华杯赛经典教案--整数与整除(教师版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例题讲解】

题型:数的整除

例题:【例1】(★★★)将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这24个四位数中最大的一个。

【解】:不妨设这4个数字分别是a>b>c>d

那么从小到大的第5个就是dacb,它是5的倍数,因此b=0或5,注意到b>c>d,所以b=5;

从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c是偶数,c<b=5,c=4或2

从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4;

因为a>b,所以a至少是6,那么d最小是2,所以c就只能是4。而如果d=2,那么abdc的末2位是24,它是4的倍数,和条件矛盾。因此d=3,从而a=d+4=3+4=7。

这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3

所以这24个四位数中最大的一个是7543。

【例2】(★★★)一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?

[思路]:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入

【解】:5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。

【例3】(★★★)由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?

【解】:各位数字和为1+3+4+5+7+8=28

所以偶数位和奇数位上数字和均为14

为了使得该数最大,首位必须是8,第2位是7,14-8=6

那么第3位一定是5,第5位为1

该数最大为875413。

[拓展]:一个三位数,它由0,1,2,7,8组成,且它能被9整除,问满足条件的总共有几个?

(★★)一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7 ,【例4】

女同学的人数超过总数的2/5 。问男女生各多少人?

【解】:男生超过总数的4/7就是说女生少个总数的3/7,这样女生的范围在2/5~3/7之间,同理可得男生在4/7~3/5之间,这样把分数扩大,我们可得女生人数在28/70~30/70之间,所以只能是29人,这样男生为41人。

题型:质数与合数(分解质因数)

【例5】(★★★)2005×684×375×□最后4位都是0,请问□里最小是几?

【解】:先分析1×2×3×4××10的积的末尾共有多少个0。由于分解出2的个数比5多,这样我们可以得出就看所有数字中能分解出多少个5这个质因数。而能分解出5的一

定是5的倍数。注意:5的倍数能分解一个5,25的倍数分解出2个5,125的倍数能

分解出3个5……最终转化成计数问题,如5的倍数有[10/5]=2个。

2005=5×401 684=2×2×171

375=3×5×5×5前三个数里有2个质因子2,4个质因子5,要使得乘积的最后4位都是0

应该有4个质因子2和4个质因子5,还差2个质因子。因此□里最小是4。

[拓展]:2005×684×375×□最后4位都是0,且是7的倍数,问□里最小是_____

【例6】(★★★)03 年101中学招生人数是一个平方数,04年由于信息发布及时,04年的招生人数比03年多了101人,也是一个平方数,问04年的招生人数?

【解】:看见两个平方数,发现跟平方差相关,这样我们大胆的设03年的为A2,04年的为B2,从中我们发现04年的比03年多101人,这样我们可以列式子B2- A2=101

此后思路要很顺,因为看见平方差只有一种方法那就是按公式展开,

所以B2- A2=(A+B)(A-B)=101,可见右边的数也要分成2个数的积,还得考虑同奇偶性,

但101是个质数,所以101只能分成101×1,这样A+B=101,A-B=1,所以A=50,B=51,所以04年的招生人数为51×51=2601。

[拓展]:一个数加上10,减去10都是平方数,问这个数为多少?(清华附中测试题)

题型:约数和倍数

【例7】(★★★)从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?

【解】:边长是2002和847的最大公约数,可用辗转相除法求得(2002,847)=77

所以最后剪得的正方形的边长是77毫米。

辗转相除示例:

2002÷847=2…308 求2个数的最大公约数,就用大数除以小数

847÷308=2…231 用上一个式子的除数除以余数一直除到除尽为止

308÷231=1…77 用上一个式子的除数除以余数一直除到除尽为止

231÷77=3 最后一个除尽的式子的除数就是两个数的最大公约数

【例8】(★★★)一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?

【解】:100能被5整除,所以每5米作标记线从左往右还是从右往左都是一样的。这样我们都以从左往右作,可见转化成讨论5,6的最小公倍数中的情况,画图可得有2根距离为4米,所以30,60,90里各有2条,但发现最后96和100也是距离4米,所以总共2×3+1=7。

[拓展]:在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份.如果沿每条刻度线将木棍锯断,那么木棍总共

相关文档
最新文档