z) (1 – G2 z) ... (1 – Gp z) = 0 (其中z表示变量)的所有根的绝对值都大于1,则AR(p)是一个平稳的随机过程。
DF和麦金农检验值
在 =1的虚拟假设下,且把惯常计算的t统计量称为 (tau)统计量。迪基和富勒曾在蒙 特卡罗模拟的基础上算出一个统计量的临界值表。文献中 检验叫做迪基-富勒(DF) 检验,以纪念它的发现人。注意,如果 =1的虚拟假设被拒绝( 即表示时间序列是平 稳的),则可使用平常的“学生”t检验。然而这些表达还不够实用,随后,麦金农 (Mackinnon)又通过蒙特卡罗模拟将表加以扩充。ET、MICRO TSP、EVIEWS等统计 软件包都给出有DF统计量的迪基-富勒和麦金农临界值。 如果所计算的统计量的绝对值( 即超过DF或麦金农DF临界的绝对值,则不拒绝所给时 间序列是平稳的假设,而反过来,如果它小于临界值,则时间序列是非平稳的。 由于理论上和实践上的原因,人们用以下形式的回归做迪基-富勒检验
选看一些我国经济时序数据
在做任何时间序列的分析时,通常第一步工作是先看看数据的的图形。我们上图所画的时间序列得 到的第一个印象是出口和进口都有一个上升的趋势,虽然这个趋势并不光滑,其实这些时间序列都是非 平稳时间序列(nonstationary time series)的例子。
平稳时间序列概念
如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期之间的 协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际 时间,就称它为平稳的。

非平稳时间序列分析

非平稳时间序列分析

非平稳时间序列分析1、首先画出时序图如下:t从时序图中看出有明显的递增趋势,而该序列是一直递增,不随季节波动,所以认为该序列不存在季节特征。

故对原序列做一阶差分,画出一阶差分后的时序图如下:difx140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10从中可以看到一阶差分后序列仍然带有明显的增长趋势,再做二阶差分:dif2x90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110做完二阶差分可以看到,数据的趋势已经消除,接下来对二阶差分后的序列进行194519501945 19551960196519701975198019851990199520001950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000检验:AutocorrelationsLag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 577.333 1.00000 | |********************| 01 -209.345 -.36261 | *******| . | 0.0712472 -52.915660 -.09166 | .**| . | 0.0800693 9.139195 0.01583 | . | . | 0.0806004 15.375892 0.02663 . |* . | 0.0806155 -59.441547 -.10296 .**| . | 0.0806606 -23.834489 -.04128 | . *| . | 0.0813247 100.285 0.17370 | . |*** | 0.0814318 -146.329 -.25346 | *****| . | 0.0832909 52.228658 0.09047 | . |**. | 0.08711810 21.008575 0.03639 | . |* . | 0.08759311 134.018 0.23213 | . |***** | 0.08767012 -181.531 -.31443 | ******| . | 0.09073613 23.268470 0.04030 | . |* . | 0.09610814 71.112195 0.12317 | . |** . | 0.09619415 -105.621 -.18295 | ****| . | 0.09699116 37.591996 0.06511 . |* . | 0.09872717 23.031506 0.03989 | . |* . | 0.09894518 45.654745 0.07908 | . |** . | 0.09902719 -101.320 -.17550 | ****| . | 0.09934720 127.607 0.22103 | . |**** | 0.10090821 -61.519663 -.10656 | . **| . | 0.10333722 35.825317 0.06205 | . |* . | 0.10389323 -93.627333 -.16217 | .***| . | 0.10408124 55.451208 0.09605 | . |** . |从其自相关图中可以看出二阶差分后的序列自相关系数很快衰减为零,且都在两倍标准差范围之内,所以认为平稳,白噪声检验结果:Autocorrelation Check for White NoiseTo Chi- Pr >Lag Square DF ChiSq------------------- Autocorrelations -------------------6 30.70 6 <.0001 -0.363 -0.092 0.016 0.027 -0.103 -0.04112 84.54 12 <.0001 0.174 -0.253 0.090 0.036 0.232 -0.31418 97.98 18 <.0001 0.040 0.123 -0.183 0.065 0.040 0.07924 126.99 24 <.0001 -0.175 0.221 -0.107 0.062 -0.162 0.096P 值都小于 0.05 ,认为不是白噪声。

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法
d
(8.2)
• 式中, { t }为零均值白噪声序列。 • 由式(8.2)显而易见,ARIMA模型的实质就是差分运算与 ARMA模型的组合。这一关系意义重大,这说明任何非平 稳序列只要通过适当阶数的差分运算实现差分后平稳,就 可以对差分后序列进行ARMA模型拟合了。而ARMA模型 的分析方法非常成熟,这意味着对差分平稳序列的分析也 将是非常简单、非常可靠的了。
上海财经大学 统计学系
4
图8.1 ARIMA(1,1,1)模型一个模拟数据
图8.2 模拟数据的一阶差分数据
上海财经大学 统计学系
5
• 求和自回归移动平均模型这个名字的由来 是因为阶差分后序列可以表示为:
i d X t (1)d Cd X t 1 d i 1
• • 列的若干序列值的加权和,而对它又可以 拟合自回归移动平均(ARMA)模型,所以 称它为求和自回归移动平均模型。
上海财经大学 统计学系
8
• 1905年8月,雷利爵士(Lord Rayleigh)对卡尔· 皮尔逊的这个问题作出 了解答。他算出这个醉汉离初始点的距离为至的概率为:
2 r 2 / nl 2 e r r 2 nl
• 且当n很大时,该醉汉离初始点的距离服从零均值正态分布。这意味 着,假如有人想去寻找醉汉的话,最好是去初始点附近找他,该地 点是醉汉未来位置的无偏估计值。 • 作为一个最简单的ARIMA模型,随机游走模型目前广泛应用于计量 经济学领域。传统的经济学家普遍认为投机价格的走势类似于随机 游走模型,随机游走模型也是有效市场理论(Efficient Market Theory) 的核心。
X t l 的真实值为: • 那么, X t l ( t l 1 t l 1 1 t 1 ) (l t l 1t 1 ) 上海财经大学 l统计学系 16

平稳性和非平稳时间序列分析93页PPT

平稳性和非平稳时间序列分析93页PPT
平稳性和非平稳时间序列分析
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法非平稳时间序列是指在时间序列数据中,均值、方差、自相关函数等统计性质随时间变化的数据。

这种时间序列模型常常由于其自身的特性而较难进行分析和预测。

不过,季节时间序列是非平稳时间序列的一种特殊类型,其特点是在数据中存在明显的季节性变化。

对于这种时间序列,可以采用不同的分析方法进行预测和建模。

一、非平稳时间序列分析方法:1.差分法:差分法是通过对序列数据进行相邻时间点的差分,使得序列转变为平稳时间序列。

差分法有一阶差分、二阶差分等。

通过差分法可以使得序列的单位根等统计性质得到稳定。

2.滑动平均法:滑动平均法基于序列的平均值,将序列转化为平稳时间序列。

该方法通过计算序列的滑动平均值来消除序列的变化趋势。

3.指数平滑法:指数平滑法是一种通过加权平均的方法来消除序列的变化趋势。

指数平滑法可以根据实际情况选择不同的权重系数来进行计算。

4.回归分析:对于非平稳时间序列,通过引入自变量,建立回归模型来描述序列的变化。

回归分析可以通过多个变量的关系来解释序列的变动。

二、季节时间序列分析方法:1.季节分解法:季节分解法是将季节时间序列分解为长期趋势、季节性和随机成分的组合。

这种方法可以将季节性的变动独立出来,从而更好地进行建模和预测。

2.季节移动平均法:季节移动平均法通过计算时间序列在相邻季节的平均值,消除序列的季节性变动。

这种方法可以降低季节时间序列的变化趋势。

3.季节差分法:季节差分法是将季节时间序列转化为其相邻时间点的差分。

通过差分法可以去除序列的季节性变化,使得序列更为平稳。

4.季节ARIMA模型:季节ARIMA模型是一种结合了季节差分和ARIMA 模型的方法。

该方法可以同时考虑序列的季节性变化和非平稳性,通过建立ARIMA模型来进行预测和分析。

以上所述是常用的非平稳和季节时间序列模型分析方法。

根据实际情况,我们可以选择合适的方法来分析和预测时间序列数据,以提高分析的准确性。

季节性时间序列模型PPT课件

季节性时间序列模型PPT课件

数据。
SARIMA模型
02
季节性自回归积分滑动平均模型,适用于具有明显季节性的时
间序列数据。
SARIMA-X模型
03
基于SARIMA模型的扩展,适用于具有特定季节性和非季节性
特征的时间序列数据。
季节性时间序列模型的参数
AR参数
自回归模型的参数,用于描述时间序列数据 的自相关关系。
P参数
季节性自回归模型的参数,用于描述时间序 列数据的季节性特征。
在股票价格的时间序列分析中,可以使用季节性自回归积分滑动 平均模型(SARIMA)等季节性时间序列模型来拟合数据,并预 测未来的股票价格走势。
通过对股票价格的时间序列数据进行季节性分析和预测,可以帮 助投资者制定更加科学和有效的投资策略,提高投资收益。
案例二:气温变化的季节性分析
01
气温变化的季节性分析是另一个应用季节性时间序列模型的案例。通过对气温 历史数据的季节性分析,可以了解气温变化的规律和趋势,为气象预测和气候 变化研究提供支持。
感谢您的观看
02
03
季节性时间序列模型的分类:根据不同 的分类标准,季节性时间序列模型可以 分为不同的类型。常见的分类标准包括 模型的复杂度、季节性周期的长度等。 常见的季节性时间序列模型包括季节性 自回归积分滑动平均模型(SARIMA)、 季节性指数平滑模型(SEAS)等。
季节性时间序列模型的应用实例: SARIMA模型在股票市场预测中取得 了较好的效果;SEAS模型在电力需求 预测中得到了广泛应用。这些应用实 例证明了季节性时间序列模型在数据 分析和预测中的实用性和有效性。
对未来研究方向的展望
改进现有模型的性能
尽管现有的季节性时间序列模型取得 了一定的成果,但仍存在一些局限性 ,如对异常值的敏感性、对非平稳数 据的适应性等。未来的研究可以针对 这些局限性,对现有模型进行改进, 提高模型的预测精度和稳定性。

9时间序列模型非平稳

9时间序列模型非平稳

§9、非平稳时间序列、协整回顾平稳时间序列具有下面几个特征: (1)均值回归(mean reversion )。

观测值总是围绕着均值上下振荡。

(2)有限方差。

不随时间变化。

(3)自相关函数随着滞后阶数增加会消失。

下面我们对常见的非平稳序列进行介绍。

一、 随机游走和伪回归1、随机游走一类典型的非平稳过程,模型形式如下:1t t t x x u -=+,其中误差项服从白噪声过程,则称{}t x 为随机游走(Random Walk )过程。

其统计特征如下:()()()()02,1,1t t u t h t t x x t Var x t x x x h σ+E =E ≥=E =≥随机游走过程具有几个特点:(1)序列并不是围绕着某一个均值上下振荡。

(2)方差随着时间发生变化。

(3)自相关函数消失得很慢。

它的自相关图如下:下面我们来看带飘移项(drift )的随机游走过程:()2010,0,,0t t t t u x x u u WN ασα-=++~>它具有下面的统计特征:()()()020t t u t h t tx t Var x t x x h x ασα+E ==E =+2、单整如果一个平稳时间序列{}t x 经过d 次差分后才能变换为一个平稳的、可逆的ARMA 时间序列,那么我们称{}t x 具有d 阶单整性,记为:()t x d ~I 。

平稳序列,是I(0)的。

单整序列一般指单整阶数大于0的序列。

如果时间序列()(),t x a y b ~I ~I ,则[]()max ,t t t z cx dy a b =+~I 。

一般来说,()(),t x a y a ~I ~I ,()t t t z cx dy a =+~I如果z 的单整阶数小于a 时,称这两个序列存在着协整(cointegration )关系。

3.随机游走过程的统计特征()210,0,0,t t t t u x x u x u IN σ-=+=~其中u 为白噪声序列,服从独立的正态分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海财经大学 统计与管理学院 10

因为阶差分后平稳,服从ARMA(p,q)模型,所以不妨设 则
( B) (1 i B), i 1; i 1, 2,
i 1 p

,p
d d ( B ) ( B ) [ (1 B )](1 B ) i (8.4) i 1
d
(8.2)

{ t }为零均值白噪声序列。 式中, 由式(8.2)显而易见,ARIMA模型的实质就是差分运算 与ARMA模型的组合。这一关系意义重大,这说明任何 非平稳序列只要通过适当阶数的差分运算实现差分后平 稳,就可以对差分后序列进行ARMA模型拟合了。而 ARMA模型的分析方法非常成熟,这意味着对差分平稳 序列的分析也将是非常简单、非常可靠的了。
非平稳和季节时间序列模型分析方法

在第四章中,我们介绍了非平稳时间序 列模型,但是在前面的讨论中,对于时 间序列的特性分析,以及模型的统计分 析都集中于平稳时间序列问题上。本章 将介绍几个非平稳时间序列的建模方法, 并且分析不同的非平稳时间序列模型的 动态性质。
上海财经大学 统计与管理学院
1
§8.1 ARIMA模型的分析方法
上海财经大学 统计与管理学院
19
图8.4
图8.5
上海财经大学 统计与管理学院
20
(2) 对该序列做单位根检验,原假设:;备择假设:,
检验结果如图8.4。
图8.6
根据图8.6的检验结果,我们可以认为这一序列非平稳。
上海财经大学 统计与管理学院 21



2. 对原序列取对数并分析 由于这一序列有着非常明显的指数趋势,因此我们对 它进行取对数的运算,以消除指数趋势的影响,将取对 数后的序列命名为 yt ,即 yt ln( NX ) 。 作出序列 {yt } 的时序图与自相关图分别如图8.7,8.8。
上海财经大学 统计与管理学院 3

例如,设ARIMA(1,1,1)模型
1 0.5B1 B Xt 1 0.3B t ,

t ~ i.i.d.N 0,1
图8.1是给出的ARIMA(1,1,1)模型一个模 拟数据,样本容量为200,可以看出时间 趋势是非常明显的。图8.2是经过一阶差分 得到的数据。经过一阶差分我们看到下降 的时间趋势被去掉,新的序列看起来是平 稳的。
图8.7
上海财经大学 统计与管理学院
图8.8
22
依然对序列{yt } 做单位根检验,检验结果如图8.9。

图8.9
根据这一检验结果,我们看到这一序列依然没有平稳, 结合图8.7和图8.8,我们看到在序列 { yt } 中有着明显的增 长趋势,因此我们还需要对其进行差分处理。
上海财经大学 统计与管理学院 23

随机游走模型的产生有一个有趣的典故。它最早 于1905年7月由卡尔· 皮尔逊(Karl Pearson)在 《自然》杂志上作为一个问题提出:假如有一个 醉汉醉得非常严重,完全丧失方向感,把他放在 荒郊野外,一段时间之后再去找他,在什么地方 找到他的概率最大呢? 考虑到他完全丧失方向感,那么他第步的位置将 是他第步的位置再加一个完全随机的位移。用数 学模型来描述任意时刻这个醉汉可能的位置,即 为一个随即游走模型(8.3)。

X t t 1 t 1 2 t 2 ( B) t

式中
1 , 2 ,
的值由如下等式确定:
( B)(1 B)d ( B) ( B)
上海财经大学 统计与管理学院 15

如果把 * ( B) 记为广义自相关函数,有
* ( B) ( B)(1 B)d 1 1B 2 B2
X t X t 1 t X t 2 t t 1 X 0 t t 1


1
则 Var( X t ) Var( X 0 t t 1
1 ) t 2


这是一个时间的递增函数,随着时间趋向无穷,序列 { X t } 的方差也 趋向无穷。 但1阶差分之后,X
t21 ) 2
上海财经大学 统计与管理学院 18

例8.1 对1950年—2005年我国进出口贸易总额数据 (单位:亿元人民币)序列建立ARIMA模型(数据见附 录1.15) 1. 对原序列(NX)的分析 (1) 做出1950年—2005年我国进出口贸易总额数据 (NX)的时序图及自相关图,如图8.4,图8.5。

容易验证 , ,
1 2
的值满足如下递推公式:
1 1 1 2 1 1 2 2 j 1 j 1 p d j p d j

; j 0, j q 式中 j 1, j 0 X t l 的真实值为: 那么,

要使均方误差最小,当且仅当:
*j l j
上海财经大学 统计与管理学院 17

所以,在均方误差最小的原则下,期预报值为: l
ˆt (l ) l t l 1 t 1 l 2 t 2 x
l期预报误差为:
et (l ) t 1 1t l 1 l 1t 1
( B) X t ( B) t
d

式中:
d (1 B) d ( B) 1 1 B ( B) 1 1 B p B p q Bq

记 ( B) ( B)d, ( B ) 被称为广义自回归系数多项式。显 然ARIMA模型的平稳性完全由 ( B) 0 的根的性质决 定。
上海财经大学 统计与管理学院
24

4. 针对平稳序列{X t } 的建立ARMA模型 { X t } 的自相关图,如图。根据该图,我们可 (1) 画出序列 以初步判断该序列的偏自相关图一阶截尾,而针对自相 关图并不能马上做出判断。
(8.1)
( B) 1 1B ( B) 1 1B
p B p,为平稳可逆ARMA(p,q)模型的自回归系数多项式 q B q,为平稳可逆ARMA(p,q)模型的移动平滑系数多项式
上海财经大学 统计与管理学院
2

式(8.1)可以简记为:
( B ) Xt t ( B)
* * ˆt (l ) * x 0 t 1 t 1 2 t 2
的估计值

真实值与预报值之间的均方误差为:
ˆt (l )] (1 ) (l j *j )2 2 E[ X t l x
2 2 1 2 t 1 2 j 0


8.1.1 ARIMA模型的结构 具有如下结构的模型称为求和自回归移动平均(Autoregressive Integrated Moving Average),简记为ARIMA(p,d,q)模型:
式中:
d (1 B)d
( B)d X t ( B) t 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t E ( X ) 0, s t s t
p

由式(8.4)容易判断,ARIMA(p,d,q)模型的广义自回归系 数多项式共有p+d个特征根,其中p个在单位圆内,d个 d 0 在单位圆上。因为有 d个特征根在单位圆上而非单位圆内, 所以当 时,ARIMA(p,d,q)模型不平稳。
上海财经大学 统计与管理学院
11


二、方差齐性 d 0 时,不仅均值非平稳,序列方差 对于ARIMA(p,d,q)模型,当 也非平稳。以最简单的随机游走模型ARIMA(0,1,0)为例:
上海财经大学 统计与管理学院 14
8.1.4 ARIMA模型预测

在最小均方误差预测原理下,ARIMA模型的预测和 ARMA模型的预测方法非常类似。 ARIMA(p,d,q)模型 的一般表示方法为: (B)(1 B)d X t ( B)t 和ARMA模型一样,也可以用历史观测值的线性函数表 示它:

真实值等于预报值加上预报误差:
X t l (l t l 1 t 1 l 2 t 2 ) ( t 1 1 t l 1 l 1 t 1 ) ˆt (l ) et (l ) =x

2 期预报的方差为: Var[et (l )] (1 1
i d
拟合自回归移动平均(ARMA)模型,所以 称它为求和自回归移动平均模型。
上海财经大学 统计与管理学院
6
特别地, 当d=0时,ARIMA(p,d,q)模型实际上就是ARMA(p,q)模 型; 当p=0时,ARIMA(o,d,q)模型可以简记为IAM(d,q)模型; 当q=0时,ARIMA(p,d,0)模型可以简记为ARI(p,d)模型. 当d=1,p=q=0时,ARIMA(0,1,0)模型为:
0, j 1
X t l ( t l 1 t l 1
l 1 t 1 ) (l t l 1t 1 )
16
上海财经大学 统计与管理学院

X t l 由于 t l , t l 1, , t 1 的不可获得性,所以 只能为:

X t X t 1 t 2 E ( ) 0, Var ( ) , E ( t s ) 0, s t t t (8.3) E ( X ) 0, s t s t
该模型被称为随机游走(Random Walk)模型。
上海财经大学 统计与管理学院 7

上海财经大学 统计与管理学院
8

1905年8月,雷利爵士(Lord Rayleigh)对卡尔· 皮尔逊的这个问题作 出了解答。他算出这个醉汉离初始点的距离为至的概率为:
相关文档
最新文档