2.2等差数列的概念、通项公式、性质练习含答案
等差数列
课前自主学习
课堂讲练互动
课后智能提升
课前自主学习
课堂讲练互动
课后智能提升
要点阐释
1.等差数列的定义 (1)一般地,如果一个数列从第2项起,每一项 与它的前一项的差都等于同一个常数,那么这个数 列就叫做等差数列,这个常数叫做等差数列的公 差,公差通常用字母d表示.
课前自主学习
课堂讲练互动
课后智能提升
可见,等差数列的意义用符号语言表示,即a1 =a,an=an-1+d(n≥2),其本质是等差数列的递推 公式.
课前自主学习
课堂讲练互动
课后智能提升
预习测评
1.等差数列a-2d,a,a+2d,…的通项公式 ( ) A.an=a+(n-1)d B.an=a+(n-3)d C.an=a+2(n-2)d D.an=a+2nd 解析:an=(a-2d)+(n-1)· 2d=a+2(n-2)d. 答案:C
答案:如果等差数列的项的序号成等差数列, 那么对应的项也成等差数列. 事实上,若m+n=2w(m,n,w∈N*),则 am+an=[a1+(m-1)d]+[a1+(n-1)d]
课前自主学习
课堂讲练互动
课后智能提升
1 =2[a1+ (m+n-2)d] 2 =2[a1+(w-1)d]=2aw. 在等差数列 an 中,若 am+an=ap+aq=2aw,不 一定有 m+n=p+q=2w,如常数列.
数列的项. 而2n+7=2(n+7)-7(n∈N*),所以2n+7是该 数列的项,是第n+7项.
课前自主学习
课堂讲练互动
课后智能提升
题型二 等差数列的判断
【例2】 已知a,b,c成等差数列,那么a2(b+ c),b2(c+a),c2(a+b)是否成等差数列? 证明:∵a,b,c成等差数列,∴a+c=2b, a2(b+c)+c2(a+b)-2b2(c+a) =a2c+c2a+ab(a-2b)+bc(c-2b) =a2c+c2a-2abc=ac(a+c-2b)=0, ∴a2(b+c)+c2(a+b)=2b2(c+a), ∴a2(b+c),b2(c+a),c2(a+b)成等差数列.
第30讲 等差数列的概念及性质(讲义 练习)(解析版)
第30讲 等差数列的概念及性质知识点概要1.等差数列的概念一般地,如果数列{a n }从第2项起,每一项与它的前一项之差都等于同一个常数d ,即a n +1-a n =d 恒成立,则称{a n }为等差数列,其中d 称为等差数列的公差.拓展:等差数列定义的理解(1)“每一项与它的前一项之差”这一运算要求是指“相邻且后项减去前项”强调了:①作差的顺序;②这两项必须相邻.(2)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差数列的通项公式及其推广若等差数列{a n }的首项为a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d .该式可推广为a n =a m +(n -m )d (其中n ,m ∈N +).思考:等差数列的通项公式a n =a 1+(n -1)d 是什么函数模型? [答案] d ≠0时,一次函数;d =0时,常数函数. 3.等差数列的单调性等差数列{a n }中,若公差d >0,则数列{a n }为递增数列;若公差d <0,则数列{a n }为递减数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N +)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N +)⇔{a n }为等差数列; (3)通项公式法:a n =an +b (a ,b 是常数,n ∈N +)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法. 4.等差中项如果x ,A ,y 是等差数列,那么称A 为x 与y 的等差中项,且A =x +y2.在一个等差数列中,中间的每一项都是它的前一项与后一项的等差中项. 思考1:在等差数列中,任意两项都有等差中项吗? [答案] 是. 5.等差数列的性质{a n }是公差为d 的等差数列,若正整数s ,t ,p ,q 满足s +t =p +q ,则a s +a t =a p +a q . ①特别地,当p +q =2s (p ,q ,s ∈N +)时,a p +a q =2a s .②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a 2+a n -1=…=a k +a n -k +1=….思考2:在等差数列{a n }中,2a n =a n +1+a n -1(n ≥2)成立吗?2a n =a n +k +a n -k (n >k >0)是否成立?[答案] 令s =t =n ,p =n +1,q =n -1,可知2a n =a n +1+a n -1成立;令s =t =n ,p =n +k ,q =n -k ,可知2a n =a n +k +a n -k 也成立.拓展:(1)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列. (2)若{a n }是公差为d 的等差数列,则①{c +a n }(c 为任一常数)是公差为d 的等差数列; ②{ca n }(c 为任一常数)是公差为cd 的等差数列; ③{a n +a n +k }(k 为常数,k ∈N +)是公差为2d 的等差数列.(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p ,q 是常数)是公差为pd 1+qd 2的等差数列.(4){a n }的公差为d ,则d >0⇔{a n }为递增数列; d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.精选同步练习一、填空题1.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为_____. 【答案】-21 【分析】设这三个数为a d -,a ,a d +,依题意得到方程组,解得,a b ,即可得到这三个数,从而得解; 【解析】解:设这三个数为a d -,a ,a d +,则2229()()59a d a a d a d a a d -+++=⎧⎨-+++=⎩,, 解得34a d =⎧⎨=⎩或34a d =⎧⎨=-⎩∴这三个数为1-,3,7或7,3,1-. ∴它们的积为21-故答案为:21-2.在等差数列{}n a 中,1018a =,3078a =,则25a =______. 【答案】63 【分析】应用等差数列的性质:()m na a d m n m n-=≠-以及通项公式,即得解由等差数列的性质,可知公差301078183301020a a d --===-,所以()251025101815363a a d =+-=+⨯=. 故答案为:633.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________. 【答案】18 【分析】由题意,a 4a 7=(a 6-2d )(a 6+d )转化为二次函数的最大值,即得解 【解析】设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18, 即a 4a 7的最大值为18. 故答案为:184.已知b 是a ,c 的等差中项,且a b c >>,若()lg 1a +,()lg 1b -,()lg 1c -成等差数列,15a b c ++=,则a 的值为______.【答案】7 【分析】根据等差中项的性质列出方程组,解方程组即可求出结果. 【解析】由题意,知()()()22lg 1lg 1lg 115b a cb ac a b c a b c=+⎧⎪-=++-⎪⎨++=⎪⎪>>⎩,解得753a b c =⎧⎪=⎨⎪=⎩,故答案为:7.5.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n 行第n +1列的数是________. 【答案】2n n +## 【分析】由题中数表知,第n 行中的项满足a 1=n ,d =2n -n =n ,由等差数列的通项公式即得解由题中数表知,第n 行中的项分别为n,2n,3n ,…,组成一等差数列,设为{a n }, 则a 1=n ,d =2n -n =n ,所以a n +1=n +n ·n =n 2+n ,即第n 行第n +1列的数是n 2+n . 故答案为:n 2+n6.在等差数列5-,132-,2-,12-,…的每相邻两项间插入一个数,使之成为一个新的等差数列{}n a ,则新数列的通项公式为n a =________.【答案】32344n -【分析】根据首项和第三项构造方程求得新等差数列的公差d ,利用等差数列通项公式可得结果. 【解析】设{}n a 的公差为d ,则()732522d =---=,解得:34d =,{}n a ∴是以5-为首项,34为公差的等差数列,()332351444n a n n ∴=-+-=-. 故答案为:32344n -.7.已知数列{a n }中,a 1=2,a n +1=22nn a a +(n ∈N *),则数列{a n }的通项公式a n =________. 【答案】2n【分析】根据题意可判断1n a ⎧⎫⎨⎬⎩⎭为等差数列,即可求出通项公式.【解析】 ∵a n +1=22n n a a +,a 1=2,∴a n ≠0,∴11n a +=1n a +12,即11n a +-1n a =12,又a 1=2,则11a =12, ∴1n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列.∴1n a =11a +(n -1)×12=2n ,∴a n =2n.故答案为:2n.8.已知数列{}n a 为等差数列,公差()0d d ≠,且满足344651222024a a a a a a d ++=,则6511a a -=___________. 【答案】1506- 【分析】利用等差数列的基本量法化简得出56506a a d =,进而可求得6511a a -的值. 【解析】()()()()34465124444442228a a a a a a a d a a a d a d a d ++=-+++++()()()22224444445641284324242024a a d d a a d d a d a d a a d =++=++=++==,所以,56506a a d =,因此,566556111506506a a d a a a a d ---===-. 故答案为:1506-. 9.已知数列{}n a 中,135a =,()()111n n na n a n n +=+++,则数列{}n a 的通项公式为______.【答案】225n a n n =-【分析】将()()111n n na n a n n +=+++两边同时除以()1n n +,进而化为111n na a n n+-=+,然后结合等差数列的定义得到答案. 【解析】 由题意,可得111n n a a n n +=++,即111n n a a n n +-=+.又135a =,∴数列n a n ⎧⎫⎨⎬⎩⎭是以1315a =为首项,为1公差的等差数列,∴()32155n a n n n =+-=-,∴225n a n n =-. 故答案为:225n a n n =-.10.在数列{}n a 中,若11a =,212a =,()*12211++=+∈n n n n N a a a ,则该数列的通项为__________. 【答案】1n a n= 【分析】由题设知1{}na 是等差数列,根据等差数列通项公式有1n n a ,即可写出{}n a 的通项.【解析】 ∵()*12211++=+∈n n n n N a a a , ∴数列1{}n a 是等差数列,又21111a a -=且111a ,∴11(1)n n n a =+-=,故1n a n=. 故答案为:1n a n=. 11.已知数列{}n a 满足12123371,2,3,,N n n n na a a a a a n a *++++====∈,下列说法正确的是________. ①49a =;②N ,n n a ∀*∈都是整数; ③21221,,k k k a a a -+成等差数列;④21N ,N ,n n n k n a a ka ∃∀**++∈∈+=.【答案】②③ 【分析】根据12123371,2,3,,N n n n n a a a a a a n a *++++====∈,直接求得4a ,由递推公式1237n n n na a a a ++++=得()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 从而的出数列{}n b 的通项,从而可判断②③④的对错. 【解析】 解:2341713a a a a ⋅+==,故①错误; 因为1237n n n na a a a ++++=,即3127n n n n a a a a +++-= 则41237n n n n a a a a ++++=-,两式相减得:()()32124n n n n n n a a a a a a ++++++=+, 所以()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 又13122a a b a +==,24235a a b a +==, 所以2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以21n n n n a b a a ++=⋅-,又因1231,2,3a a a ===均为整数,所以N ,n n a ∀*∈都是整数,故②正确;当n 为奇数时,则1n +为偶数,2n +为奇数, 212n n n a a a +++=,即212n n n a a a +++=, 即212122k k k a a a -++=,所以21221,,k k k a a a -+成等差数列,故③正确;因为2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以当n 为奇数时,212n n n a a a +++=, 所以当n 为偶数时,215n n n a a a +++=, 故④错误. 故答案为:②③.12.有一列向量{}{}{}1112222:(,),:(,),,:(,)n n n n n a a x y a a x y a a x y ===,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列.已知等差向量列{}na ,满足13(20,13),(18,15)a a =-=-,那么这列向量{}n a 中模最小的向量的序号n =_______【答案】4或5 【分析】由题意结合等差向量列的定义首先确定向量{}n a 的坐标表示,然后求解向量的模即可确定最小的向量的序号. 【解析】由题意可得:()()()3118,1520,132,2a a -=---=, 则每一项与前一项的差所得的同一个向量为:()1,1, 结合等差向量列的定义和等差数列通项公式可得:()201121n x n n =-+-⨯=-,()131112n y n n =+-⨯=+,即:()21,12n a n n =-+,这列向量{}n a 的模:(n a n =考查二次函数()2218585f x x x =-+,当18942x ==时,二次函数有最小值, 则这列向量{}n a 中模最小的向量的序号n =4或5. 故答案为:4或5. 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、单选题13.已知等差数列{}n a 的公差为2,且15919a a a ++=,则3711a a a ++=( ) A .21 B .25C .31D .35【答案】C 【分析】由题意可得出37111596d a a a a a a ++=+++,即可求得结果. 【解析】设等差数列{}n a 的公差为d ,则2d =,则()37111591592226196231a a a a d a d a d a a a d ++=+++++=+++=+⨯=, 故选:C.14.在等差数列{}n a 中,已知113a =,45163a a +=,33k a =,则k =( )A .50B .49C .48D .47【答案】A 【分析】求出等差数列{}n a 的公差d 的值,利用等差数列的通项公式结合已知条件可求得k 的值. 【解析】设等差数列{}n a 的公差为d ,则45121627733a a a d d +=+=+=,解得23d =,所以,()()121121133333k k k a a k d --=+-=+==,解得50k =. 故选:A.15.已知数列{}n a ,32a =,71a =,若11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则11a =( )A .12B .23C .1D .2【答案】A 【分析】利用等差中项的性质可求得11a 的值. 【解析】由于数列11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则7311211111a a a =++++,所以,117312121211111213a a a =-=-=+++++,解得1112=a .故选:A.16.已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--【答案】B 【分析】依题意,对任意的*n ∈N ,都有6n b b ≥成立,即611n a a ≥,利用数列{}n a 的单调性可得670,0a a <>,即可求解.【解析】 由已知111n n n na b a a +==+, 对任意的*n ∈N ,都有6n b b ≥成立,即61111n a a +≥+,即611n a a ≥, 又数列{}n a 是首项为a ,公差为1的等差数列,1n a a n ∴=+-,且{}n a 是单调递增数列,当n →+∞时,10na →, 670,0a a ∴<>,即5060a a +<⎧⎨+>⎩,解得65a -<<-.故选:B. 【点睛】关键点睛:本题考查等差数列通项公式及数列单调性的应用,解题的关键是要利用数列的单调性结合已知条件得到670,0a a <>.17.数列{}n a 中,115a =,()*1332+=-∈n n a a n N ,则该数列中相邻两项的乘积是负数的是( ) A .2122,a a B .2223,a aC .2324,a aD .2425,a a【答案】C 【分析】由数列中项的递推关系可得4723n n a -=,由相邻两项积为负有(452)(472)09n n --<,即可得n 的值,进而确定符合条件的相邻两项. 【解析】123n n a a +-=-,则247215(1)33-⎛⎫=+--= ⎪⎝⎭n na n .要使10n n a a +<,即(452)(472)09n n --<,可得454722n <<,*n N ∈,∴n =23.则该数列中相邻两项的乘积为负数的项是23a 和24a , 故选:C18.已知各项均大于1的数列{}n a 满足()1 2.71828a e e =≈,{}n a 中任意相邻两项具有差为2的关系.记n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈,下列四个结论:①2A 为单元素集; ②6312S e =+; ③2212n n S S n --=;④若将23n A +中所有元素按照从小到大的顺序排列得到数列{}n b ,则{}n b 是等差数列. 其中所有正确结论的编号为( ) A .①② B .①③C .①③④D .②③④【答案】C 【分析】由各项均大于1且{}n a 中任意相邻两项具有差为2的关系,分别列举出数列{}n a 的前几项,并由n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈分别检验得出答案. 【解析】 由题意12345678121481046810,2,,,4,6,,,24622e e e e e e e e a e a e a a a e a e a a e e e e e e e e ++⎧⎧++⎧⎧⎪⎪++++⎧⎧⎪⎪⎪⎪==+===+=+==⎨⎨⎨⎨⎨⎨+++⎩⎩⎪⎪⎪⎪+⎩⎩⎪⎪+⎩⎩①2a 的所有可能值构成的集合为{}22A e =+为单元素集,正确;②6A 中所有元素之和为61062318e e e e S =+++++=+,错误;③由归纳关系,2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,故2212n n S S n --=,正确;④23n A +为23n a +可能值构成的集合,从小到大排列为以e 为首项,公差为4的等差数列,正确; 故选:C【点睛】关键点点睛:本题考查归纳推理,考查数列的应用,解决本题的关键点是归纳出数列的前几项,并得到2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,以及每项的可能值构成的集合,从小到大排列为公差为4的等差数列,结合题目得出选项,考查学生逻辑推理能力,属于中档题.三、解答题19.已知等差数列{a n },a 6=5,a 3+a 8=5.(1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n .【答案】(1)a n =5n -25(n ∈N +);(2)10n -30(n ∈N +).【分析】(1)结合等差数列的通项公式的公式求出首项和公差,进而求出结果;(2)结合(1)的结果,将2n -1代入即可求出结果.【解析】(1)设{a n }的首项是a 1,公差为d ,依题意得1155295a d a d +=⎧⎨+=⎩,∴1205a d =-⎧⎨=⎩, ∴a n =5n -25(n ∈N +).(2)由(1)知,a n =5n -25,∴b n =a 2n -1=5(2n -1)-25=10n -30,∴b n =10n -30(n ∈N +).20.已知等差数列{}n a 中,112220,86a a ==.(1)求数列{}n a 的公差d 和1a ;(2)满足10150n a <<的共有几项.【答案】(1)1406a d =-⎧⎨=⎩;(2)23. 【分析】(1)用基本量1a ,d 表示题设条件,联立即得解;(2)写出{}n a 通项公式646n a n =-,解不等式,结合n 为整数,即得解.【解析】(1)设首项为1a ,公差为d ,由已知得111020,2186.a d a d +=⎧⎨+=⎩ 解方程组,得140,6.a d =-⎧⎨=⎩ (2)由(1)知140,6.a d =-⎧⎨=⎩1(1)40(1)6646n a a n d n n ∴=+-=-+-⋅=-由10150n a <<,又646n a n =-,10646150n ∴<-<.解不等式,得289833n <<, 取整数共有23项.21.已知f (x )=22x x +,在数列{x n }中,x 1=13,x n =f (x n -1)(n ≥2,n ∈N *),试说明数列{1n x }是等差数列,并求x 95的值.【答案】说明见解析,x 95=150. 【分析】 首先利用递推关系,变形求得1n x -11n x -=12(n ≥2),根据数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求通项公式,即可求得95x .【解析】因为当n ≥2时,x n =f (x n -1),所以x n =1122n n x x --+(n ≥2),即x n x n -1+2x n =2x n -1(n ≥2), 得1122n n n n x x x x ---=1(n ≥2),即1n x -11n x -=12(n ≥2).又11x =3,所以数列{1nx }是以3为首项,12为公差的等差数列, 所以1n x =3+(n -1)×12=52n +,所以x n =25n +,所以x 95=2955+=150.22.甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个. 甲 乙请你根据提供的信息回答问题.(1)第2年养鸡场的个数及全县出产鸡的总只数;(2)到第6年这个县的养鸡业规模比第1年是扩大了还是缩小了?请说明理由.【答案】(1)第2年养鸡场有26个,全县出产鸡31.2万只;(2)缩小了,理由见解析.【分析】从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },从第1年到第6年的养鸡场个数也成等差数列,记为{b n },由图易得通项公式,n n a b ,从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)计算2c 即得;(2)计算6c 与1c 比较可得.【解析】由题图可知,从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },公差为d 1,且a 1=1,a 6=2;从第1年到第6年的养鸡场个数也成等差数列,记为{b n },公差为d 2,且b 1=30,b 6=10;从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)由a 1=1,a 6=2,得1111,52,a a d =⎧⎨+=⎩∴111,0.2,a d =⎧⎨=⎩得a 2=1.2; 由b 1=30,b 6=10,得11230,510,b b d =⎧⎨+=⎩∴1230,4,b d =⎧⎨=-⎩得b 2=26. ∴c 2=a 2b 2=1.2×26=31.2,即第2年养鸡场有26个,全县出产鸡31.2万只.(2)∵c 6=a 6b 6=2×10=20<c 1=a 1b 1=30,∴到第6年这个县的养鸡业规模比第1年缩小了. 23.已知数列{a n }满足a 1=2,a n +1=22n n a a +. (1)数列1n a ⎧⎫⎨⎬⎩⎭是否为等差数列?说明理由. (2)求a n .【答案】(1)是等差数列,理由见解析;(2)a n =2n.【分析】(1)由已知得11n a +-1n a =12,根据等差数列的定义可得证; (2)根据等差数列的通项公式可求得答案.【解析】解:(1)数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,理由如下: ∵a 1=2,a n +1=22n n a a +,∴11n a +=22n na a +=12+1n a ,∴11n a +-1n a =12, 所以数列1n a ⎧⎫⎨⎬⎩⎭是以首项为11a =12,公差为d =12的等差数列. (2)由(1)可知,1n a =11a +(n -1)d =2n ,∴a n =2n. 24.已知数列{a n }中,a 1=12,a n +1=112n n a a ++(n ∈N *). (1)求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列; (2)求数列{a n }的通项公式.【答案】(1)证明见解析;(2)a n =1n n +. 【分析】(1)由已知求得a n +1=12na -,然后由等差数列的定义作差可证; (2)利用(1)的结论先求出11n a -,然后可得结论. 【解析】(1)证明:因为对于n ∈N *,a n +1=112n n a a ++,所以a n +1=12n a -, 所以111n a +--11n a -=1112n a ---11n a -=211n n a a ---=-1. 所以数列11n a ⎧⎫⎨⎬-⎩⎭是首项为111a -=-2,公差为-1的等差数列. (2)由(1)知11n a -=-2+(n -1)(-1)=-(n +1),所以a n -1=-11n +,即a n =1n n +. 25.已知数列{a n }满足a 1a 2…a n =1-a n .(1)求证数列{11n a -}是等差数列,并求数列{a n }的通项公式; (2)设T n =a 1a 2……a n ,b n =a n 2T n 2,证明:b 1+b 2+…+b n <25. 【答案】(1)证明见解析,a n =1n n +;(2)证明见解析. 【分析】(1)由题设得112n na a +=-,进而构造11n a -与111n a +-的关系式,利用等差数列的定义证明结论,然后求a 1,即可得a n ;(2)由(1)求得T n 与b n ,再利用放缩法与裂项相消法证明结论.【解析】(1)∵a 1a 2…a n =1-a n ①,则a 1a 2…a n +1=1-a n +1②, ∴两式相除得:1111n n n a a a ++-=-,整理得112n n a a +=-, ∴1111122n n n n a a a a +--=-=--,则12111111n n n n a a a a +-==----, ∴111111n n a a +-=---,又n =1时有a 1=1-a 1,解得:112a =, ∴1121a =--, ∴数列{11n a -}是以2-为首项,1-为公差的等差数列, ∴12(1)11n n n a =---=---,即1n n a n =+. (2)由(1)得:T n =a 1a 2...a n =121 (2311)n n n ⨯⨯⨯=++, ∴b n =2222221111()()()1351121(2)(2)()()22n n n n n n n n n n n ⨯==<<=+++++++++1135()()22n n -++, ∴b 1+b 2+...+b n <222222222 (577923255255)n n n -+-++-=-<+++,得证. 26.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,N n *∈. (1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(N )n n a a n *≥∈,求证:数列{}n b 的第0n 项是最大项;(3)设130a λ=<,()N n n b n λ*=∈,求λ的取值范围,使得对任意m ,*N n ∈,0n a ≠,且1,66mn a a ⎛⎫∈ ⎪⎝⎭.【答案】(1)65n a n =-;(2)证明见解析;(3)1(,0)4-.【分析】(1)由题知{}n a 是等差数列,即求;(2)由题得{}2n n a b -为常数列,可证;(3)由()N n n b n λ*=∈可得2nn a λλ=+,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,结合条件即得.【解析】(1)因为112()n n n n a a b b ++-=-,35n b n =+, 所以112()2(3835)6n n n n a a b b n n ++-=-=+--=, 所以{}n a 是等差数列,首项为11a =,公差为6, ∴65n a n =-.(2)由()112n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-. 所以{}2n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-. 因为0n n a a ≥,n *∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥. 故{}n b 的第0n 项是最大项.(3)因为n n b λ=,所以()112n nn n a a λλ++-=-,当2n ≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ ()()()11222223n n n n λλλλλλλ---=-+-+⋅⋅⋅+-+ 2n λλ=+.当1n =时,13a λ=,符合上式.所以2nn a λλ=+.因为130a λ=<,且对任意*N n ∈,11(,6)6na a ∈,故0n a <,特别地2220a λλ=+<,于是1(,0)2λ∈-, 此时对任意*N n ∈,0n a ≠, 当102λ-<<时,222||n n a λλλ=+>,21212||n n a λλλ--=-+<,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,∴m n a a 的最大值及最小值分别是12321a a λ=+及21213a a λ+=, 由21136λ+>及3621λ<+,解得104,综上所述,λ的取值范围是1(,0)4-.。
2019-2020学年高中数学人教A版必修5练习:第二章 2.2 等差数列 第一课时 等差数列的概念及通项公式 课下检
一、选择题1.{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2 011,则序号n 等于( ) A .668 B .669 C .670D .671解析:∵a n =a 1+(n -1)·d , ∴2 011=1+(n -1)×3,n =671. 答案:D2.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2(n ∈N *) B .a n =2n +4(n ∈N *) C .a n =-2n +12(n ∈N *) D .a n =-2n +10(n ∈N *) 解析:由⎩⎪⎨⎪⎧a2·a4=12,a2+a4=8,d<0,⇒⎩⎪⎨⎪⎧ a2=6,a4=2,⇒⎩⎪⎨⎪⎧a1=8,d =-2,所以a n =a 1+(n -1)d =8+(n -1)(-2). 即a n =-2n +10. 答案:D3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a 、b 的关系是( ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0解析:由等差中项的定义知:x =a +b 2,x 2=a2-b22, ∴a2-b22=(a +b 2)2,即a 2-2ab -3b 2=0. 故a =-b 或a =3b . 答案:C4.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( ) A .52 B .51 C .50D .49解析:∵2a n +1=2a n +1, ∴2(a n +1-a n )=1.即a n +1-a n =12.∴{a n }是以12为公差的等差数列.a 101=a 1+(101-1)×d =2+50=52. 答案:A二、填空题5.等差数列1,-3,-7,-11,…的通项公式是________,它的第20项是________. 解析:数列中a 2=-3,a 1=1,∴d =a 2-a 1=-4. 通项公式为a n =a 1+(n -1)×d =1+(n -1)×(-4) =-4n +5, a 20=-80+5=-75. 答案:a n =-4n +5 -756.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________. 解析:∵由a 4=8,a 8=4,得⎩⎪⎨⎪⎧a1+3d =8,a1+7d =4. ∴d =-1,a 1=8-3d =11. ∴a n =a 1+(n -1)d =11-(n -1)=12-n . 答案:12-n7.等差数列{a n }中,首项为33,公差为整数,若前7项均为正数,第7项以后各项都为负数,则数列的通项公式为____________.解析:由题意,得⎩⎪⎨⎪⎧ a7=a1+6d >0,a8=a1+7d <0,即⎩⎪⎨⎪⎧33+6d >0,33+7d <0,得:-336<d <-337,又∵d ∈Z ,∴d =-5.∴a n =33+(n -1)×(-5)=38-5n . 答案:a n =38-5n (n ∈N *) 8.下表给出一个“等差矩阵”:其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数,那么a 45=________. 解析:该等差数列第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1). 第二行是首项为7,公差为5的等差数列:a 2j =7+5(j -1).……第i 行是首项为4+3(i -1),公差为2i +1的等差数列. 因此,a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j .故a 45=49. 答案:49 三、解答题9.已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?解:法一:设等差数列{a n }的前三项分别为a 1,a 2,a 3.依题意得⎩⎪⎨⎪⎧a1+a2+a3=18,a1·a2·a3=66,∴错误!解得⎩⎪⎨⎪⎧ a1=11,d =-5.或⎩⎪⎨⎪⎧a1=1,d =5.∵数列{a n }是递减等差数列,∴d <0. 故取a 1=11,d =-5,∴a n =11+(n -1)·(-5)=-5n +16 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的项,且为第10项. 法二:设等差数列{a n }的前三项依次为: a -d ,a ,a +d , 则错误!解得错误!又∵{a n }是递减等差数列,即d <0. ∴取a =6,d =-5.∴{a n }的首项a 1=11,公差d =-5. ∴通项公式a n =11+(n -1)·(-5), 即a n =-5n +16. 令a n =-34,解得n =10.即-34是数列{a n }的项,且为第10项.10.数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)是否存在实数λ使数列{a n }为等差数列?若存在,求出λ及数列{a n }的通项公式;若不存在,请说明理由.解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…), 且a 1=1.所以当a 2=-1时,得-1=2-λ,故λ=3.从而a3=(22+2-3)×(-1)=-3.(2)数列{a n}不可能为等差数列,证明如下:由a1=1,a n+1=(n2+n-λ)a n,得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).若存在λ,使{a n}为等差数列,则a3-a2=a2-a1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a2-a1=1-λ=-2,a4-a3=(11-λ)(6-λ)(2-λ)=-24.这与{a n}为等差数列矛盾.所以,不存在λ使{a n}是等差数列.。
人教B版数学必修五:2.2《等差数列》学案(含答案解析)
§2.2 等差数列1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列,∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n=-1,易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1. ∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则a m b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3.答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下:因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0,所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列.二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 (1)∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5. 解方程组得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧a =4a (a 2-d 2)=48, ∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1.四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知: 当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n=⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝ ⎛⎭⎪⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1.六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.ij(1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列, 因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k=41k ,所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S nT n=5n +32n +7矛盾). 3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110. 故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90,∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.1.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数. 又由(1)知a m +2为奇数,所以a m+2=2m-3=±1,即m=1,2.经检验,符合题意的正整数只有m=2.赏析试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题2.2.1 等差数列的概念及通项公式1.如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列叫做等差数列.这个常数叫做等差数列的公差.2.如果数列{an}是公差为d的等差数列,则a2=a1+d;a3=a2+d=a1+2d. 3.等差数列的通项公式为an=a1+(n-1)d.4.等差数列{an}中,an=a1+(n-1)d=a2+(n-2)d=a3+(n-3)d,因此等差数列的通项公式又可以推广到an=am+(n-m)d(n>m).5.由an=am+(n-m)d,得d=连线的斜率.6.如果在a与b之间插入一个数A,使a,A,b成等差数列,那么A可以用a,b表示为A=an-am,则d就是坐标平面内两点A(n,an),B(m,am)n-ma+b2,A称为a,b 的等差中项.7.如果数列{an}的通项公式an=a・n+b,则该数列是公差为a的等差数列. 8.等差数列的性质.若{an}是等差数列,公差为d,则:(1)an,an-1,…,a2,a1亦构成等差数列,公差为-d; (2)ak,ak+m,ak+2m,…(m∈N)也构成等差数列,公差为md;(3)λa1+μ,λa2+μ,…,λan+μ,…(λ,μ是常数)也构成等差数列,公差为λd; (4)an=am+(n-m)d(m,n∈N)是等差数列通项公式的推广,它揭示了等差数列中任意两项之间的关系,还可变形为d=***an-am; n-m(5)若m,n,k,l∈N,且m+n=k+l,则am+an=ak+al,即序号之和相等,则它们项的和相等,例如:a1+an=a2+an-1=… ?基础巩固一、选择题1.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为(B)A.1 B.2 C.3 D.4a1+a5解析:由等差中项的性质知a3==5,又a4=7,∴公差d=a4-a3=7-5=2.22.在-1和8之间插入两个数a,b,使这四个数成等差数列,则(A)A.a=2,b=5 B.a=-2,b=5 C.a=2,b=-5 D.a=-2,b=-5解析:考查项数与d之间关系.3.首项为-20的等差数列,从第10项起开始为正数,则公差d的取值范围是(C)A.d> B.d≤ C.<d≤ D.≤d<?a10>0,??-20+9d>0,20?5即?即<d≤.2??a9≤0,??-20+8d≤0,92209522095220952解析:由题意知?4.已知a,b,c成等差数列,则二次函数y=ax+2bx+c的图象与x轴的交点的个数为(D)A.1个 B.0个 C.2个 D.1个或2个解析:∵Δ=(2b)-4ac=(a+c)-4ac,∴Δ=(a-c)≥0.∴A与x轴的交点至少有1个.故选D.5.(2021・重庆卷)在等差数列{an}中,a1=2,a3+a5=10,则a7=(B)222A.5 B.8 C.10 D.14解析:设出等差数列的公差求解或利用等差数列的性质求解.方法一设等差数列的公差为d,则a3+a5=2a1+6d=4+6d=10,所以d=1,a7=a1+6d=2+6=8.方法二由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8. 二、填空题6.在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8=________.解析:根据等差数列的性质,a2+a8=a4+a6=a3+a7=37. ∴原式=37+37=74. 答案:747.(2021・广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.解析:由a3+a8=10得a1+2d+a1+7d=10,即2a1+9d=10, 3a5+a7=3(a1+4d)+a1+6d=4a1+18d=2(2a1+9d)=20.答案:208.在等差数列{an}中,a3=50,a5=30,则a7=________.解析:2a5=a3+a7,∴a7=2a5-a3=2×30-50=10. 答案:10 三、解答题9.在等差数列{an}中,已知a1+a6=12,a4=7. (1)求a9;(2)求此数列在101与1 000之间共有多少项.解析:(1)设首项为a1,公差为d,则2a1+5d=12, a1+3d=7,解得a1=1,d=2,∴a9=a4+5d=7+5×2=17.(2)由(1)知,an=2n-1,由101<an<1 000知 101<2n-1<1 000, 1 001∴51<n<. 2∴共有项数为500-51=449.111110.已知数列{an}中,a1=,=+,求an.2an+1an3111?1?111n+5解析:由=+知??是首项为2,公差为的等差数列,∴=2+(n-1)×=. an+1an3?an?3an33∴an=3*(n∈N). n+5?能力升级一、选择题11.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N),若b3=-2,b10=12,则a8=(B)A.0 B.3 C.8 D.11解析:由b3=-2和b10=12得b1=-6,d=2,∴bn=2n-8,即an+1-an=2n-8,由叠加法得(a2-a1)+(a3-a2)+(a4-a3)+…+(a8-a7)=-6-4-2+0+2+4+6=0.∴a8=a1=3.12.等差数列{an}中,前三项依次为:151,,,则a101等于(D) x+16xx*12A.50 B.13 332C.24 D.83解析:由11511+=2×解得x=2,故知等差数列{an}的首项为,公差d=,故a101x+1x6x31211262=a1+100d=+100×==8. 3123313.已知数列-1,a1,a2,-4与数列1,b1,b2,b3,-5各自成等差数列,则等于(B)11A. B. 4211C.- D.-24解析:设数列-1,a1,a2,-4的公差是d,则a2-a1=d==-2,故知-4-(-1)-5+1=-1,b2=4-12a2-a1b2a2-a11=. b22二、填空题14.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________. 21-714解析:∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列,其公差为==7.22∴a5+b5=7+(5-1)×7=35. 答案:3515.已知递增的等差数列{an}满足a1=1,a3=a2-4,则an=________.解析:利用等差数列的通项公式求解.设等差数列公差为d,则由a3=a2-4,得1+2d=(1+d)-4,∴d=4.∴d=±2.由于该数列为递增数列,∴d=2.∴an=1+(n-1)×2=2n-1(n∈N).答案:2n-1(n∈N) 三、解答题16.等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求数列{an}的通项公式.解析:由题设条件可得*2222??a1+a1+3d+a1+6d=15,? ?(a1+d)(a1+3d)(a1+5d)=45,???a1=-1,??d=2??a1=11,??d=-2.解得?或?*∴数列{an}的通项公式为an=2n-3或an=13-2n,n∈N. 17.已知111222,,是等差数列,求证:a,b,c是等差数列. b+cc+aa+b112+=, b+ca+bc +a证明:由已知条件,得∴2b+a+c2=. (b+c)(a+b)c+a∴(2b+a+c)(a+c)=2(b+c)(a+b).∴a+c=2b,即a,b,c是等差数列.222222感谢您的阅读,祝您生活愉快。
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质 学案(含答案)
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质学案(含答案)第4课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n 项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列若等差数列的项数为2nnN*,则S2nnanan1,S 偶S奇nd,S奇0;性质2若等差数列的项数为2n1nN*,则S2n12n1anan是数列的中间项,S奇S偶an,S奇0知识点二等差数列an的前n项和公式与函数的关系1将公式Snna1变形,得Snn2n.若令A,a1B,则上式可以写成SnAn2Bn,1等差数列前n项和Sn不一定是关于n的二次函数当公差d0时,Snna1,不是项数为n的二次函数当d0时,此公式可看成二次项系数为,一次项系数为,常数项为0的二次函数,其图象为抛物线yx2x上的点集,坐标为n,SnnN*因此,由二次函数的性质可以得出结论当d0时,Sn有最小值;当d0时,Sn有最大值2关于n的二次函数也不一定是等差数列的前n项和,由SnAn2BnC,当C0时,Sn不是某等差数列的前n项和;当C0时,令A,a1B,则能解出a1和d,因此这时一定是某等差数列的前n项和2若an为等差数列,公差为d,则为等差数列,公差为.1等差数列的前n项和一定是常数项为0的关于n的二次函数2等差数列an的前n项和SnAn2Bn.即an 的公差为2A.3若等差数列an的公差为d,前n项和为Sn.则的公差为.4数列an的前n项和Snn21,则an不是等差数列题型一等差数列前n项和的性质的应用例11等差数列an的前m项和为30,前2m项和为100,求数列an的前3m项的和S3m;2已知某等差数列an共有10项,若其奇数项之和为15,偶数项之和为30,求其公差解1在等差数列中,Sm,S2mSm,S3mS2m成等差数列,30,70,S3m100成等差数列27030S3m100,S3m210.2依题意有a1a3a5a7a915,a2a4a6a8a1030,得5d15,d3.反思感悟等差数列前n项和Sn的有关性质在解题过程中,如果运用得当可以达到化繁为简.化难为易.事半功倍的效果跟踪训练11等差数列an的前n项和为Sn,若S33,S69,则S9________.2等差数列an的公差为,且S100145,则奇数项的和a1a3a5a99________.答案118260解析1S3,S6S3,S9S6成等差数列,2S6S3S3S9S6,即2933S99,S918.2设a1a3a5a99S奇,a2a4a6a100S偶,则S奇S偶S100145.S偶S奇50d25.得2S奇120,S奇60.题型二Sn与函数的关系命题角度1SnAn2Bn的应用例21两个等差数列an,bn的前n项和分别为Sn和Tn,已知,求的值解方法一设Snk7n22n,Tnkn23n,k0,则a5S5S4k75225k7422465k,b5T5T4k5235k423412k..方法二.2已知an为等差数列,Sn为数列an的前n项和,且S77,S1575,求数列的前n项和Tn.解设等差数列an的公差为d,则Snna1d.S77,S1575,即解得a1d2,,数列是等差数列,且其首项为2,公差为.Tnn2nnN*反思感悟将等差数列前n项和公式Snna1d整理成关于n的函数,可得Snn2n.即Snna1dn2n,利用Sn与函数的关系可以使运算更简便跟踪训练21在例21的条件下,求的值2已知等差数列an的前n项和为Sn,若S33,S515,求S9.解1设Snk7n22n,Tnkn23n,则a565k,b6T6T5k6236k523514k,.2为等差数列,设公差为d,则d1,n3d1n3n2,927,S97963.命题角度2等差数列an的前n项和Sn的最值例3在等差数列an中,若a125,且S9S17,求Sn的最大值解方法一S9S17,a125,925d1725d,解得d2.Sn25n2n226nn132169.当n13时,Sn有最大值169.方法二同方法一,求出公差d2.an25n122n27.a1250,由得又nN*,当n13时,Sn有最大值169.方法三同方法一,求出公差d2.S9S17,a10a11a170.由等差数列的性质得a13a140.a130,a140.当n13时,Sn有最大值169.方法四同方法一,求出公差d2.设SnAn2Bn.S9S17,二次函数fxAx2Bx的对称轴为x13,且开口方向向下,当n13时,Sn取得最大值169.反思感悟1等差数列前n项和Sn取得最大小值的情形若a10,d0,则Sn 存在最大值,即所有非负项之和若a10,d0,则Sn存在最小值,即所有非正项之和2求等差数列前n项和Sn最值的方法寻找正.负项的分界点,可利用等差数列性质或利用或来寻找运用二次函数求最值跟踪训练3已知等差数列an中,a19,a4a70.1求数列an的通项公式;2当n为何值时,数列an的前n 项和取得最大值解1由a19,a4a70,得a13da16d0,解得d2,ana1n1d112nnN*2方法一由1知,a19,d2,Sn9n2n210nn5225,当n5时,Sn取得最大值方法二由1知,a19,d20,an是递减数列令an0,则112n0,解得n.nN*,n5时,an0,n6时,an0.当n5时,Sn取得最大值数形结合感悟事物本质典例在等差数列an中,a17,公差为d,前n项和为Sn,当且仅当n8时Sn取得最大值,则d的取值范围为________答案解析方法一由当且仅当n8时Sn 最大,知a80且a90,于是解得1d,故d的取值范围为.方法二Snn2n,由题意知d0,对称轴x,n8时,Sn取最大值7.58.5,即87,d.素养评析利用数形结合抓住事物本质,解决问题才能思路清晰,方法简捷等差数列ana10,d0或a10,d0中,andna1d,其图象为ydxa1d上的一系列点,要求Sn的最大小值,只需找出距x轴最近的两个点;Snn2n,其图象为yx2x上的一系列点要求Sn的最大小值,只需找出距对称轴最近的点.1若数列an的前n项和Snn22n,则an1an的值为A1B2C3D4答案B解析由Snn22n可判断an为等差数列,公差为2.an1an2.2若等差数列an的前5项和为25,则a3的值为A2B3C4D5答案D解析S55a325,a35.3设Sn是等差数列an的前n项和,已知a23,a611,则S7________.答案49解析S77749.4等差数列an中,若公差为2,a1a4a76,则a3a6a9________.答案18解析a3a6a9a1a4a7a3a1a6a4a9a76d12,a3a6a912618.5等差数列an中,公差d0,前n项和为Sn,S100,则Sn 取最小值n________.答案5解析S100,可设Snnn10,对称轴n5,且d0.n5时,Sn最小1等差数列an的前n项和Sn,有下面几种常见变形1Sn;2Snn2n;3n.2求等差数列前n项和最值的方法1二次函数法用求二次函数的最值方法来求其前n项和的最值,但要注意nN*,结合二次函数图象的对称性来确定n的值,更加直观2通项法当a10,d0,时,Sn取得最大值;当a10,d0,时,Sn取得最小值。
人教版高中数学必修五 2.2 等差数列
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
等差数列及性质
等差数列及性质一、知识梳理:1.等差数列的定义(1)前提条件:①从第2项起.②每一项与它的前一项的差等于同一个常数.(2)结论:这个数列是等差数列.(3)相关概念:这个常数叫做等差数列的公差,常用字母d表示.2.等差中项(1)前提:三个数a,A,b成等差数列.(2)结论:A叫做a,b的等差中项.(3)满足的关系式:2A=a+b.34.等差数列通项公式的推广5.等差数列的性质(1){a n}是公差为d的等差数列,若正整数m,n,p,q满足m+n=p+q,则:a m+a n=a p+a q.特别地,当m+n=2k(m,n,k∈N*)时,a m+a n=2a k.(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n =a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.(5).等差数列的图象由a n=d n+(a1-d),可知其图像是直线上的一些等间隔的点,其中是该直线的斜率.(6).等差数列的单调性:对于a n=d n+(a1-d),(1)当d>0时,{a n}为;(2)当d<0时,{a n}为;(3)当d=0时,{a n}为.二、题型探究:探究一:等差数列的通项公式及其应用例1.(1)已知等差数列{a n}:3,7,11,15,….①135,4m+19(m∈N*)是{a n}中的项吗?试说明理由.②若a p,a q(p,q∈N*)是数列{a n}中的项,则2a p+3a q是数列{a n}中的项吗?并说明你的理由.(2)在等差数列{a n}中,已知a5=10,a12=31,则首项a1=________,公差d=________.1.(1)若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q =________.(2)已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?探究二:等差数列的判定例2.(1)已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2且x ∈N *)确定.①求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;②当x 1=12时,求x 2 015.(2)已知1b +c ,1c +a ,1a +b 成等差数列,证明:a 2,b 2,c 2也成等差数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列;(3)通项公式法:a n =an +b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.2.(1)判断下列数列是否为等差数列:①在数列{a n }中a n =3n +2; ②在数列{a n }中a n =n 2+n .(2)已知c n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2,则数列{c n }________等差数列(填“是”或“不是”).(3)已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.探究三:等差中项的应用例3.一个等差数列由三个数组成,三个数的和为9,三个数的平方和为35,求这三个数.[互动探究]若将题中的三个数改为四个数成等差数列,且四个数之和为26,第二个数与第三个数之积为40,求这四个数.三个数或四个数成等差数列的设法当三个数或四个数成等差数列且和为定值时,方法一:可设出首项a1和公差d,列方程组求解.方法二:采用对称的设法,三个数时,设为a-d,a,a+d;四个数时,可设为a-3d,a-d,a+d,a+3d.3.(1)方程x2-6x+1=0的两根的等差中项为()A.1 B.2C.3 D.4(2)已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.探究四:等差数列性质的应用例4.在等差数列{a n}中:(1)若a5=a,a10=b,求a15;(2)若a3+a8=m,求a5+a6.(3)若a1+a2+…+a5=30,a6+a7+…+a10=80,求a11+a12+…+a15.(1)利用等差数列的通项公式列关于a1和d的方程组,求出a1和d,进而解决问题是处理等差数列问题的最基本方法.(2)巧妙地利用等差数列的性质,可以大大简化解题过程.4.(1)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 101<0 C .a 3+a 99=0 D .a 51=51(2)若x ≠y ,且两个数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 1-a 2b 1-b 2等于( )A .1 B.23C.34D.43探究五:等差数列的综合问题例5.在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的根,求数列{a n }的通项公式.例6.在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列{a n }的通项公式;(3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.5.(1)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n ,则a n =________.(2)已知数列{a n }满足(a n +1-a n )(a n +1+a n )=16,且a 1=1,a n >0.①求证:数列{a 2n }为等差数列; ②求a n .例7.已知等差数列{a n }的首项为a 1,公差为d ,且a 11=-26,a 51=54,求a 14的值.你能判断该数列从第几项开始为正数吗?[解] 由等差数列通项公式a n =a 1+(n -1)d ,列方程组⎩⎪⎨⎪⎧a 1+10d =-26,a 1+50d =54,解得⎩⎪⎨⎪⎧a 1=-46,d =2.∴a 14=-46+13×2=-20.∴a n =-46+(n -1)×2=2n -48. 令a n ≥0,得2n -48≥0⇒n ≥24, ∴从第25项开始,各项为正数.[错因与防范] (1)忽略了对“从第几项开始为正数”的理解,误认为n =24也满足条件.(2)由通项公式计算时,易把公式写成a n =a 1+nd ,导致结果错误.(3)等差数列通项公式中有a 1,a n ,n ,d 四个量,知三求一,一定要准确应用公式.7.(1)首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是________. (2)一个等差数列的首项为125,公差d >0,从第10项起每一项都大于1,求公差d 的范围.例8.(本题满分12分)两个等差数列5,8,11,…和3,7,11,…都有100项,那么它们共有多少相同的项?[解] 设已知的两数列的所有相同的项构成的新数列为{c n },c 1=11.2分 又等差数列5,8,11,…的通项公式为a n =3n +2,4分 等差数列3,7,11,…的通项公式为b n =4n -1.6分 所以数列{c n }为等差数列,且公差d =12,①8分 所以c n =11+(n -1)×12=12n -1.10分又a 100=302,b 100=399,c n =12n -1≤302,②得n ≤2514,可见已知两数列共有25个相同的项.12分[规范与警示] (1)解题过程中①处易出现令3n +2=4n -1,解得n =3的错误,这实际上是混淆了两个n 的取值而导致的错误,也是常犯错误,解题过程中②处易出现c n =12n -1≤399,导致错误.这是对题意不理解造成的,两个数列的公共项应以较小的为基准求解.(2)在解决数列的问题时弄清公式中各量的含义,不同的数列中同一量的意义是相同的,但是并不一定对应.如本例中项数n 在数列{a n }和数列{b n }中的意义,当项相同时,对应的序号n 不一定相同.巩固练习:1.(2015·汉口高二检测)下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a ,2b ,2c 成等差数列2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +13.(2014·高考重庆卷)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8C .10 D .144.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37C .100 D .-37 5.(2014·高考辽宁卷)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0B .d >0C .a 1d <0 D .a 1d >0 6.(2015·泰安高二检测)在等差数列{a n }中,a 3,a 10是方程x 2-3x -5=0的根,则a 5+a 8=________.7.(2015·河北省石家庄市月考)在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为________.8.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.9.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.10.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.11.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求{a n }的通项公式.12.已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.备选:《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共为4升,则第5节的容积为________升.巩固练习答案:1.解析:选C.因为a ,b ,c 成等差数列,则2b =a +c , 所以2b +4=a +c +4,即2(b +2)=(a +2)+(c +2), 所以a +2,b +2,c +2成等差数列.2.解析:选D.设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.解析:选B.法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 4.解析:选C.设c n =a n +b n ,由于{a n },{b n }都是等差数列,则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100,c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0.∴c 37=100,即a 37+b 37=100.5.解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0.6.解析:由已知得a 3+a 10=3.又数列{a n }为等差数列,∴a 5+a 8=a 3+a 10=3. 答案:37.解析:由等差数列的性质可知,a 3+a 5+a 7+a 9+a 11=(a 3+a 11)+(a 5+a 9)+a 7=5a 7=100,∴a 7=20.∴3a 9-a 13=2a 9+a 9-a 13=(a 5+a 13)+a 9-a 13=a 5+a 9=2a 7=40.答案:408.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn=n ,所以a n =n 2.答案:n 29.解析:由于三边长构成公差为4的等差数列,故可设三边长分别为x -4,x ,x +4. 由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 310.解:(1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧a 1+4d =-1a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5d =1. (2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧a 1+a 1+5d =12a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1d =2.∴a n =1+(n -1)×2=2n -1,∴a 9=2×9-1=17.11.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3. ∵a 1,a 2,a 3成等差数列,可设a 1=a 2-d ,a 3=a 2+d ,∴a 2=1. 由⎝⎛⎭⎫121-d+12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2. 当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5. 12.解:(1)证明:b n +1-b n =1a n +1-2-1a n -2=1(4-4a n)-2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.又b 1=1a 1-2=12,∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知b n =12+(n -1)×12=12n .∵b n =1a n -2,∴a n =1b n +2=2n +2.∴数列{a n }的通项公式为a n =2n+2.备选:解析:设自上而下各节的容积构成的等差数列为 a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9.则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=4a 1+6d =3,a 7+a 8+a 9=3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,故a 5=a 1+4d =6766. 答案:67667(1)解析:a n =24+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 10<0,a 9≥0,即⎩⎪⎨⎪⎧24+9d <0,24+8d ≥0,解得-3≤d <-83.答案:⎣⎡⎭⎫-3,-83 (2)解:设等差数列为{a n },由d >0,知a 1<a 2<…<a 9<a 10<a 11…,依题意,有⎩⎪⎨⎪⎧1<a 10<a 11<…,a 1<a 2<…<a 9≤1,即⎩⎪⎨⎪⎧a 10>1a 9≤1⇔⎩⎨⎧125+(10-1)d >1,125+(9-1)d ≤1,解得875<d ≤325,即公差d 的取值范围是⎝⎛⎦⎤875,325.。
等差数列的定义及通项公式
2.2等差数列一:等差数列的概念问题 1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,…② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,103661.等差数列:一般地,如果一个数列从第 2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示.2.等差中项:由三个数x,A, y组成的等差数列,这时数A叫做数x和 y 的等差中项,用等式表示为A=探究任务二:等差数列的通项公式问题 2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列 {a n }的首项是a1,公差是d,则据其定义可得:由此归纳等差数列的通项公式可得:∴已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项a n二、典型例题例1已知等差数列10,7,4,…;(1)试求此数列的第十项;⑵-40是不是这个数列的项?-56是不是这个数列的项?如果是,是第几项?变式1:(1)求等差数列3,7,11,……的第10项.(2)100 是不是等差数列 2,9,16,……的项?如果是,是第几项?如果不是,说明理由.例 2已知数列{a n}的通项公式a n = pn + q ,其中p、q 是常数,那么这个数列是否一定是等差数?若是,首项与公差分别是多少?变式2:已知数列的通项公式为a n = 6 n - 1,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?三、跟踪练习1. 等差数列 1,-1,-3,-89 的项数().A.92B. 47C.46D.452. 在△ABC中,三个内角A,B,C成等差数列,则∠B= .3. 等差数列的相邻4项是a+1,a+3,b,a+b,那么a=,b= .4.在等差数列 {a n }中,⑴已知a1= 2,d=3,n=10,求a10及a n⑵已知a1= 3,a n = 21,d=2,求 n;⑶已知a1= 12,a6 = 27,求d;5. 一个木制梯形架的上下底边分别为 33cm,75把梯形的两腰各6等分,用平行木条连接各分点,构成梯形架的各级,试计算梯形架中间各级的宽度.6.等差数列-3,1,5,…的第15项为( ).A.40B.53C.63D.767.等差数列1,-1,-3,…,-89的项数是( ).A.92B.47C.46D.458.有一正四棱台形楼顶,其中一个侧面中最上面一行铺瓦30块,总共需要铺瓦15行,并且下一行比其上一行多铺3块瓦,求该侧面最下面一行需铺瓦多少块?12四.等差数列的性质 若数列{}n a 是以a 1,公差为d 的等差数列,1.(1)d>0,则{}n a 是递增数列;d<0,则{}n a 是递减数列;d=0,则{}n a 是常数列; (2)1(,,)1n m ka a a a d m n k N n m k*--==∈--;(3)()(,)n m a a n m d m n N *=+-∈ (4)若(,,,),m n p q m n p q m n p q N a a a a *+=+∈+=+则 (5),2(,,)2m n k m nk a a a m n k N *+=+=∈则 (6){}n a 是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和, 即121n n a a a a -+=+=…1i n i a a +-=+=…(,,)i N n N i n *∈∈< 2.下列性质较容易(1)数列{}(,)n a b d λλλ+为常数是以d 为公差的等差数列(2)下标成等差数列且公差为m 的项2,,,k k m k m a a a ++,…,(,)k m N md *∈组成公差为的等差数列(3)若{}n a 为等差数列,则135,,,a a a …,仍为等差数列(首项不一定选1a ) (4)若{}{},n n a b 都是等差数列,则{}n n a b ±也是等差数列。
2.2.2等差数列前n项和公式
练习3 已知一个共有n项的等差数列前4项之 和为26,末四项之和为110,且所有项的和为 187,求n.
n=11
提示:a1+a2+a3+a4=26
a1+an=34
an+an-1+an-2+an-3=110
Sn
n(a1 2
an )
34n 2
187,n
11
课堂小结
1.等差数列前n项和的公式;(两个)
解:(1)由已知得 12a1+6×11d>0
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n
1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
+ S =100 + 99 + 98 + … + 3 + 2 + 1
2S = 101 +101+101 + … + 101 + 101 + 101
100101
S=
2
=5050
实例2
如图,表示堆放的钢管共8层,自上而下各 层的钢管数组成等差数列4, 5, 6, 7, 8, 9, 10, 11, 求钢管的总数 .
Sn
n(a1 2
an )
Sn
na1
n(n 1) 2
d
2.等差数列前n项和公式的推导方法— —倒序相加法;
等差数列通项求和及其性质
等差数列通项求和及其性质1.等差数列概念及通项公式1) 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
2) 等差数列的判定方法:(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
(2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
3) 等差数列的通项公式:如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。
说明:该公式整理后是关于n 的一次函数。
通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *. 2.等差数列性质2.1等差中项:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2.2.2已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=…. (2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.2.3等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列. 3.等差数列求和(倒序相加法) 等差数列的前n 项和:① 2)(1n n a a n S +=②d n n na S n 2)1(1-+= 说明:对于公式②整理后是关于n 的没有常数项的二次函数。
等差数列及其前n项和Word版含答案
等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。
等差数列的通项及性质7大题型 (解析版)
等差数列的通项及性质7大题型【考点预测】一.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母表示,定义表达式为d (常数).1--=n n a a d *()2,∈≥n N n (2)等差中项 若三个数,,成等差数列,则叫做与的等差中项,且有a A b A a b =2+a bA .(3)等差数列的通项公式如果等差数列的首项为,公差为,那么它的通项公式是.{}n a 1a d 1(1)=+-n a a n d 二.等差数列通项的常用性质已知为等差数列,为公差,为该数列的前项和.{}n a d n S n (1)通项公式的推广:.*())(,=+-∈n m a a n m d n m N (2)在等差数列中,当时,.{}n a +=+m n p q *(),,,+=+∈m n p q a a a a m n p q N 特别地,若,则.2+=m n t *()2,,+=∈m n t a a a m n t N (3),…仍是等差数列,公差为.2++,,k k mk ma a a *(),∈md k m N (4)若,是等差数列,则也是等差数列.{}n a {}nb {}+n n pa qb 【题型目录】题型一:等差数列通项公式运用题型二:等差中项问题题型三:等差数列通项的性质题型四:整体看成等差数列问题题型五:等差数列通项公共项问题题型六:几个连续实数成等差数列问题题型七:等差数列通项新文化试题【典型例题】题型一:等差数列通项公式运用【例1】(2022·全国·高二课时练习)在等差数列中,若,,则( ){}n a823a =1132a =66a =A .195B .196C .197D .198【例2】(2022·江西省万载中学高一阶段练习(文))在数列中,,,若n 11a =13n n a a +-=2020n a =,则( )n =A .671B .672C .673D .674【答案】D【分析】分析得到数列是以1为首项,3为公差的等差数列,利用等差数列通项即得解.{}n a【详解】∵,,11a =13n n a a +-=∴13n n a a +-=∴数列是以1为首项,3为公差的等差数列,{}n a∴,解得.()()111312020n a a n d n =+-=+-=674n =故选:D.【例3】(2022·全国·高二课时练习)已知等差数列,若,,则( ){}n a2911a a +=41014a a +=n a =A .B .C .D .2n 21n +n 21n -【答案】C【分析】设公差为d ,利用基本量代换列方程组解出首项和公差,即可写出通项公式.【详解】在等差数列中,设公差为d ,依题意,即{}n a 294101114a a a a +=⎧⎨+=⎩11291121214a d a d +=⎧⎨+=⎩解得公差,,所以.1d =11a =n a n =故选:.C 【例4】(2022·全国·高二课时练习)数列的首项为,为等差数列,且{}n a 3{}nb ()1n n n b a a n N *+=-∈,若,,,则等于( )32b =-1012b =8a A .B .C .D .03811【例5】(2022全国高二课时练习)在等差数列中,若a 1=84,a 2=80,则使an 0,且an +1n ≥<0的n 为( )A .21B .22C .23D .24【答案】B【分析】用基本量表示,列出不等式组,求解即可1,a d 1,n n a a +8840,884(1)0n n -≥⎧⎨-+<⎩【详解】公差d =a 2-a 1=-4,∴an =a 1+(n -1)d =84+(n -1)(-4)=88-4n ,令10,0,n n a a +≥⎧⎨<⎩即8840,884(1)0n n -≥⎧⎨-+<⎩⇒,又∵n ∈N *,2122n <≤∴n =22.故选:B【例6】(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为1111,,,DD CC BB AA 1111,,,OD DC CB BA .已知成公差为0.1的等差数列,且直线11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====123,,k k k OA的斜率为0.725,则( )3k =A .0.75B .0.8C .0.85D .0.9【答案】D【解析】设,则,11111OD DC CB BA ====111213,,CC k BB k AA k ===依题意,有,且,31320.2,0.1k k k k -=-=111111110.725DD CC BB AA OD DC CB BA +++=+++所以,故,30.530.30.7254k +-=30.9k =故选:D【例7】(2022·全国·高二课时练习)若数列为等差数列,,,则( ){}n ap a q=()q a p p q =≠p q a +=A .B .0C .D .p q +()p q -+2p q+【答案】B【分析】根据等差数列通项公式的变形形式求解:.()n m a a n m d =+-【详解】设数列的公差为.∵,∴,即.∵,∴{}n ad ()p q a a p q d=+-()q p p q d=+-()q p p q d-=-p q ≠,∴.1d =-()0p q p a a p q p d q p +=++-=-=⎡⎤⎣⎦故选:B .【例8】(2022·全国·高二课时练习)已知数列均为等差数列,若{}{},n n a b1122333,7,13a b a b a b ===,则( )44a b =A .B .C .D .19212327【答案】B【分析】设,得出,令,可得,n n a an b b cn d =+=+2()n n a b acn bc ad n bd =+++n n n c a b =1n n nd c c +=-构成一个等差数列,求得公差,即可求得的值.4c 【详解】由题意,设,,n n a an b b cn d =+=+则,()()2()n n a b an b cn d acn bc ad n bd=++=+++令,可得构成一个等差数列,n n n c a b =12()n n n d c c acn ac ad bc +=-=+++所以由已给出的 ,,113a b =227a b =3313a b =,,所以121734d c c =-=-=2321376d c c =-=-=4434138d c c c =-=-=解得:,即.421c =4421a b =故选:B【例9】(2022全国高二课时练习)(1)在等差数列{an }中,已知a 3+a 8=10,则3a 5+a 7=________.(2)已知等差数列{an }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________.【答案】 20 27【分析】(1)利用等差数列的性质求解即可,(2)利用等差数列的性质求解,或设等差数列{an }的公差为d ,利用已知条件求出公差,再利用等差数的性质求解【详解】(1)3a 5+a 7=2a 5+(a 5+a 7)=2a 5+2a 6=2(a 3+a 8)=20.(2)法一 由性质可知,数列a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9是等差数列,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),则a 3+a 6+a 9=2×33-39=27.法二 设等差数列{an }的公差为d ,则(a 2+a 5+a 8)-(a 1+a 4+a 7)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)=3d =-6,解得d =-2,所以a 3+a 6+a 9=a 2+d +a 5+d +a 8+d =27.故答案为:(1)20 (2)27【例10】(2022全国高二专题练习)在等差数列中,,且{}n a 138a a +=2429a a a =⋅(1)求数列的首项、公差;{}n a(2)设,若,求正整数m 的值.()()1218n n n a a b -+=13m m m b b b +++=【题型专练】1.(2021·全国·高二单元测试)已知等差数列满足,则中一定为零的项是( ){}n a3243a =a {}n aA .B .C .D .6a 7a 8a 9a 【答案】A【分析】先设等差数列的公差,根据题中条件,得出首项与公差之间关系,即可得出结果.【详解】设等差数列的公差为,由得,∴,{}n ad 3243a =a 15a d =-6150a a d =+=故选:A .2.(2021·全国·高二专题练习)已知等差数列中,,,则等于( ){}n a3822a a +=67a =4a A .B .1523C .D .729【答案】B【分析】求出等差数列的公差的值,由此可求得的值.{}n ad 4a【详解】设等差数列的公差为,则,解得,{}n ad ()()3866632222a a a d a d a d +=-++=-=8d =-因此,.()46272823a a d =-=-⨯-=故选:B.3.(2021·江苏·高二专题练习)在等差数列中,已知,,,则( ){}n a113a =45163a a +=33k a =k =A .B .5049C .D .48474.(2022·广东·佛山市南海区狮山高级中学高二阶段练习)在数列中,,n 12a =1221n n a a +-=,则的值为( )101a A .52B .51C .50D .495.(2022·全国·高二课时练习)已知数列是首项为3,公差为n a d d ∈N 的等差数列,若2023是该数列的一项,则公差d 可能是( )A .2B .3C .5D .6P 条弦的长度组成一个等差数列,最短弦长为,最长弦长为,且公差,则1a n a 2,13d ⎛⎤∈ ⎥⎝⎦n的取值可能是( )A .B .C .D .56781123A .公差d =-4B .a 2=7C .数列{an }为递增数列D .a 3+a 4+a 5=84【答案】BC【分析】根据等差数列性质公式及基本量计算,对选项一一判断即可.【详解】解析:∵a 1+a 2+a 3=21,∴3a 2=21,∴a 2=7.∵a 1=3,∴d =4.∴数列{an }为递增数列,a 4=a 2+2d =15.∴a 3+a 4+a 5=3a 4=45.故选:BC8.(2022·全国·高二单元测试)已知数列为等差数列,,,则公差d 为______.{}n a36a =918a =【答案】2【分析】由等差数列性质得,即可求得公差d936a a d =+【详解】数列为等差数列,则,可解得.{}n a9361866d a a d =+⇒=+2d =故答案为:29.(2022·全国·高二课时练习)等差数列2,4,6,…的第18项为______.【答案】36【分析】由条件确定数列的公差,再确定其通项公式,由此求其第18项.【详解】设数列的第项为,n n a 由已知数列为等差数列,且,,{}n a12a =24a =所以数列的公差,{}n a2d =所以,2(1)22n a n n =+-⨯=所以,1836a =故答案为:36.10.(2022·全国·高二单元测试)设是公差为-2的等差数列,如果{}n a1479750a a a a ++++= ,那么______.36999a a a a ++++= 【答案】-82【分析】根据等差数列通项公式化简求解.【详解】∵是公差为-2的等差数列,{}n a ∴()()()()36999147972222a a a a a d a d a d a d ++++=++++++++ .147973325013282a a a a d =+++++⨯=-=- 故答案为:-8211.(2022·全国·高二课时练习)已知等差数列为递增数列,若,{}n a 22110101a a +=5611a a +=,则数列的公差d 的值为______.{}n a【答案】112.(2022·全国·高二课时练习)若,且两数列a , , ,b 和a ,,,a b ¹12123,b 都是等差数列,则________.3121y y x x -=-【答案】##32 1.513.(2022·全国·高二课时练习)已知等差数列的前三项分别为,,n 1a -21a +7a +,则此数列的通项公式为______.n a =【答案】43n -【分析】根据等差数列前三项可求出,即可得出首项和公差,求出通项公式.a 【详解】由题意,得,所以,()17221a a a -++=+2a =所以的前三项分别为1,5,9,公差为4,故.{}n a()11443n a n n =+-⨯=-故答案为:.43n -14.(2022·全国·高二课时练习)已知等差数列满足,则____________.{}n a2438a a =-5a =【答案】4【分析】利用表示,整理可得.1,a d 2438a a =-5a 【详解】设等差数列的公差为,则由得:,{}n ad 2438a a =-()11338a d a d +=+-整理可得:,即.()1128248a d a d +=+=5144a a d =+=故答案为:.415.(2020·全国·高二课时练习)已知等差数列{an },且a 3+a 5=10,a 2a 6=21,则an =____________.【答案】或.1n a n =+9n a n =-+【分析】设等差数列的公差为,根据题意列出方程组,求得的值,即可求解.{}n a d d 【详解】设等差数列的公差为,{}n ad 因为,可得,354210a a a +==45a =又由,2644(2)(2)(52)(52)21a a a d a d d d =-+=-+=解得,所以或,21d =1d =1d =-所以数列的通项公式为或.{}n a1n a n =+9n a n =-+故答案为:或.1n a n =+9n a n =-+16.(2021·全国·高二专题练习)若a ,x 1,x 2,x 3,b 与a ,y 1,y 2,y 3,y 4,y 5,b 均为等差数列,则3131x x y y --=________.17.(2022·全国·高二课时练习)存在条件:①,;②,;③,23d =-37a =713.在这三个条件中任选一个,回答下列问题,已知等差数列满足______.求数列2414a a +={}n a 的通项公式.{}n a【答案】163n a n=-【分析】不管选择哪个条件,都是求首项和公差,再求通项公式.【详解】若选择①,,1213a a d =-=数列的通项公式,{}n a()()()111313163n a a n d n n=+-=+-⨯-=-即;163n a n =-若选择②,,解得:,,112765ad a d +=⎧⎨+=-⎩113a =3d =-数列的通项公式;{}n a163n a n =-若选择条件③,解得:,,1122202414a d a d +=⎧⎨+=⎩113a =3d =-数列 的通项公式.{}n a 163n a n=-题型二:等差中项问题【例1】(2022·全国·高二课时练习)已知则a ,b 的等差中项为()a =b =A B C D 间的角是多少度( )A .30°B .60°C .90°D .45°【答案】B【分析】设三内角由小到大依次为,,A B C,利用等差数列定义结合三角形三内角和定理列式计算作答.【详解】设三角形三内角由小到大依次为,依题意,,而,,,A B C 2A+C =B 180A B C ++=则有,解得,3180B =60B =所以中间的角是.60故选:B【例3】(2022·全国·高二课时练习)已知和的等差中项是4,和的等差中项是5,则和m 2n 2m n m n 的等差中项是( )A .8B .6C .D .34.5【例4】(2022·全国·高三专题练习(理))数列{an }满足,且,是函数122n n n a a a ++=+4a 4040a 的两个零点,则的值为( )2()83f x x x =-+2022a A .4B .-4C .4040D .-4040【答案】A【分析】由题设可得+=8,根据已知条件易知{an }是等差数列,应用等差中项的性质求4a 4040a .2022a 【详解】由,是的两个零点,即,是x 2-8x +3=0的两个根,4a 4040a 2()83f x x x =-+4a 4040a ∴+=8,又,即数列{an }是等差数列,4a 4040a 122n n n a a a ++=+∴+=8,故=4.4a 4040a 20222a =2022a 故选:A.【题型专练】1.(2022·全国·高三专题练习)下列选项中,为“数列{}n a是等差数列”的一个充分不必要条件的是( )A .B .()1122n n n a a a n +-=+≥()2112n n n a a a n +-=⋅≥C .数列的通项公式为D .{}n a23n a n =-()2112n n n n a a a a n ++--=-≥A .2BCD .13.(2022·上海市复旦实验中学高二期末)若b 是2,8的等差中项,则______;b =【答案】0【分析】根据等差中项的性质即可求解.【详解】解:因为8,a ,2,b ,c 是等差数列,所以8222222a a b c b +=⎧⎪+=⨯⎨⎪+=⎩解得514a b c =⎧⎪=-⎨⎪=-⎩所以.0a b c ++=故答案为:.0题型三:等差数列通项的性质【例1】(2022·广东肇庆·高二阶段练习)已知数列是等差数列,且满足,则{}n a2104a a +=26log a =( )A .B .C .D .0123【答案】B【分析】利用等差中项的性质求出的值,进而可求得结果.6a 【详解】由等差中项的性质可得,可得,因此,.621024a a a =+=62a =26log 1a =故选:B.【例2】(2022·全国·高三专题练习)已知等差数列满足,则( ){}n a5796a a a ++=7a =A .B .C D .322-【答案】B【分析】利用等差中项的性质可求得结果.【详解】由等差中项的性质可得,故.579736a a a a ++==72a =故选:B.【例3】(2022·四川省成都市新都一中高一期中(理))已知数列满足,且{}n a ()*122n n n a a a n ++=+∈N ,则( )38132πa a a ++=()79cos a a +=A .B .C .D 12-12【例4】(2023·全国·高三专题练习)已知等差数列中,,,则n a1234a a a ++=131415等于( )789a a a ++A .6B .7C .8D .9(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(2)数列为等差数列的充要条件是对任意,都有.{}n a*N n ∈122n n n a a a ++=+(3)数列为等差数列的充要条件是其通项公式为n 的一次函数.{}n a(4)已知数列的通项公式是(其中p ,q 为常数),则数列一定是等差数列.{}n a n a pn q =+{}n aA .1个B .2个C .3个D .4个【答案】B【分析】利用等差数列定义判断(1);利用等差中项的定义结合充要条件的意义判断(2);利用等差数列定义结合充要条件的意义判断(3);利用等差数列定义判断(4)作答.【详解】对于(1),若一个数列从第2项起每一项与它的前一项的差都是同一个常数,则这个数列是等差数列,(1)不正确;对于(2),因对任意,都有数列*N n ∈121212n n n n n n n a a a a a a a +++++⇔=+-=-⇔{}n a为等差数列,(2)正确;对于(3),因常数列是等差数列,而常数列的通项不是n 的一次函数,则通项公式为n 的一次函数是数列为等差数列的充分不必要条件,(3)不正确;{}n a对于(4),数列的通项公式是(其中p ,q 为常数),则,,即数列{}n an a pn q =+N n *∀∈1n n a a p +-=一定是等差数列,(4)正确,{}n a 所以所给4个命题正确的个数为2.故选:B【题型专练】1.(2021·江西·高三阶段练习(文))设是等差数列,且,,则( ){}n a122a a +=344a a +=56a a +=A .B .C .D .12-0624【答案】C【分析】根据等差数列性质可知,,成等差数列,由此可构造方程求得结果.12a a +34a a +56a a +【详解】解:是等差数列,,,成等差数列,{}n a12a a ∴+34a a +56a a +,.()()()3412562a a a a a a ∴+=+++56826a a ∴+=-=故选:C.2.(2022·重庆·高三阶段练习)已知数列为等差数列,,则( ){}n a286a a +=357a a a ++=A .9B .12C .15D .16【分析】根据等差数列下标和性质计算可得.【详解】解:在等差数列中,所以,{}n a28526a a a +==53a =所以;357539a a a a ++==故选:A3.(2022·河南平顶山·高二期末(文))已知数列是等差数列,且满足,则{}n a891075a a a ++=( )612a a +=A .B .C .D .42485058【答案】C【分析】利用等差中项的性质可求得结果.【详解】由等差中项的性质可得,则,因此,.89109375a a a a ++==925a =6129250a a a +==故选:C.4.(2023·全国·高三专题练习)已知数列为等差数列,若,则的值为( ){}n a15915a a a ++=28a a +A .4B .6C .8D .10【答案】D【分析】由等差中项的性质进行计算【详解】由题意得:,所以,1595315a a a a ++==55a =故285210a a a +==故选:D5.(2022·河南·驻马店市基础教学研究室高二期末(理))已知等差数列中,、是{}n a2a 8a 的两根,则( )221610x x --=()2375a a a +-=A .B .C .D .248601246.(2022·全国·高二课时练习)在等差数列中,若,则______.{}n a34567450a a a a a ++++=19a a +=【答案】180【分析】利用等差中项的性质即可求值.【详解】由,故,37169452a a a a a a a =+=+=+3456755450a a a a a a ++++==所以,则.590a =19a a +=180故答案为:1807.(2022·宁夏·青铜峡市宁朔中学高二开学考试)在等差数列中,若{}n a357911100a a a a a ++++=,则________.212a a +=8.(2021·河北衡水·高三阶段练习)已知等差数列中,分别是方程n 12021,a a 2410x x --=的两个根,则__________.1011a =1项,则这个等差数列的公差为___________.【答案】1【分析】根据题意,利用等差数列等差中项的性质即可求得和,进而求得公差.3a 29a10.(2021·全国·高二课时练习)已知等差数列{an }中,a 1+a 3+a 8=54π,那么cos(a 3+a 5)=________.11.(2022·全国·高二课时练习)已知等差数列,满足,,求数列n 23418a a a ++=23466=a a a n 的通项公式.【答案】或521=-+n a n 59=--n a n 【分析】根据是等差数列且满足求出,代入,中得到{}n a23418a a a ++=3a 23418a a a ++=23466=a a a 的方程组,并解出,从而解出,结合通项公式解出.24,a a 24,a a 1a d ,n a 【详解】是等差数列,且, ,{}n a23418a a a ++=33=18∴a 3=6a ∴解得或2342341866a a a a a a ++=⎧⎨=⎩ 242412,.11,a a a a +=⎧⎨=⎩2411,1a a =⎧⎨=⎩241,11.a a =⎧⎨=⎩当时,,.2411,1a a =⎧⎨=⎩1=16a =5-d ()()()111615521∴=+-=+--=-+n a a n d n n当时,,.241,11a a =⎧⎨=⎩1=4-a =5d ()()1141559∴=+-=-+-=-n a a n d n n 综上:或521=-+n a n 59=--n a n 题型四:整体看成等差数列问题【例1】(2022·全国·高三专题练习)已知数列,为等差数列,且公差分别为,{}n a{}n b12d =21d =,则数列的公差为( ){}23n n a b -A .B .C .D .7531【答案】D【分析】利用即可整理求得公差.112323n n n n a b a b ++--+【详解】,为等差数列,为等差,设其公差为,{}n a {}n b {}23n n a b ∴-d 则.()()111112232323231n n n n n n n n d a b a b a a b b d d ++++=--+=---=-=故选:D.【例2】(2022·全国·高二课时练习)定义:在数列中,若对任意的都满足{}n a n +∈N 211n n n n a a da a +++-=(d 为常数),则称数列为等差比数列.已知等差比数列中,,,则{}n a {}n a 121a a ==33a =20222020a a =( )A .B .C .D .2420221⨯-2420211⨯-2420201⨯-242020⨯【例3】(2022·全国·高二课时练习)已知数列,均为等差数列,若,,则{}n a{}n b110a b +=221a b +=( )n n a b +=A .B .C .D .2n -1n +n1n -【答案】D【分析】利用等差数列的通项公式可求出结果.【详解】设等差数列,的公差分别为,{}n a{}n b12,d d 则,1221212211()()101d d a a b b a b a b +=-+-=+-+=-=所以1112(1)(1)n n a b a n d b n d +=+-++-.1112(1)()1a b n d d n =++-+=-故选:D【例4】(2022·全国·高二课时练习)已知数列均为等差数列,若{}{},n n a b1122333,7,13a b a b a b ===,则( )44a b =A .B .C .D .19212327【答案】B【分析】设,得出,令,可得,n n a an b b cn d =+=+2()n n a b acn bc ad n bd =+++n n n c a b =1n n nd c c +=-构成一个等差数列,求得公差,即可求得的值.4c 【详解】由题意,设,,n n a an b b cn d =+=+则,()()2()n n a b an b cn d acn bc ad n bd=++=+++令,可得构成一个等差数列,n n n c a b =12()n n n d c c acn ac ad bc +=-=+++所以由已给出的 ,,113a b =227a b =3313a b =,,所以121734d c c =-=-=2321376d c c =-=-=4434138d c c c =-=-=解得:,即.421c =4421a b =故选:B【例5】(2022·全国·高二课时练习多选题)已知等差数列,若,,则( )11n a ⎧⎫⎨⎬+⎩⎭114a =41a =A .数列的公差11n a ⎧⎫⎨⎬+⎩⎭110d =B .数列的公差11n a ⎧⎫⎨⎬+⎩⎭110d =-C .1011a =-D .1011a =1.(2021·江苏·高二单元测试多选题)在数列中,若(,,{}n a 221n n a a p --=2n ≥*n N ∈p 为常数),则称为等方差数列,下列对等方差数列的判断正确的有( ){}n aA .若是等差数列,则是等方差数列{}n a {}2n a B .数列是等方差数列(){}1n-C .若数列既是等方差数列,又是等差数列,则数列一定是常数列{}n a{}n aD .若数列是等方差数列,则数列(,为常数)也是等方差数列{}n a{}kn a*k N ∈k 【答案】BCD【分析】利用等方差数列的定义判断.【详解】A.设等差数列的通项公式,则{}n an a kn b =+,不一定是常数,()()()()22111122n n n n n n n n a a a a a a a a d kn k b d-----=+-=+=-+所以不是等方差数列,故错误;{}2naB. 因为,所以数列是等方差数列,故正确;()()()112222110n nn n a a---=---=(){}1n-C.因为数列是等方差数列,则,又数列是等差数列,则{}n a 221n n a a p --={}n a ,()()()221111n n n n n n n n a a a a a d a a pa -----=+-=+=2.(2022·全国·高二课时练习)已知是等差数列,且,,则______.1n a ⎧⎫⎨⎬⎩⎭21a =41a =10a =为等差数列,则______.13a =4.(2022·全国·高二课时练习)数列中,,,若数列是等差数列,则{}n a 32a =71a =11n a ⎧⎫⎨⎬+⎩⎭8a =__________.【例1】(2022·全国·高二课时练习)在1,2,3,…,2021这2021个自然数中,将能被2除余1,且被3除余1的数按从小到大的次序排成一列,构成数列,则等于( ){}n a50a A .289B .295C .301D .307【答案】B【分析】根据题意,得到能被2除余1满足,被3除余1的数满足,进而求得数列21n -32n -{}n a的通项公式,即可求解.65n a n =-【详解】由题意,在1,2,3,…,2021这2021个自然数中,能被2除余1满足,21n -被3除余1的数满足,32n -所以在1,2,3,…,2021这2021个自然数中,能被2除余1,且被3除余1的数,按从小到大的次序排成一列,可得构成的数列是首项为,公差为的等差数列,{}n a16则数列的通项公式,{}n a65n a n =-所以.506505295a =⨯-=故选:B.【例2】(2022·全国·高三专题练习)已知两个等差数列5,8,11,…,302与3,7,11,…,399,则它们所有公共项的个数为( )A .23B .24C .25D .261.(2022·全国·高二课时练习)“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{}n a,则此数列的项数为( )A .134B .135C .136D .137【答案】B【分析】根据已知条件进行转化得到数列通项公式,由题意解出不等式即可判断项数.{}n a【详解】由题意知,被3除余1且被5除余1的数即为被15除余1的数,故.1514,n a n n N *=-∈由,得,15142019n a n =-≤135.5n ≤又因为,所以此数列的项数为135.n *∈N 故选:B2.(2022全国高二单元测试)在数学发展史上,已知各除数及其对应的余数,求适合条件的被除数,这类问题统称为剩余问题.1852年《孙子算经》中“物不知其数”问题的解法传至欧洲,在西方的数学史上将“物不知其数”问题的解法称之为“中国剩余定理”.“物不知其数”问题后经秦九韶推广,得到了一个普遍的解法,提升了“中国剩余定理”的高度.现有一个剩余问题:在的整数中,把被除余数为,被(]1,2021415除余数也为的数,按照由小到大的顺序排列,得到数列,则数列的项数为( )1{}n a{}n aA .B .C .D .1011009998【答案】A【分析】将数列中的项由小到大列举出来,可知数列{}n a{}n a为等差数列,确定该数列的首项和公差,可求得,然后解不等式,即可得解.n a 12021n a <≤【详解】由题意可知,数列中的项由小到大排列依次为、、、、,{}n a21416181L 可知数列是以为首项,以为公差的等差数列,则,{}n a2120()21201201n a n n =+-=+由可得,解得,12021n a <≤12012021n <+≤0101n <≤,则,n N *∈ {}1,2,3,,101n ∈ 因此,数列的项数为.{}n a101故选:A.题型六:几个连续实数成等差数列问题【例1】(2022·江苏·高二课时练习)若直角三角形的三条边的长组成公差为3的等差数列,则三边的长分别为( )A .5,8,11B .9,12,15C .10,13,16D .15,18,21【答案】B【分析】设出三边长,根据直角三角形的勾股定理,解得答案.【详解】由题意直角三角形的三条边的长组成公差为3的等差数列,设可三边长为 ,则,,3,6x x x ++222(3)(6)x x x ++=+解得 ,(舍去),9x =3x =-故三边长为9,12,15 ,故选:B.【例2】(2022·全国·高二课时练习)已知四个数成等差数列,它们的和为28,中间两项的积为40,则这四个数依次为( )A .-2,4,10,16B .16,10,4,-2C .2,5,8,11D .11,8,5,2【答案】AB【分析】根据等差数列的性质,列出方程求解即可【详解】设这四个数分别为,,,,3a d -a d -a d +3a d +则解得或()()3328,40,a d a d a d a d a d a d -+-++++=⎧⎨-+=⎩7,3a d =⎧⎨=⎩7,3,a d =⎧⎨=-⎩所以这四个数依次为-2,4,10,16或16,10,4,-2.故选:AB【例3】(2022·全国·高二课时练习)已知5个数组成一个单调递减的等差数列,且它们的和为5,平方和为165,则这个等差数列的第1项为___________.【答案】9【分析】根据等差数列的性质,直接求解即可【详解】设这个等差数列中的五个数分别为,,x ,2x d -x d -,.由题意,得x d +2x d +()()()()22222225,22165,x d x d x x d x d x d x d x x d x d -+-+++++=⎧⎪⎨-+-+++++=⎪⎩解得或因为这个数列单调递减,所以,1,4x d =⎧⎨=⎩1,4.x d =⎧⎨=-⎩0d <即所以第1项为.1,4.x d =⎧⎨=-⎩()21249x d -=-⨯-=故答案为:9【题型专练】1.(2022·全国·高二课时练习)已知等差数列{}n a前三项的和为-3,前三项的积为8.求等差数列的通项公式.{}n a【答案】或35n a n =-+37n a n =-【分析】结合等差数列的通项公式得到,求出首项与公差即可求出结果.()()111133328a d a a d a d +=-⎧⎨++=⎩【详解】设等差数列的公差为d ,则,.{}n a21a a d =+312a a d =+由题意得,解得或()()111133328a d a a d a d +=-⎧⎨++=⎩123a d =⎧⎨=-⎩143a d =-⎧⎨=⎩所以由等差数列的通项公式可得或.()23135n a n n =--=-+()43137n a n n =-+-=-故或.35n a n =-+37n a n =-2.(2022·全国·高二单元测试)(1)三个数成等差数列,其和为,前两项之积为后一项的96倍,求这三个数.(2)四个数成递增等差数列,中间两数的和为,首末两项的积为,求这四个数.28-【答案】(1),,;(2),,,.4322-024【分析】(1)设这三个数依次为,,,根据已知条件列方程组,求得和a d -a a d +a d 的值即可得这三个数;(2)设这四个数依次为,,, (公差为),根据已知条件列方程组,求得3a d -a d -a d +3a d +20d >和的值即可得这四个数.a d 【详解】(1)设这三个数依次为,,,a d -a a d +由题意可得:,解得:,()()96a d a a d a a d a d -+++=⎧⎨-=+⎩31a d =⎧⎨=-⎩所以这三个数依次为,,.432(2)设这四个数依次为,,, (公差为),3a d -a d -a d +3a d +20d >由题意可得,解得或(舍),()()2338a d a d a d a d -++=⎧⎨-+=-⎩11a d =⎧⎨=⎩11a d =⎧⎨=-⎩故所求的四个数依次为,,,.2-024题型七:等差数列通项新文化试题【例1】(2022·全国·高二课时练习)中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是( )A .戊分得34文,己分得31文B .戊分得31文,己分得34文C .戊分得28文,己分得25文D .戊分得25文,己分得28文【答案】C【分析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,3a d -2a d -a d -a a d +2a d +,再根据题意列方程组可解得结果.3a d +【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,3a d -2a d -a d -a a d +,,2a d +3a d +则,解得,32772375a d a d a d a d a d -+-=⎧⎨+++++=⎩313a d =⎧⎨=-⎩所以戊分得(文),己分得(文),28a d +=225a d +=故选:C.【例2】(2022全国高二课时练习)中国历法推测遵循以算为主、以测为辅的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.1寸表示115寸1分(1寸=10分).4646节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)晷影长/寸135.0125.56115.146105.23695.32685.41675.5节气清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长/寸65.55655.64645.73635.82625.91616.0已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中小寒与清明之间的晷影长之差为( )A .105.6寸B .48寸C .57.6寸D .67.2寸【答案】C【分析】利用等差数列的基本量计算,直接求解即可.全书总结了战国、秦、汉时期的数学成就,其中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“今有5人分5钱,各人所得钱数依次为等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱?”则第2人比第4人多得钱数为( )A .钱B .钱C .钱D .钱1613-2313,就是相邻两衡间距离(半径差)为1198333里,给出了计算各衡直径的一般法则,即“预知次衡径,倍而增内衡之径,二而增内衡径,得三衡径”.这段话的意思是说想求出二次衡的直径,须把半径差二倍加上内一衡(最小圆圈)的直径,次三衡以及以后的都这样要求.已知内一衡径=238000里000步(当时300步为1里),则次三衡径为( )A.396666里200步B.357000里000步C.317333里100步D.277666里200步【题型专练】1.(2022·全国·高二课时练习)《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则()A.冬至的日影子长最长,为15.5尺B.立夏比谷雨的日影子长多1尺C.大寒、雨水、春分的日影子长成等差数列D.清明的日影子长为8.5尺【答案】ACD【分析】根据给定条件结合等差数列知识,求出首项、公差,再逐一分析计算作答.【详解】依题意,从冬至起,日影长依次记为,则数列是等差数列,1212,,,a a a {}(N ,12)n a n n *∈≤因此,,而,解得,又,14737.5a a a ++=1742a a a +=412.5a =12 4.5a =设数列的公差为,于是得:,解得,A 正确;{}n a d 11312.511 4.5a d a d +=⎧⎨+=⎩115.5,1a d ==-,立夏比谷雨的日影子长少1尺,B 不正确;1091a a -=-而成等差数列,即大寒、雨水、春分的日影子长成等差数列,C 正确;357,,a a a ,即清明的日影子长为8.5尺.81(81)8.5a a d =+-=故选:ACD2.(2022·全国·高二课时练习)《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为___________尺.【答案】6.5【分析】利用等差数列的通项公式求出首项和公差,然后求出其中某一项.【详解】解:由题意得从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,设其公差为{}n ad ,解得14711213937.511 4.5a a a a d a a d ++=+=⎧∴⎨=+=⎩11,15.5d a =-=101915.59 6.5a a d ∴=+=-=故立夏的日影子长为尺.6.5故答案为:6.53.(2021·全国·高二课时练习)现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.。
高中数学人教A版浙江专版必修5讲义第二章2.2等差数列含答案
等差数列第一课时 等差数列的概念及通项公式[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列. (3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.[活学活用]1.2 016是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2),∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2).∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c , ∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n,所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ②①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质[新知初探]1.等差数列通项公式的推广2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例] (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A .30 B .15 C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C[活学活用]1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________. 解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m =2.答案:29.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n +b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A. 3 B.±3C.-33D.- 3解析:选D由等差数列的性质得a1+a7+a13=3a7=4π,∴a7=4π3.∴tan(a2+a12)=tan(2a7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列,所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。
等差数列的通项求和及其性质
等差数列通项求和及其性质1.等差数列概念及通项公式1) 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
2) 等差数列的判定方法:(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
(2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
3) 等差数列的通项公式:如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。
说明:该公式整理后是关于n 的一次函数。
通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *. 2.等差数列性质2.1等差中项:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2.2.2已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=….(2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.3等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列. 3.等差数列求和(倒序相加法) 等差数列的前n 项和:① 2)(1n n a a n S +=②d n n na S n 2)1(1-+= 说明:对于公式②整理后是关于n 的没有常数项的二次函数。
等差数列的通项求和及其性质
等差数列通项求和及其性质1. 等差数列概念及通项公式1) 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。
2) 等差数列的判定方法:(1)定义法:对于数列a n,若a n1 a n d (常数),则数列a n是等差数列。
(2)等差中项:对于数列a n ,若2a n 1 a n a n 2,则数列a n是等差数列。
3) 等差数列的通项公式:如果等差数列a n的首项是a1,公差是d,则等差数列的通项为a n a1 (n 1)d。
说明:该公式整理后是关于n的一次函数。
通项公式的变形:a n = a m+ (n- d, m n€ N.2. 等差数列性质a + b2.1等差中项:如果a, A, b成等差数列,那么A叫做a与b的等差中项,且A=-^厂.2.2已知{a n}为等差数列,d为公差,S为该数列的前n项和.(1) 有穷等差数列中与首末两项等距离的两项的和相等,即a1+ a n= a2 + a n-1 = a3+ a n-2=・・・=a k + a n-k+1(2) 等差数列{a n}中,当m+ n= p+ q 时,a m+ a n= a p+ a q( m n, p, q€ N*).特别地,若m+ n=2p,贝U 2a p= a m+ a n(m n, p€ N*).(3) 相隔等距离的项组成的数列是等差数列,即a k, a k+m, a k+ 2m,…仍是等差数列,公差为mc(k, m€ N*).(4) 若数列{a n}, {b n}是公差分别为d1, d2的等差数列,则数列{pa n}, {a n+ p}, {pa n + qb n}都是等差数列(p, q都是常数),且公差分别为pd1, d1, pd1+ qd2.2.3等差数列的单调性当d>0时,数列{a n}为递增数列;当d<0时,数列{a n}为递减数列;当d = 0时,数列{a n}为常数列.3. 等差数列求和(倒序相加法)等差数列的前n项和:① S n n(a1 an)②S n na1 垃9d2 2说明:对于公式②整理后是关于n的没有常数项的二次函数。
2022年高考数学(文)一轮复习文档:第五章 数列 第2讲等差数列及其前n项和 Word版含答案
第2讲 等差数列及其前n 项和,)1.等差数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.1.辨明两个易误点(1)要留意概念中的“从第2项起”.假如一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.(2)留意区分等差数列定义中同一个常数与常数的区分. 2.妙设等差数列中的项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 3.等差数列的四种推断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式法:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.1.教材习题改编 等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项D .第22项C a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21.故选C.2.教材习题改编 已知p :数列{a n }是等差数列,q :数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2均为常数),则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C 若{a n }是等差数列,不妨设公差为d . 所以a n =a 1+(n -1)d =dn +a 1-d , 令k 1=d ,k 2=a 1-d ,则a n =k 1n +k 2,若数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2为常数,n ∈N *), 则当n ≥2且n ∈N *时,a n -1=k 1(n -1)+k 2, 所以a n -a n -1=k 1(常数)(n ≥2且n ∈N *), 所以{a n }为等差数列, 所以p 是q 的充要条件.3.教材习题改编 等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27B 法一:由于S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B.法二:由a 5=6,得a 1+4d =6,所以S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B.4.(2021·金丽衢十二校联考)已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为________.设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2.25.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72.-72等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多消灭在选择题、填空题或解答题的第(1)问中,属简洁题. 高考对等差数列基本量计算的考查主要有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.(1)(2021·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12(2)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5B .6C .7D .8【解析】 (1)由于公差为1,所以S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.由于 S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192,故选B.(2)法一:由题知S n =na 1+n (n -1)2d =n +n (n -1)=n 2,S n +2=(n +2)2,由S n +2-S n =36得,(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 【答案】 (1)B (2)D等差数列基本运算的解题方法(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.角度一 求公差d 、项数n 或首项a 11.(2021·豫东、豫北十所名校联考)已知等差数列{a n }中,a 5=13,S 5=35,则公差d =( ) A .-2 B .-1 C .1D .3D 依题意,得⎩⎪⎨⎪⎧a 1+4d =13,5a 1+10d =35,解得⎩⎪⎨⎪⎧a 1=1,d =3,故选D.角度二 求通项或特定项2.(2022·高考全国卷乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97C 设等差数列{a n }的公差为d ,由于{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.角度三 求前n 项和3.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27. 27等差数列的判定与证明已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.【解】 (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0, 所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1, 公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2, 因此存在λ=4, 使得数列{a n }为等差数列.(1)推断证明一个数列是否是等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简洁推断.(2)用定义证明等差数列时,常接受两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必需加上“n ≥2”,否则n =1时,a 0无定义.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *).设b n =1a n -1(n ∈N *),求证:数列{b n }是等差数列.由于a n =2-1a n -1,所以a n +1=2-1a n.所以b n +1-b n =1a n +1-1-1a n -1,=12-1a n-1-1a n -1,=a n -1a n -1=1, 所以{b n }是首项为b 1=12-1=1,公差为1的等差数列.等差数列的性质及最值(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.(3)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.【解析】 (1)由于a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)由于{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.(3)当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.【答案】 (1)B (2)21 (3)⎝⎛⎭⎪⎫-1,-78应用等差数列的性质应留意的两点(1)在等差数列{a n }中,若m +n =p +q =2k (m 、n 、p 、q 、k ∈N *),则a m +a n =a p +a q =2a k 是常用的性质. (2)把握等差数列的性质,悉心争辩每共性质的使用条件及应用方法,认真分析项数、序号、项的值的特征,这是解题的突破口.1.已知等差数列{a n }的公差为2,项数是偶数,全部奇数项之和为15,全部偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17A 设{a n }的公差为d , 由于a 1=29,S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得d =-2,所以S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.所以当n =15时,S n 取得最大值.3.(2021·陕西省五校模拟)等差数列{a n }中,假如 a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66C 由等差数列的性质可知,2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9)=39+27=66, 所以a 2+a 5+a 8=33,所以数列{a n }前9项的和为66+33=99.,)——整体思想在等差数列中的应用在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 【解析】 法一:设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:法一中两方程相减得 -90a 1-100×99-902d =90,所以a 1+110-12d =-1,所以S 110=110a 1+110(110-1)2d =-110.法三:由于S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.【答案】 -110(1)法一是利用等差数列的前n 项和公式求解基本量,然后求和,是等差数列运算问题的常规思路.而法二、法三都突出了整体思想,分别把a 1+110-12d 、a 11+a 100看成了一个整体,解起来都很便利.(2)整体思想是一种重要的解题方法和技巧,这就要求同学要娴熟把握公式,理解其结构特征.已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. 20,)1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15B 设{a n }的公差为d ,由S 5=(a 2+a 4)·52⇒25=(3+a 4)·52⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.2.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12B 由题知,a 2+a 4=2a 3=2, 又由于a 2a 4=34,数列{a n }单调递增,所以a 2=12,a 4=32.所以公差d =a 4-a 22=12.所以a 1=a 2-d =0. 3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84B 由a 3+a 5+a 11+a 17=4⇒2(a 4+a 14)=4⇒a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.(2021·东北三校联考(一))已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121B 设等差数列{b n }的公差为d ,则d =-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72=-112,则a 8=-109. 5.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)=40+3×20=100.6.(2021·杭州重点中学联考)设S n 为等差数列{a n }的前n 项和,若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( )A .6B .7C .8D .9C 在等差数列{a n }中 ,由于a 4<0,a 5>|a 4|,所以a 5>0,a 5+a 4>0,S 7=7(a 1+a 7)2=7×2a 42=7a 4<0,S 8=8(a 1+a 8)2=8(a 4+a 5)2=4(a 4+a 5)>0.所以使S n >0成立的最小正整数n 为8,故选C.7.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________. a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37. 所以m =37. 378.设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=__________. 设{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+d =6a 1+6×52d ,a 1+3d =1,解得⎩⎪⎨⎪⎧a 1=7,d =-2,所以a 5=a 4+d =1+(-2)=-1.-19.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于________.由于a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.21410.记等差数列{a n }的前n 项和为S n ,当k ≥2时,若S k -1=8,S k =0,S k +1=-10,则S n 的最大值为________. 当k ≥2时,a k =S k -S k -1=-8,a k +1=S k +1-S k =-10,公差d =a k +1-a k =-2,S k =k (a 1+a k )2=0,所以a 1+a k =0,所以a 1=8,所以a n =-2n +10,由a n =0得n =5,所以S 4=S 5=20最大.2011.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.(1)证明:由于b n =1a n ,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n2a n +1=2a n +1a n,所以b n +1-b n =2a n +1a n -1a n=2.又b 1=1a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,所以a n =1b n =12n -1.所以数列{a n }的通项公式为a n =12n -1.12.已知等差数列{a n }中,S n 是前n 项的和,a 1=-2 017,S 2 0172 017-S 2 0152 015=2,则S 2 019的值为________.由S 2 0172 017-S 2 0152 015=a 1 009-a 1 008=2. 即{a n }的公差d =2,又a 1=-2 017,所以S 2 019=2 019×(-2 017)+2 019×2 0182×2=2 019.2 01913.各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和. (1)求a 1,a 2的值; (2)求数列{a n }的通项公式. (1)当n =1时,a 21=4S 1-2a 1-1, 即(a 1-1)2=0,解得a 1=1.当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2, 解得a 2=3或a 2=-1(舍去). (2)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ), 即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ).由于数列{a n }各项均为正数,所以a n +1+a n >0,a n +1-a n =2, 所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1.14.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.由于2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312,由于n ∈N *,所以n =15,即数列{b n }的前15项均为负值,所以T 15最小. 由于数列{b n }的首项是-29,公差为2, 所以T 15=15(-29+2×15-31)2=-225.。
(完整版)等差数列知识点总结和题型分析
等差数列一.等差数列知识点: 知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k kS S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 64 5. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 等差数列概念、通项公式、性质第1课时 等差数列的概念及通项公式题型一 等差数列的概念例1 判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n +11,…;(2)-1,11,23,35,…,12n -13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a ,a ,a ,a ,a ,….跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( )A .是公差为2的等差数列B .是公差为5的等差数列C .是首项为5的等差数列D .是公差为n 的等差数列题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列.跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项.题型三 等差数列通项公式的求法及应用例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项.(2)若a 2=11,a 8=5,求a 10.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3).(1)判断数列{a n }是否为等差数列?说明理由;(2)求{a n }的通项公式.【课堂练习】1.下列数列不是等差数列的是( )A .1,1,1,1,1B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,22.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( )A .2B .3C .-2D .-33.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( )A .公差为1的等差数列B .公差为13的等差数列 C .公差为-13的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( )A .92B .47C .46D .451.判断一个数列是否为等差数列的常用方法(1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列;(2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.【巩固提升】一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( )A .4B .3C .2D .12.已知等差数列-5,-2,1,…,则该数列的第20项为( )A .52B .62C .-62D .-523.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )A .52B .51C .50D .494.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( )A .26B .29C .39D .525.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( )A .15B .22 C7 D .296.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14 B.12 C.13 D.238.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12 B.13 C.14 D.16二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.12. 已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________.三、解答题13.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式.14.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式.2.2.1答案例1.由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.跟踪训练1 .A例2. ∵-1,a ,b ,c ,7成等差数列,∴b 是-1与7的等差中项,∴b =-1+72=3. 又a 是-1与3的等差中项,∴a =-1+32=1. 又c 是3与7的等差中项,∴c =3+72=5. ∴该数列为-1,1,3,5,7.跟踪训练2 解 由m 和2n 的等差中项为4,得m +2n =8.又由2m 和n 的等差中项为5,得2m +n =10.两式相加,得3m +3n =18,即m +n =6.所以m 和n 的等差中项为m +n 2=3.例3 解 (1)因为⎩⎪⎨⎪⎧ a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧ a 1=7,d =2,所以a n =7+2(n -1)=2n +5.令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧ a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧ a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n ,所以a 10=13-10=3.跟踪训练3 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3,由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100,即-401是这个数列的第100项.典例1 (1)证明 由a n +1=3a n +3n ,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列. (2)解 由(1)知a n 3n =13+(n -1)×13=n 3, 故a n =n ·3n -1,n ∈N +.典例2 解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2,而a 2-a 1=0不满足a n -a n -1=2(n ≥3),∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2.当n ≥2时,a n =1+2(n -2)=2n -3,又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2.课堂练习DCBBC巩固提升1—8 DAACABCA9. a n =n 4+1 10. 6766 11. ⎝ ⎛⎦⎥⎤83,3 12. 11013. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧ a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12.14. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +2(6a n -4)-2(a n +2) =a n +24a n -8=(a n -2)+44(a n -2)=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +, 故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +. 15.解 由a n -a n +2=2知,{a n }的奇数项,偶数项分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k ,∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k .∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧ 7-n ,n 为偶数,11-n ,n 为奇数.2.2第2课时 等差数列的性质题型一 a n =a m +(n -m )d 的应用例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.跟踪训练1 {b n }为等差数列,若b 3=-2,b 10=12,则b 8=________.题型二 等差数列性质的应用例2 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.引申探究1.在例2中,不难验证a 1+a 4+a 7=a 2+a 4+a 6,那么,在等差数列{a n }中,若m +n +p =q +r +s ,m ,n ,p ,q ,r ,s ∈N +,是否有a m +a n +a p =a q +a r +a s ?2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.跟踪训练2 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值.题型三 等差数列的设法与求解例3 已知三个数成单调递增等差数列,它们的和等于18,它们的平方和等于116,求这三个数.跟踪训练3 三个数成等差数列,这三个数的和为6,三个数之积为-24,求这三个数.数列问题如何选择运算方法典例 等差数列{a n }中,a 3+a 7+2a 15=40,求a 10.【课堂练习】1.在等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( )A .3B .-6C .4D .-32.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( )A .32B .-32C .35D .-353.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3C .32D .-324.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A .-182B .-78C .-148D .-825.在等差数列{a n }中,已知a 2+2a 8+a 14=120,则2a 9-a 10=________.1.在等差数列{a n }中,每隔相同数目的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.2.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a 1,d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.【巩固提升】一、选择题1.已知数列{a n }为等差数列,a 3=6,a 9=18,则公差d 为( )A .1B .3C .2D .42.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( )A .45B .75C .180D .3003.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .12B .8C .6D .44.等差数列{a n }中,a 3+a 7-a 10=-1,a 11-a 4=21.则a 7等于( )A .7B .10C .20D .305.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .±3C .-33 D .- 36.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 15=30,则a 9等于( )A .12B .24C .16D .327.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( )A .0B .1C .2D .1或28.已知{a n }是公差为正数的等差数列,a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13的值为() A .105 B .120 C .90 D .75二、填空题9.在等差数列{a n }中,已知a m =n ,a n =m ,m ,n ∈N +,则a m +n 的值为________.10.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.11.在下面的数表中,已知每行、每列中的数都成等差数列.第1列 第2列 第3列 …第1行 1 2 3 …第2行 2 4 6 …第3行 3 6 9 …… … … … …那么位于表中的第n 行第n +1列的数是__________.12.若等差数列{a n }满足a n +1+a n =4n -3,则{a n }的通项公式为__________________.三、解答题13.在等差数列{a n }中,(1)若a 2+a 4+a 6+a 8+a 10=80,求a 7-12a 8;(2)已知a 1+2a 8+a 15=96,求2a 9-a 10.14.已知{a n }为等差数列,且a 1+a 3+a 5=18,a 2+a 4+a 6=24.(1)求a 20的值;(2)若b n =32a n -412,试判断数列{b n }从哪一项开始大于0.15.已知两个等差数列{a n}:5,8,11,…与{b n}:3,7,11,…,它们的项数均为100,则它们有多少个彼此具有相同数值的项?2.2.2答案例1 在等差数列{a n}中,已知a2=5,a8=17,求数列的公差及通项公式.解因为a8=a2+(8-2)d,所以17=5+6d,解得d=2.又因为a n=a2+(n-2)d,所以a n=5+(n-2)×2=2n+1.跟踪训练1 . 8例2 解方法一因为a1+a7=2a4,a1+a4+a7=3a4=15,所以a4=5.又因为a2a4a6=45,所以a2a6=9,所以(a4-2d)(a4+2d)=9,即(5-2d)(5+2d)=9,解得d=±2.若d=2,a n=a4+(n-4)d=2n-3,n∈N+;若d=-2,a n=a4+(n-4)d=13-2n,n∈N+.方法二设等差数列的公差为d,则由a1+a4+a7=15,得a1+a1+3d+a1+6d=15,即a1+3d=5. ①由a2a4a6=45,得(a1+d)(a1+3d)(a1+5d)=45,将①代入上式,得(5-2d)×5×(5+2d)=45,即(5-2d)(5+2d)=9,②联立①②解得a1=-1,d=2或a1=11,d=-2,即a n=-1+2(n-1)=2n-3;或a n=11-2(n-1)=-2n+13.引申探究1.解设公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,a r=a1+(r-1)d,a s=a1+(s-1)d,∴a m+a n+a p=3a1+(m+n+p-3)d,a q+a r+a s=3a1+(q+r+s-3)d,∵m +n +p =q +r +s ,∴a m +a n +a p =a q +a r +a s .2.20解析 ∵a 3+a 8=10,∴a 3+a 3+a 8+a 8=20. ∵3+3+8+8=5+5+5+7,∴a 3+a 3+a 8+a 8=a 5+a 5+a 5+a 7,即3a 5+a 7=2(a 3+a 8)=20.跟踪训练2解 方法一 ∵(a 2+a 5+a 8)-(a 1+a 4+a 7)=3d , (a 3+a 6+a 9)-(a 2+a 5+a 8)=3d ,∴a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列. ∴a 3+a 6+a 9=2(a 2+a 5+a 8)-(a 1+a 4+a 7)=2×33-39=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39,∴a 1+3d =13, ①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33.∴a 1+4d =11,② 联立①②解得⎩⎪⎨⎪⎧ d =-2,a 1=19.∴a 3+a 6+a 9=(a 1+2d )+(a 1+5d )+(a 1+8d ) =3a 1+15d =3×19+15×(-2)=27.例3. 解 设这三个数分别为a -d ,a ,a +d ,且d >0.由题意可得⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=18,(a -d )2+a 2+(a +d )2=116,解得⎩⎪⎨⎪⎧ a =6,d =2或⎩⎪⎨⎪⎧ a =6,d =-2.∵d >0,∴a =6,d =2.∴这个数列是4,6,8.跟踪训练3. 解 设这三个数分别为a -d ,a ,a +d .由题意可得⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=6,(a -d )·a ·(a +d )=-24, 解得⎩⎪⎨⎪⎧ a =2,d =4或⎩⎪⎨⎪⎧ a =2,d =-4.∴所求三个数为-2,2,6或6,2,-2.典例 解 方法一 设{a n }的公差为d .则a 3+a 7+2a 15=a 1+2d +a 1+6d +2(a 1+14d ) =4a 1+36d =4(a 1+9d )=4a 10=40,∴a 10=10.方法二 ∵a 3+a 7+2a 15=a 3+a 7+a 15+a 15=a 10+a 10+a 10+a 10=40, ∴a 10=10.课堂练习 BCAD 30巩固提升1—8CCBCDADA9.010.-2111. n2+n12. an =2n -5213.解 (1)a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8. (2)∵a 1+2a 8+a 15=4a 8=96,∴a 8=24. ∴2a 9-a 10=a 10+a 8-a 10=a 8=24.14.解 (1)因为a 1+a 3+a 5=18,a 2+a 4+a 6=24, 所以a 3=6,a 4=8,则公差d =2, 所以a 20=a 3+17d =40.(2)由(1)得a n =a 3+(n -3)d =6+(n -3)×2=2n ,所以b n =32×2n -412=3n -412. 由b n >0,即3n -412>0,得n >416, 所以数列{b n }从第7项开始大于0. 15. 解 因为a n =3n +2(n ∈N *),b k =4k -1(k ∈N *),两数列的共同项可由3n +2=4k -1求得,所以n =43k -1.而n ∈N *,k ∈N *, 所以设k =3r (r ∈N *),得n =4r -1.由已知⎩⎪⎨⎪⎧ 1≤3r ≤100,1≤4r -1≤100,且r ∈N *,可得1≤r ≤25. 所以共有25个相同数值的项.。