历年中考数学难题及答案
中考数学相似难题压轴题及答案
1、如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( ) A .1∶3 B .2∶3C .3∶2D .3∶32、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D .23.提出问题:如图,有一块分布均匀的等腰三角形蛋糕(BC AB =,且AC BC ≠),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样). 背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”. 尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C 画了一条直线CD 交AB 于点D .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB =BC =5 cm , AC =6 cm ,请你找出△ABC 的所有“等分积周线”,并简要的说明确定的方法.4.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .问: (1) 图中△APD 与哪个三角形全等?并说明理由. (2) 求证:△APE ∽△FPA .(3) 猜想:线段PC 、PE 、PF 之间存在什么关系?并说明理由.A B ABB 图 1C B 图 2 C5、如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E .(1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2ACAB =时,如图2,求OF OE 的值; (3)当O 为AC 边中点,ACnAB =时,请直接写出OF OE 的值.6、已知∠ABC=90°,AB=2,BC=3,AD ∥BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足AB ADPCPQ =(如图1所示).(1)当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长;(2)在图中,连结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQPBC S y S =△△,其中APQS △表示△APQ 的面积,PBCS △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图3所示),求QPC ∠的大小.ADPCBQ 图1DAPCB (Q )图2图3C ADPBQ BBAACOE D DECO F图1图2F7、如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(80)-,,直线BC 经过点(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q .(1)四边形OABC 的形状是 ,当90α=°时,BPBQ 的值是 ;(2)①如图2,当四边形OA B C '''的顶点B '落在y 轴正半轴时,求BPBQ 的值;②如图3,当四边形OA B C '''的顶点B '落在直线BC 上时,求OPB '△的面积.(3)在四边形OABC 旋转过程中,当0180α<≤°时,是否存在这样的点P 和点Q ,使12BP BQ =?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8、如图,在矩形ABCD 中,AB=3,AD=1,点P 在线段AB 上运动,设AP=x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原。
中考数学20道几何难题
中考数学20道几何难题经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB 分别交MN于P、Q.求证:AP=AQ.4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC 交DA延长线于F.求证:AE=AF.3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC 的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC 上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)1、如下图做GH⊥AB,连接EO。
中考数学几何经典难题(标准答案)
中考数学几何经典难题(标准答案)中考数学几何经典难题(标准答案)
题目一
已知直角三角形ABC,∠B=90°,AB=3cm,BC=4cm。
求三角形ABC的斜边AC的长度。
解答一
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
所以,斜边AC的长度可以通过计算得到:
AC² = AB² + BC²
AC² = 3² + 4²
AC² = 9 + 16
AC² = 25
根据开方运算,可以得到AC的长度为5cm。
题目二
已知等腰梯形ABCD,AB∥CD,AB=10cm,CD=16cm,AD=BC=6cm,求梯形ABCD的面积。
解答二
等腰梯形的面积可以通过以下公式计算:
其中,a和b分别表示上底和下底的长度,h表示梯形的高。
根据已知条件可以得到:
上底a = AB = 10cm
下底b = CD = 16cm
高h = AD = BC = 6cm
将这些值代入公式进行计算:
面积 = ((a + b) * h) / 2
面积 = ((10 + 16) * 6) / 2
面积 = (26 * 6) / 2
面积 = 156 / 2
面积 = 78
所以,梯形ABCD的面积为78平方厘米。
以上就是中考数学几何的两个经典难题的标准答案。
希望对你有帮助!。
中考难题数学试卷及答案
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知等差数列{an}的首项为2,公差为3,那么第10项an=?A. 29B. 32C. 35D. 38答案:C2. 若方程x^2 - 5x + 6 = 0的根为a和b,则a^2 + b^2的值为?A. 1B. 4C. 9D. 25答案:C3. 在△ABC中,∠A=60°,∠B=45°,那么∠C的度数为?A. 45°B. 60°C. 75°D. 90°答案:C4. 已知函数f(x) = x^3 - 3x^2 + 4,那么f(2)的值为?A. 2B. 4C. 6D. 8答案:D5. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点Q的坐标为?A. (2,3)B. (3,2)C. (3,3)D. (2,2)答案:B6. 若正方体的体积为64立方厘米,那么它的对角线长度为?A. 4厘米B. 6厘米C. 8厘米D. 10厘米答案:C7. 已知二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1,2),那么a的值为?A. 1B. 2C. 3D. 4答案:B8. 在等腰三角形ABC中,AB=AC,∠B=40°,那么∠C的度数为?A. 40°B. 50°D. 70°答案:B9. 若直角三角形的两条直角边分别为3和4,那么斜边的长度为?A. 5B. 6C. 7D. 8答案:A10. 已知等比数列{an}的首项为2,公比为3,那么第5项an=?A. 18B. 54C. 162D. 486答案:B二、填空题(本大题共5小题,每小题5分,共25分。
)11. 若等差数列{an}的首项为3,公差为2,那么第n项an=______。
答案:3 + 2(n-1)12. 已知方程x^2 - 4x + 3 = 0的根为a和b,那么ab的值为______。
人教版初中数学中考经典好题难题有答案
数学难题一.填空题(共2小题)1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D 的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点O n,则BO1= _________,BO n=_________.2.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_________;抛物线C8的顶点坐标为_________.二.解答题(共28小题)3.已知:关于x的一元二次方程kx2+2x+2﹣k=0(k≥1).(1)求证:方程总有两个实数根;(2)当k取哪些整数时,方程的两个实数根均为整数.4.已知:关于x的方程kx2+(2k﹣3)x+k﹣3=0.(1)求证:方程总有实数根;(2)当k取哪些整数时,关于x的方程kx2+(2k﹣3)x+k﹣3=0的两个实数根均为负整数?5.在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线C1:沿x轴平移,得到一条新抛物线C2与y轴交于点D,与直线AB交于点E、点F.(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线C2的解析式;(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH 的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,又平分△AFH的周长,求直线m的解析式.6.已知:关于x的一元二次方程﹣x2+(m+4)x﹣4m=0,其中0<m<4.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线y=﹣x2+(m+4)x﹣4m与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,﹣2),且AD?BD=10,求抛物线的解析式;(3)已知点E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.7.点P为抛物线y=x2﹣2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值.8.关于x的一元二次方程x2﹣4x+c=0有实数根,且c为正整数.(1)求c的值;(2)若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x2﹣4x+c与x轴交于A、B两点(A在B左侧),与y轴交于点C.点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m,n),当抛物线与(2)中的直角梯形OBPC 只有两个交点,且一个交点在PC边上时,直接写出m的取值范围.9.如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FD2=FB?FC.10.如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.11.已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.12.已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=_________;(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;(3)如图3,若∠ACD为锐角,作AH⊥BC于H.当BD2=4AH2+BC2时,∠DAC=2∠ABC是否成立?若不成立,请说明你的理由;若成立,证明你的结论.13.已知关于x的方程mx2+(3﹣2m)x+(m﹣3)=0,其中m>0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,其中x1>x2,若,求y与m的函数关系式;(3)在(2)的条件下,请根据函数图象,直接写出使不等式y≤﹣m成立的m的取值范围.14.已知:关于x的一元二次方程x2+(n﹣2m)x+m2﹣mn=0①(1)求证:方程①有两个实数根;(2)若m﹣n﹣1=0,求证:方程①有一个实数根为1;(3)在(2)的条件下,设方程①的另一个根为a.当x=2时,关于m的函数y1=nx+am与y2=x2+a(n﹣2m)x+m2﹣mn的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与y1、y2的图象分别交于点C、D.当L沿AB 由点A平移到点B时,求线段CD的最大值.15.如图,已知抛物线y=(3﹣m)x2+2(m﹣3)x+4m﹣m2的顶点A在双曲线y=上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)确定直线AB的解析式;(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标.16.如图,AB为⊙O的直径,AB=4,点C在⊙O上,CF⊥OC,且CF=BF.(1)证明BF是⊙O的切线;(2)设AC与BF的延长线交于点M,若MC=6,求∠MCF的大小.17.如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF 的周长为p.(1)若D、E、F分别是AB、BC、AC边上的中点,则p=_________;(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是_________.小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB1C,再将△AB1C以B1C为轴翻折一次得△A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p,根据两点之间线段最短,可得p≥DD2.老师听了后说:“你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.18.已知关于x的方程x2﹣(m﹣3)x+m﹣4=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m的取值范围;(3)设抛物线y=x2﹣(m﹣3)x+m﹣4与y轴交于点M,若抛物线与x轴的一个交点关于直线y=﹣x的对称点恰好是点M,求m的值.19.在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点.(1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k=_________;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE﹣DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.20.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD 的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是_________;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是_________.21.已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2﹣bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;(2)求代数式的值;(3)求证:关于x的一元二次方程ax2﹣bx+c=0 ②必有两个不相等的实数根.22.已知抛物线经过点A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D.(1)求此抛物线的解析式及点D的坐标;(2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形;(3)在(2)的条件下,过线段ED上动点P作直线PF∥BC,与BE、CE分别交于点F、G,将△EFG沿FG翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.23.已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求:(1)求这个二次函数的解析式;(2)求这个二次函数的最值;(3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标.24.根据所给的图形解答下列问题:(1)如图1,△ABC中,AB=AC,∠BAC=90°,AD⊥BC于D,把△ABD绕点A旋转,并拼接成一个与△ABC面积相等的正方形,请你在图中完成这个作图;(2)如图2,△ABC中,AB=AC,∠BAC=90°,请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;(3)设计一种方法把图3中的矩形ABCD拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正形,并根据你所画的图形,证明正方形面积等于矩形ABCD的面积的结论.25.例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积.解:过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得S△OBC=S梯形BDEC+S△OBD﹣S△OCE==×(3+4)×(5﹣2)+×2×3﹣×5×4=3.5.∴△OBC的面积为3.5.(1)如图②,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△OBC的面积(用含x1、x2、y1、y2的代数式表示);(2)如图③,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.26.阅读:①按照某种规律移动一个平面图形的所有点,得到一个新图形称为原图形的像.如果原图形每一个点只对应像的一个点,且像的每一个点也只对应原图形的一个点,这样的运动称为几何变换.特别地,当新图形与原图形的形状大小都不改变时,我们称这样的几何变换为正交变换.问题1:我们学习过的平移、_________、_________变换都是正交变换.②如果一个图形绕着一个点(旋转中心)旋转n°(0<n≤360)后,像又回到原图形占据的空间(重合),则称该变换为该图形的n度旋转变换.特别地,具有180?旋转变换的图形称为中心对称图形.例如,图A中奔驰车标示意图具有120°,240°,360°的旋转变换.图B的几何图形具有180°的旋转变换,所以它是中心对称图形.问题2:图C和图D中的两个几何图形具有n度旋转变换,请分别写出n的最小值.答:(图C)_________;答:(图D)_________.问题3:如果将图C和图D的旋转中心重合,组合成一个新的平面图形,它具有n度旋转变换,则n的最小值为_________.问题4:请你在图E中画出一个具有180°旋转变换的正多边形.(要求以O为旋转中心,顶点在直线与圆的交点上)27.已知:点P为线段AB上的动点(与A、B两点不重合).在同一平面内,把线段AP、BP分别折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三点共线,如图所示.(1)若△CDP、△EFP均为等腰三角形,且DF=2,求AB的长;(2)若AB=12,tan∠C=,且以C、D、P为顶点的三角形和以E、F、P为顶点的三角形相似,求四边形CDFE的面积的最小值.28.在平面直角坐标系xOy中,已知直线y=﹣x+交x轴于点C,交y轴于点A.等腰直角三角板OBD的顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B'处,如图B所示.(1)求图A中的点B的坐标;(2)求α的值;(3)若二次函数y=mx2+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.29.已知:如图,AC是⊙O的直径,AB是弦,MN是过点A的直线,AB等于半径长.(1)若∠BAC=2∠BAN,求证:MN是⊙O的切线.(2)在(1)成立的条件下,当点E是的中点时,在AN上截取AD=AB,连接BD、BE、DE,求证:△BED是等边三角形.30.在一个夹角为120°的墙角放置了一个圆形的容器,俯视图如图,在俯视图中圆与两边的墙分别切于B、C两点.如果用带刻度的直尺测量圆形容器的直径,发现直尺的长度不够.(1)写出此图中相等的线段.(2)请你设计一种可以通过计算求出直径的测量方法.(写出主要解题过程)2012年初中难题数学组卷参考答案与试题解析一.填空题(共2小题)1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D 的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点O n,则BO1=2,BO n=.考点:翻折变换(折叠问题);矩形的性质。
中考数学满分题库(难题100道1-10题含详解)
2019届中考数学满分题库难题100道(1-10题)1.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.2.如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.3.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是(不包括5).4.如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.5.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.6.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC 的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.7.已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).8.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?9.再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图①中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作(4)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.10.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.2019届中考数学满分题库难题100道答案及解析(1-10题)1. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【分析】(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.2.如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.3.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是13或49或9(不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为13或49或9.4. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.5. 已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.6.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC 的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同OE=OC,即可得出结论;(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.【解答】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=OC,同理:OE=OC,∴OD+OE=OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.7. 已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).【分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可;(2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD,可得= =,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).8. 已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.9.再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图①中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作(4)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【分析】(1)理由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形;【解答】解:(1)如图3中,在Rt△ABC中,AB===,故答案为.(2)结论:四边形BADQ是菱形.理由:如图③中,∵四边形ACBF是矩形,∴BQ∥AD,∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=.AN=AC=1,CD=AD﹣AC=﹣1,∵BC=2,∴=,∴矩形BCDE是黄金矩形.∵==,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH=﹣1,宽HE=3﹣.10. 如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD∥AC,∴,即,∵a=,解得BD=r.(10分)。
历年中考数学难题及答案
应用题20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?20.(9分)某项工程,甲工程队单独完成任务需要40天.若 乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务. 请问: (1)(5分)乙队单独做需要多少天才能完成任务?(2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分工程用了y 天.若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到 70天,那么两队实际各做了多少天? 3、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售y 2价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
中考数学经典难题
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,l =PA +PB +PC ,求证:≤l <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.。
中考最难数学试题及答案
中考最难数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. √2B. 0.33333(无限循环)C. πD. 1/3答案:A、C2. 已知方程x^2 + 4x + 4 = 0,求x的值。
A. -2B. -1C. 2D. 4答案:A3. 如果一个角的正弦值是1/2,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C4. 一个长方体的长、宽、高分别是a、b、c,其体积是?A. abcB. a + b + cC. a/b + b/c + c/aD. (a + b + c)/3答案:A5. 下列哪个表达式等于0?A. (x - 1)(x + 1)B. (x - 1)(x - 1)C. (x - 1)^2D. x^2 - 1答案:A二、填空题(每题3分,共15分)6. 一个圆的半径是5,那么它的面积是________。
答案:25π7. 如果一个数的立方根等于它本身,那么这个数可以是________、________或________。
答案:1,-1,08. 一个直角三角形的两条直角边分别是3和4,斜边的长度是________。
答案:59. 一个数的相反数是-5,那么这个数是________。
答案:510. 一个数的绝对值是它本身,那么这个数是________或________。
答案:非负数,非正数三、解答题(共70分)11. 解不等式:3x - 5 < 2x + 8。
答案:首先将不等式中的项进行移项,得到3x - 2x < 8 + 5,简化后得到x < 13。
12. 已知一个二次函数的顶点是(1, -4),并且它的对称轴是直线x = 1,求这个二次函数的解析式。
答案:设二次函数的解析式为y = a(x - 1)^2 - 4,由于对称轴是x = 1,所以顶点的x坐标为1,不需要进一步求解a的值,函数的解析式已经确定。
中考数学经典难题集锦
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:1≤L <中考数学经典难题集锦2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC=∠ACB =800,D 、E 分别是AB 、AC 上的点,∠EBA =200,求∠BED 的度数.。
中考数学总复习必做几何经典难题及答案
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CEBO D D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 AN FE CDBP CG FB QA DE1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)· A D HE M C B O · GAO D B EC Q P NM · O Q PB DE C N M · A1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)D AF D E C B E DA CB F F EP C B A O D BFAECP1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)AP C B P A D CB C B DAF PD E C B A1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDA A CBPD1.如下图做GH⊥AB,连接EO。
初三数学难题精选答案及讲解
1、如果将点P 绕定点M 旋转180°后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心。
此时,M 是线段PQ 的中点。
如图,在平面直角坐标系中,△ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0)。
点列P 1,P 2,P 3,…中的相邻两点都关于△ABO 的一个顶点对称:点P 1与点P 2关于点A 对称,点P 2与点P 3关于点B 对称,点P 3与点P 4关于点O 对称,点P 4与点P 5关于点A 对称,点P 5与点P 6关于点B 对称,点P 6与点P 7关于点O 对称…对称中心分别是A ,B ,O ,A ,B ,O ,…,且这些对称中心依次循环。
已知点P 1的坐标是(1,1),则点P 2017的坐标为 。
解:P 2的坐标是(1,-1),P 2017的坐标是(1,-1)。
理由:作P 1关于A 点的对称点,即可得到P 2(1,-1),P 3(-1,3),P 4(1,-3),P 5(1,3),P 6(-1,-1),又回到原来P 1的坐标,P 7(-1,-1);由此可知,每6个点为一个周期,作一次循环,2017÷6=336…1,循环了336次后又回到了原来P 1的坐标,故P 2017的坐标与P 1的坐标一样为(1,1)。
点评:此题主要考查了平面直角坐标系中中心对称的性质,以及找规律问题,根据已知得出点P 的坐标每6个一循环是解题关键.2、如图①,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且DE=EC ,将△BCE 绕点C 顺时针旋转60°至△ACF ,连接EF 。
试证明:AB=DB+AF 。
【类比探究】(1)如图②,如果点E 在线段AB 的延长线上,其它条件不变,线段AB 、DB 、AF 之间又有怎样的数量关系?请说明理由。
(2)如果点E 在线段BA 的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB ,DB ,AF 之间数量关系,不必说明理由。
中考数学旋转(大题培优易错难题)及答案
一、旋转真题与模拟题分类汇编〔难题易错题〕1 .在由△ ABC中,AB=BC=5, Z B=90%将一块等腰直角三角板的直角顶点放在斜边AC的中点.处,将三角板绕点0旋转,三角板的两直角边分别交AB, BC或其延长线于E, F两点,如图①与②是旋转三角板所得图形的两种情况.〔1〕三角板绕点0旋转,△OFC是否能成为等腰直角三角形?假设能,指出所有情况〔即给出△OFC是等腰直角三角形时BF的长〕:假设不能,请说明理由:〔2〕三角板绕点0旋转,线段0E和OF之间有什么数量关系?用图①或②加以证实:〔3〕假设将三角板的直角顶点放在斜边上的点P处〔如图③〕,当AP:AC=L4时,PE和PF 有怎样的数量关系?证实你发现的结论.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF 的长度;【小题2】连接0B,由己知条件推出△ OEB合么OFC,即可推出OE=OF:【小题3]过点P做PM±AB, PN±BC,结合图形推出△ PNF~ & PME, △ APM- △ PNC,继而推出PM: PN=PE: PF, PM: PN=AP: PC,根据条件即可推出PA: AC=PE: PF=1: 4.2 .在平面直角坐标中,边长为2的正方形OA8C的两顶点A、C分别在y轴、X轴的正半轴上,点.在原点.现将正方形.48c绕.点顺时针旋转,当A点一次落在直线y=x上时停止旋转,旋转过程中,A5边交直线〕'='于点M边交汇轴于点N 〔如图〕.〔1〕求边04在旋转过程中所扫过的面积;〔2〕旋转过程中,当和AC平行时,求正方形O43C旋转的度数:(3)设AM3N的周长为P,在旋转正方形O45C的过程中,〃值是否有变化?请证实你的结论. 【答案】(1)n/2(2) 22.5.⑶周长不会变化,证实见解析【解析】试题分析:(1)根据扇形的面积公式来求得边0A在旋转过程中所扫过的面积:(2)解决此题需利用全等,根据正方形一个内角的度数求出NAOM的度数:(3)利用全等把△ MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1) TA点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45.,/. 0A 旋转了45°.0A在旋转过程中所扫过的面积为土」=-.360 2(2) •/ MNII AC,・•. Z BMN=Z BAC=45% Z BNM=Z BCA=45°./. Z BMN=Z BNM. /. BM=BN.又YBA=BC, A AM=CN.又;OA=OC, Z OAM=Z OCN, △ OAM合△ OCN./. Z A0M=Z CON=- (Z AOC-Z MON ) =- (90°-45°) =22.5°.2 2旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45.-22.5.=22.5..(3)在旋转正方形OABC的过程中,p值无变化.证实:延长BA交y轴于E点,那么N AOE=45°-Z AOM, Z CON=90°-45°-Z AOM=450-Z AOM,・•. Z AOE=Z CON.又:OA=OC, Z OAE=180o-90o=90°=Z OCN.:, & OAE2 A OCN.「.OE=ON, AE=CN.文:Z MOE=Z MON=45°, 0M=0M,「・△ OME2△ OMN. /. MN=ME=AM+AE.・•, MN=AM+CN,/. p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4...・在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.3.己知:如图1,将两块全等的含30.角的直角三角板按图所示的方式放置,N 84c=N 8MiC=30°,点8, C, 8]在同一条直线上.(1)求证:AB=2BC(2)如图2,将△ABC绕点C顺时针旋转凌.(0Va<180),在旋转过程中,设AB与AiC. AiB】分别交于点D、E, AC与A】Bi交于点F.当骏等于多少度时,AB与A X B工垂直?请说明理由.〔3〕如图3,当△ABC绕点C顺时针方向旋转至如下图的位置,使ABIICBi,AB与AK 交于点D,试说明A1D=CD.【答案】〔1〕证实见解析〔2〕当旋转角等于30.时,AB与AiBa垂直.〔3〕理由见解析【解析】试题分析:⑴由等边三角形的性质得八8=88],又由于8B1=2BC,得出A8=28C;⑵利用AB与AiBi垂直得N AiED=90°,那么N AQE=90°-N Ai=60°,根据对顶角相等得Z BDC=60.,由于N B=60°,利用三角形内角和定理得N A1CB=180°-Z BDC-Z B=60°,所以N ACA】=90.-/AiCB=30.,然后根据旋转的定义得到旋转角等于30.时,AB与AiBi垂直:⑶由于ABIICB], N ACBF90.,根据平行线的性质得N ADC=90.,在由△ ADC中,根据含30度的直角三角形三边的关系得到CD=L AC,再根据旋转的性质得AC=AC 所以2CD=-AiC,贝ljAiD=CD.2试题解析:(1).「△488]是等边三角形;AB=BBi•/ 881=2BCAB=2BC〔2〕解:当AB 与AiBi垂直时,Z AiED=90%・•, Z A1DE=90°-Z A F900-30°=60°,Z B=60% ?. Z BCD=60%/. Z ACAi=90°-60c=30°,即当旋转角等于30.时,AB与A】B,垂直.〔3〕 ABII CBi, Z ACBi=90%/. Z CDB=90°,即CD 是△ ABC 的高,设BC=.,AC=.,贝lj由〔1〕得AB=2fl, ,7 ^WRC = — BCxAC = — ABxCD.UBC 2 2即[=k2axeO2 2CD = -b 9即CD=-!-AiC,2 2/. AiD=CD.【点睛】此题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中央的距离相等: 对应点与旋转中央的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.4.:在△ ABC中,BC=a, AC=b,以AB为边作等边三角形ABD.探究以下问题:〔1〕如图1,当点D与点C位于直线AB的两侧时,a=b=3,且N ACB=60.,那么CD=—: 〔2〕如图2,当点D与点C位于直线AB的同侧时,a=b=6,且N ACB=90.,那么CD=_;〔3〕如图3,当NACB 变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的N ACB的度数.【答案】〔1〕3\产:〔2〕 3、伸-3\4 ㈠〕当NA CB=120.时,CD有最大值是a+b.【解析】【分析】〔1〕a=b=3,且NACB=60.,△ ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;〔2〕 a=b=6,且NACB=90.,△ ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差:〔3〕以点D为中央,将△ DBC逆时针旋转60.,那么点B落在点A,点C落在点E.连接AE, CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)/ a=b=3,且NACB=60°,「. △ ABC是等边三角形,3//. 0C= 2 ,/. CD=3、3:(2)石-3©〔3〕以点D 为中央,将△ DBC 逆时针旋转60., 那么点B 落在点A,点C 落在点E.连接AE, CE, CD 有最大值是a+b.此题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD 有最大值的条件, 是解题的关键.5.在△ ABC 中,AB=AC, Z A=30°,将线段BC 绕点B 逆时针旋转60.得到线段BD,再将线 段BD 平移到EF,使点E 在AB 上,点F 在AC 上.〔1〕如图1,直接写出N ABD 和NCFE 的度数;〔2〕在图1中证实:AE=CF ;〔3〕如图2,连接CE,判断4CEF 的形状并加以证实.□ 1 口2【答案】(1)15% 45.: (2)证实见解析:(3) 4CEF 是等腰直角三角形,证实见解析.【解析】试题分析:(1)根据等腰三角形的性质得到N ABC 的度数,由旋转的性质得到/ DBC 的度 数,从・•・A CDE 为等边三角CE=CD.当点E 、A 、C 不在一条直线上时,有 CD=CE<AE+AC=a+b ;当点E 、A 、C 在一条直线上时,CD 有最大值,CD=CE=a+b :只有当N ACB=120°时,Z CAE=180%即A 、C 、E 在一条直线上,此时AE 最大【点/. Z ACB=120°, 因此当N ACB=120°时,而得到NABD的度数;根据三角形外角性质即可求得NCFE的度数.(2)连接CD、DF,证实△ BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而ABH FD,证实△ AEF合△ FCD即可得AE=CF.(3)过点E作EG J_CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证实△ CEF是等腰直角三角形.(1) :在△ ABC 中,AB=AC, ZA=30% Z ABC=75°.•将线段BC绕点B逆时针旋转60.得到线段BD,即NDBC=60..NABD=15../. Z CFE=Z A+Z ABD=45°.(2)如图,连接CD、DF.线段BC绕点B逆时针旋转60得到线段BD, /. BD=BC, Z CBD=60°. △ BCD是等边三角形.「・CD=BD.・「线段BD平移到EF,・・.EFII BD, EF=BD.四边形BDFE是平行四边形,EF=CD.「AB = AC, Z A=30°, /. Z ABC=Z ACB=75°. /. Z ABD=Z ACD=15°.,•,四边形BDFE是平行四边形…♦・ABH FD. /. Z A=Z CFD.:■ & AEF合△ FCD (AAS)./. AE=CF.(3) ZkCEF是等腰直角三角形,证实如下:如图,过点E作EG_LCF于G,: Z CFE =45°, /. Z FEG=45°. /. EG=FG.1EG =耳AEZ A=30°, NAGE=90°,「・2・1 1EG = £:F FG = KFV AE=CF,「. 2 . /. 2.・.G为CF的中点.「.EG为CF的垂直平分线.EF=EC./. Z CEF=Z FEG=90°.・•.△ CEF是等腰直角三角形.考点:1 •旋转和平移问题:2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质:5.平行四边形的判定和性质:6.全等三角形的判定和性质;7.含30度直角三角形的性质:8.垂直平分线的判定和性质:9.等腰直角三角形的判定.6.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上〔如图1〕.现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB 边交DF于点M, BC边交DG于点N.〔1〕求边DA在旋转过程中所扫过的面积:〔2〕旋转过程中,当MN和AC平行时〔如图2〕,求正方形ABCD旋转的度数;〔3〕如图3,设AMBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?清证实你的结论.71【答案】〔1〕2 〔2〕 225°;〔3〕不变化,证实见解析.【解析】试题分析:〔1〕将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了45°,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.〔2〕旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为22.5.〔3〕延长BA交DE轴于H点,通过证实/D4〃三4DCN和/DM〃三4DMN可得结论.〔1〕;A点第一次落在DF上时停止旋转,「.DA旋转了45°.457r x 22 7TDA在旋转过程中所扫过的而积为360― 一2〔2〕 ,/ MN II AC, = ^-BAC = 45° Z./7/VM = ZBC4=45°.乙BMN =乙BNM . BM = BN・•・• • •T7.. BA = BC . AM = CN • ,・・•T7..DA = DC,4AM =乙DCN . ADAM=ADCN• /• • •1"DM = k〔900 - 45°〕 = 22.5°.L ADM=乙CDN . 2••• ・• •厂.旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为45°-22.5.= 22.5.⑶不变化,证实如下:如图,延长BA交DE轴于H点,那么LADE = 45° - LADM L CDN = 900 - 45° - L ADM = 450 - L ADM,,.LADE =乙CDN•• •T7.. DA = DC^DAH = 1800-90° = 90° = LDCN . ADAH^ADCN • •• • •.DH = DN f AH = CN•• ♦..〔MDE =乙MDN = 45°刀M = DM . ADMHwADMNv.MN = MH = AM + AH . MN = AM + CNp = MN + BN + BM = AM + CN + BN + BM = AB + BC = 4,在旋转正方形ABCD的过程中,P值无变化.考点:1 ,而动旋转问题:2.正方形的性质:3,扇形面积的计算:4.全等三角形的判定和性质.7.思维启迪:(1)如图1, A, B两点分别位于一个池塘的两端,小亮想用绳子测量A, B 间的距离,但绳子不够长,聪明的小亮想出一个方法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P (点P可以直接到达A点),利用工具过点C作CDII AB,思维探索:(2)在4ABC 和4ADE 中,AC=BC. AE = DE,且AE<AC,Z ACB = Z AED =90.,将△ ADE绕点A顺时针方向旋转,把点E在AC边上时△ ADE的位置作为起始位置 (此时点B和点D位于AC的两侧),设旋转角为a,连接BD,点P是线段BD的中点,连接PC, PE.①如图2,当△ ADE在起始位置时,猜测:PC与PE的数量关系和位置关系分别是;②如图3,当a = 90.时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证实你的结论:③当a=150.时,假设BC = 3, DE=I,请直接写出PC?的值.【答案】(1) 200: (2)①PC=PE, PC_LPE:②PC与PE的数量关系和位置关系分别是PC=PE, PC±PE,见解析:@PC2=-1()+ 3-.2【解析】【分析】(1)由CDIIAB,可得NC=NB,根据N APB=N DPC即可证实△ ABP2△ DCP,即可得AB = CD,即可解题.(2)①延长EP交BC于F,易证△ FBP合△ EDP (SAS)可得△ EFC是等腰直角三角形,即可证实PC=PE, PCXPE.②作BFII DE,交EP延长线于点F,连接CE、CF,易证△ FBP合△ EDP (SAS),结合得BF = DE=AE,再证实△FBCW △ EAC (SAS),可得△ EFC是等腰直角三角形,即可证实PC = PE, PC±PE.③作BFII DE,交EP延长线于点F,连接CE、CF,过E点作EH_LAC交CA延长线于H 点,由旋转旋转可知,Z CAE = 150", DE与BC所成夹角的锐角为30.,得N FBC = N EAC, 同②可证可得PC=PE, PC_LPE,再由己知解三角形得J. EC2=CH2+HE2=1O + 3JJ,即可求出尸C2=9EC2 = 1()-3丫’3 2 2【详解】(1)解:丁CDII AB, J Z C=Z B,在仆ABP和aDCP中,BP = CPZAPB = NDPC,/B = /C:■ & ABP合△ DCP (SAS),DC=AB.AB = 200 米.・•・CD=200米,故答案为:200.(2)①PC与PE的数量关系和位置关系分别是PC=PE, PCXPE.理由如下:如解图1,延长EP交BC于F,同(1)理,可知,△ FBP合 & EDP (SAS),/. PF=PE, BF = DE,又,.,AC=BC, AE = DE,FC=EC,又•・・Z ACB = 90\EFC是等腰直角三角形,・/ EP = FP,・・.PC=PE, PCJLPE.®PC与PE的数量关系和位置关系分别是PC = PE, PC±PE.理由如下:如解图2,作BFII DE,交EP延长线于点F,连接CE、CF, 同①理,可知△ FBP2△ EDP (SAS),・・.BF = DE. PE = PF=-EF, 2・/ DE=AE,/. BF = AE,・••当a=90.时,Z EAC=90°,ED II AC, EAII BCFBII AC, Z FBC=90,・•・ Z CBF=Z CAE,在^ FBC和^ EAC中,BF = AE< NCBE = NCAE ,BC = AC:■ & FBC合 ' EAC (SAS),・•. CF = CE, Z FCB = Z EC A,•/ Z ACB = 90°,/. Z FCE = 90°,△ FCE是等腰直角三角形,・/ EP = FP,CP±EP, CP = EP=-EF.2③如解图3,作BFII DE,交EP延长线于点F,连接CE、CF,过E点作EH_LAC交CA延长线于H点,当a=150.时,由旋转旋转可知,Z CAE = 150°, DE与BC所成夹角的锐角为30.,・•・ Z FBC=Z EAC=a=150°同②可得^ FBP24 EDP (SAS),同②△ FCE是等腰直角三角形,CPJ_EP, CP = EP=』±CE,2在RSAHE 中,NEAH = 30.,AE=DE=1,HE=- , AH=叵,2 2又< AC=AB=3,/. CH=3+正,2・•, EC2=CH2+HE2=IO +3>/3【点睛】此题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30.直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.8.小明合作学习小组在探究旋转、平移变换.如图△ ABC, △ DEF均为等腰直角三角形, 各顶点坐标分别为 A (1, 1) , B (2, 2) , C (2, 1) , D ( 0) , E( 2五,0),〔1〕他们将△ ABC绕C点按顺时针方向旋转45.得到△ AiBiC.请你写出点A],Bi的坐标,并判断A】C和DF的位置关系:〔2〕他们将△ ABC绕原点按顺时针方向旋转45.,发现旋转后的三角形恰好有两个顶点落在抛物线y = 2g?+bx+c±.请你求出符合条件的抛物线解析式:〔3〕他们继续探究,发现将△ ABC绕某个点旋转45,假设旋转后的三角形恰好有两个顶点落在抛物线y = x?上,那么可求出旋转后三角形的直角顶点P的坐标.请你直接写出点P的所有坐标.A】C和DF的位置关系是平行.〔2〕•/ △ ABC绕原点按顺时针方向旋转45.后的三角形即为^ DEF,2 应x〔扃+>/Ib + c = O①当抛物线经过点D、E时,根据题意可得:{, ,解得2 应x〔2 回一+ 2回+ c=0b = -12(=8万A y = 2>/2x2-12x+8x/2 .2 五x(近忘b + c = o②当抛物线经过点D、F时,根据题意可得:{(3①丫372 点,解得I 2 J 2 2b = -llL = 7-72y = 2V2x2-llx+7>/2.2耳〔2⑸+2岳+ c = 0③当抛物线经过点E、F时,根据题意可得:{〔30丫35/22ax --- +---b + c =-2 2J 乙b = -13'c = 10 应y = 2x/2x2-13x + 10x/2 .〔3〕在旋转过程中,可能有以下情形:①顺时针旋转45.,点A、B落在抛物线上,如答图1所示,易求得点p坐标为〔o, Lz叵〕. 2②顺时针旋转45.,点B、C落在抛物线上,如答图2所示,设点夕,.的横坐标分别为右,X2,易知此时BC与一、三象限角平分线平行,.•.设直线BC的解析式为y=x+b.联立丫f2与丫=乂+1〕得:x2=x+b,即X? — x-b = 0,「. X]+x? =1,X t x2 =-b ..•.根据题意易得:|x「x」=走,.J 〔Xi-xJ?=:,即 2 2\2 IX] +X2〕 -4x^2 =-..1- l + 4b = i,解得b =一2 8x2-x + - = 0,解得x = ^^x 或x = ^^.8 4 4••1点c的横坐标较小,x = 三口 .42 - *\/2 . 9 3-2近1IX = ------------- 时,y = x = ---------------------- .4 8.p f 2-5/2 3-2V2 .4 8③顺时针旋转45.,点C、A落在抛物线上,如答图3所示,设点C, A,的横坐标分别为4, X2.易知此时C7V与二、四象限角平分线平行,.•.设直线C7V的解析式为y = -x + b.联立y=x?与y = lX + b 得:x° =-x + b ,即+ x - b = 0 , /. X. +x?=一1, x,x, ="b .••・UA'=1, .•.根据题意易得:|x「x」= WI, ... 〔x「X2〕2 =;,即2 2.1- l+4b = l,解得b =一 2 8, 2 I ] 八-2 + y/2 T -2 - V2..X- + X + —= 0 , 解得X = ------------------ x 或X = ---------------- -8 4 4•・•点C的横坐标较大,「. x = "2+V,2 .4w + V? . 2 3 -2>/2ix = --------------- 时,y = x = ----------------------- .4 8*〕.4 8④逆时针旋转45.,点A、B落在抛物线上.由于逆时针旋转45.后,直线AB与y轴平行,由于与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45.,点B、C落在抛物线上,如答图4所示,与③同理,可求得:P 〔二2 一退,3二2巫〕.4 8⑥逆时针旋转45.,点C、A落在抛物线上,如答图5所示,与②同理,可求得:p 〔2y,,一y.〕.综上所述,点P的坐标为:〔0,上叵〕,〔三叵,3-2立〕,p〔―2 +点,2 4 8 43-2>/2 2 + 72 3 + 20\8 4 8等图I 答医2 硝; 1 答& 等国【解析】〔1〕由旋转性质及等腰直角三角形边角关系求解.〔2〕首先明确△ ABC绕原点按顺时针方向旋转45.后的三角形即为ADEF,然后分三种情况进行讨论,分别计算求解.〔3〕旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C和点D三种可能,因此共有六种可能的情形,需要分类讨论,防止漏解.考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.。
数学中考压轴题分类精选70道(含答案)
目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题例2 2012年苏州市中考第29题例3 2012年黄冈市中考第25题例4 2010年义乌市中考第24题例5 2009年临沂市中考第26题例6 2008年苏州市中考第29题1.2 因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题例2 2012年扬州市中考第27题例3 2012年临沂市中考第26题例4 2011年湖州市中考第24题例5 2011年盐城市中考第28题例6 2010年南通市中考第27题例7 2009年江西省中考第25题1.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题例2 2012年广州市中考第24题例3 2012年杭州市中考第22题例4 2011年浙江省中考第23题例5 2010年北京市中考第24题例6 2009年嘉兴市中考第24题例7 2008年河南省中考第23题1.4 因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题例2 2012年福州市中考第21题例3 2012年烟台市中考第26题例4 2011年上海市中考第24题例5 2011年江西省中考第24题例6 2010年山西省中考第26题例7 2009年江西省中考第24题1.5 因动点产生的梯形问题例1 2012年上海市松江中考模拟第24题例2 2012年衢州市中考第24题例4 2011年义乌市中考第24题例5 2010年杭州市中考第24题例7 2009年广州市中考第25题1.6 因动点产生的面积问题例1 2013年苏州市中考第29题例2 2012年菏泽市中考第21题例3 2012年河南省中考第23题例4 2011年南通市中考第28题例5 2010年广州市中考第25题例6 2010年扬州市中考第28题例7 2009年兰州市中考第29题1.7 因动点产生的相切问题例1 2013年上海市杨浦区中考模拟第25题例2 2012年河北省中考第25题例3 2012年无锡市中考第28题1.8 因动点产生的线段和差问题例1 2013年天津市中考第25题例2 2012年滨州市中考第24题例3 2012年山西省中考第26题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例1 2013年宁波市中考第26题例2 2012年上海市徐汇区中考模拟第25题例3 2012年连云港市中考第26题例4 2010年上海市中考第25题2.2 由面积公式产生的函数关系问题例1 2013年菏泽市中考第21题例2 2012年广东省中考第22题例3 2012年河北省中考第26题例4 2011年淮安市中考第28题例5 2011年山西省中考第26题例6 2011年重庆市中考第26题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例1 2013年南京市中考第26题例2 2013年南昌市中考第25题例1 2013年上海市黄浦区中考模拟第24题例2 2013年江西省中考第24题第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx 〔a >0〕经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.〔1〕求这条抛物线的表达式;〔2〕连结OM ,求∠AOM 的大小;〔3〕如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1动感体验请打开几何画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.请打开超级画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.点击按钮的左部和中部,可到达相似的准确位置。
中考巨难数学试卷及答案
一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x^3 - 3x^2 + 4x + 1,若f(x)在x=1处的切线斜率为k,则k的值为:A. 1B. 2C. 3D. 4答案:B解析:由导数的定义,f'(x) = 6x^2 - 6x + 4,代入x=1得f'(1) = 6 - 6 + 4= 4,所以切线斜率k=4。
2. 在等差数列{an}中,a1=1,公差d=2,则第10项an的值为:A. 19B. 20C. 21D. 22答案:A解析:由等差数列的通项公式an = a1 + (n-1)d,代入a1=1,d=2,n=10,得an= 1 + (10-1)×2 = 1 + 18 = 19。
3. 已知三角形ABC中,AB=AC,BC=4,则角A的正弦值为:A. 1/2B. √2/2C. √3/2D. 1答案:C解析:由勾股定理,AB=AC=√(BC^2/4) = √(4^2/4) = √4 = 2。
在直角三角形ABC中,sinA = 对边/斜边 = BC/AB = 4/2 = 2。
4. 若复数z满足|z-1|+|z+1|=4,则复数z对应的点在复平面上的轨迹是:A. 矩形B. 等腰梯形C. 矩形D. 等腰梯形答案:B解析:由复数的几何意义,|z-1|表示点z到点(1,0)的距离,|z+1|表示点z到点(-1,0)的距离。
因为|z-1|+|z+1|=4,所以点z到这两个点的距离之和为4,对应的轨迹是一个等腰梯形。
5. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f'(2) = 6,则a+b+c的值为:A. 2B. 3C. 4D. 5答案:B解析:由导数的定义,f'(x) = 2ax + b,代入x=2得f'(2) = 4a + b = 6。
又因为f(1) = a + b + c = 2,解得a+b+c=3。
二、填空题(每题5分,共25分)6. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像与x轴的交点坐标为______。
《整式乘除与因式分解》历年中考难题
39. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A .5nB .5n -1C .6n -1D .2n 2+1 【答案】C47. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .B .C .D .【答案】D61. (2011山东枣庄,9,3分)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6 【答案】C3. (2011山东济宁,12,3分)若代数式可化为,则的值是 . 【答案】55. (2011浙江省,14,3分)某计算程序编辑如图所示,当输入x= 时,输出的y=3.()1a +(0)a >22(25)cm a a +2(315)cm a +2(69)cm a +2(615)cm a+26x x b -+2()1x a --b a-【答案】12或 16. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是 ▲ .【答案】18. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)【答案】或43.(2011山东潍坊,13,3分)分解因式:=_________________【答案】55. (2011四川凉山州,14,4分)分解因式: 。
【答案】57. (2011湖北黄冈,2,3分)分解因式8a 2-2=____________________________.32-nn )2(+n n (1)4n n ++24n n ++321a a a +--2(1)(1)a a +-32214a ab ab -+-=212a a b ⎛⎫-- ⎪⎝⎭第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图【答案】2(2a +1)(2a -1)58. (2011湖北黄石,11,3分)分解因式:2x 2-8= 。
最难中考数学试卷真题答案
最难中考数学试卷真题答案Ⅰ. 选择题(共15小题,每小题2分,满分30分)1. D2. C3. A4. B5. A6. D7. C8. B9. D 10. A11. C 12. D 13. A 14. B 15. DⅡ. 非选择题(共10小题,每小题6分,满分60分)16. 解:设几何平均数为x,则有:\[2x^3-12x^2+18x=0\]\[2x(x-3)^2=0\]得出x=0或x=3,由于几何平均数必须大于0,所以x=3。
故几何平均数为3。
17. 解:数列的前n项和公式为:\[S_n=\frac{n}{2}(2a+(n-1)d)\]代入已知条件解得:\[S_n=\frac{n}{2}(a+5d)=150\]联立求解方程组:\[\begin{cases}a+5d=30 \\ a+11d=66\end{cases}\]解得a=6,d=4。
故该等差数列的首项为6,公差为4。
18. 解:根据Vieta定理,二次方程\[ax^2+bx+c=0\]的两个根之和为\(-\frac{b}{a}\),两个根的乘积为\(\frac{c}{a}\)。
由已知条件可得:\[\begin{cases}r_1+r_2=5 \\ r_1r_2=-1\end{cases}\]解得\(r_1=1,r_2=4\)。
故满足题意的二次方程为\[x^2-5x+4=0\]。
19. 解:由已知条件得:\[\begin{cases}x+y=16 \\ xy=60\end{cases}\]将第一个等式变形为\(x=16-y\),代入第二个等式得:\[(16-y)y=60\]解得\(y=6\),代入第一个等式得\(x=10\)。
故原方程的两个整数解为6和10。
20. 解:将$f(x)=\log_a{(x^2+2x+1)}$转化为指数形式得:\[a^{f(x)}=x^2+2x+1\]代入已知条件可得:\[a^2=a+2\]解得\(a=2\)或\(a=-1\)。
初三中考数学压轴难题有答案
1.矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).2.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为 2 ,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.3.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C 分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= 2 CD,从而得出结论:AC+BC= 2 C D.简单应用:(1)在图①中,若AC= 2 ,BC=2 2 ,则CD=___________.(2)如图③,AB是⊙O的直径,点C、D在⊙上,⌒AD=⌒BD,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=13AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是_______________________.4.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC =b,AB=c.【特例探究】(1)如图1,当tan∠P AB=1,c=4 2 时,a=_________,b=_________;如图2,当∠P AB=30°,c=2时,a=_________,b=_________;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,□ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 5 ,AB=3,求AF的长.1.如图,抛物线y=x2-2x-3交x轴于A(-1,0)、B(3,0),交y轴于C(0,-3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为___________(面积单位).2.如图,点A为函数y=9x(x>0)图象上一点,连结OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为_____________.3.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_____________.4.已知抛物线y=ax2-4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为_________________.5.在平面直角坐标系中,点O 为坐标原点,A 、B 、C 三点的坐标为( 3 ,0)、(3 3 ,0)、(0,5),点D 在第一象限,且∠ADB =60°,则线段CD 的长的最小值为____________.6.若直线y =m (m 为常数)与函数y = ⎩⎨⎧x 22(x ≤2)4x (x >2) 的图象恒有三个不同的交点,则常数m 的取值范围是_____________.7.如图,在正方形ABCD 外侧作直线DE ,点C 关于直线DE 的对称点为M ,连接CM ,AM .其中AM 交直线DE 于点N .若45°<∠CDE <90°,则当MN =4,AN =3时,正方形ABCD 的边长为_____________.8.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为 ______________.9.如图,已知A 、C 是半径为2的⊙O 上的两动点,以AC 为直角边在⊙O 内作等腰Rt △ABC ,∠C =90°,连接OB ,则OB 的最小值为__________.10.如图,在Rt △ABC 中,∠B =60°,BC =3,D 为BC 边上的三等分点,BD =2CD ,E 为AB 边上一动点,将△DBE 沿DE 折叠到△DB ′E 的位置,连接AB ′,则线段AB ′的最小值为:_________.11.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_________.12.如图,矩形ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点P 在矩形ABCD 内.若AB =4cm ,BC =6cm ,AE =CG =3cm ,BF =DH =4cm ,四边形AEPH 的面积为5cm 2,则四边形PFCG 的面积为___________________.OCBA14.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_____________.15.已知:直线y =- n n +1x + 2n +1 (n 为整数)与两坐标轴围成的三角形面积为s n ,则s 1+s 2+s 3+…s n =___________________.16.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为___________.18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1 、S2、S 3 、…、S n ,则S n 的值为________.(用含n 的代数式表示,n 为正整数)AB CD19.如图,E 是正方形ABCD 内一点,E 到点A 、D 、B 的距离EA 、ED 、EB 分别为1、3 2 、2 5 ,延长AE 交CD 于点F ,则四边形BCFE 的面积为________________.20.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(7,3),点E 在边AB 上,且AE =1,已知点P 为y 轴上一动点,连接EP ,过点O 作直线EP 的垂线段,垂足为点H ,在点P 从点F (0,254)运动到原点O 的过程中,点H 的运动路径长为____________.21.如图,在等腰直角三角形ABC 中,∠ABC =90°,AB =BC =2,P 是△ABC 所在平面内一点,且满足P A ⊥PB ,则PC 的取值范围为 .22.已知一次函数y =-43x +4与x 轴、y 轴分别交于点A 、B ,现有点M (m ,-m ),N (m +3,-m -4)则当四边形MNAB 周长最小时,m =____________.23.如图,四边形ABCD 的顶点都在坐标轴上,若AD ∥BC ,△ACD 与△BCD 的面积分别为10和20,若双曲线y =k x恰好经过边AB 的四等分点E (BE <AE ),则k 的值为____________.1.(1)16 设AM=x,则MD=4-x,得S=2(x-2)2+8,故当x=0或4时面积最大。
(完整版)中考数学几何综合压轴题初三难题训练(真题附答案)
中考数学几何综合压轴题初三难题训练1. (2015金华中考)如图,正方形 ABCD 和正三角形 AEF 都内接于eO , EF 与BC , CD 分别相交 于点G , H ,则-EF 的值是()GHA.——B. 2C. . 3D. 222.(2015遵义中考)将正方形 ABCD 绕点A 按逆时针方向旋转 30°,得正方形 AB 1GD 1,B^!交CD 于点E , AB 3,则四边形A^ED 的内切圆半径为()D ,E 分别是OA ,OB 的中点,则图中影阴部分的面积为 ___________ cm 2 .A. D.3. (2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径 OA 2cm ,C 为弧AB 的中点,6Di到E ,且有 EBD CAB • (1) 求证:BE 是eO 的切线;(2 )若BC 3 , AC 5,求圆的直径 AD 及切线BE 的长.5. (2016岳阳中考)数学活动 旋转变换(1) 如图①,在 VABC 中, ABC 130°,将VABC 绕点C 逆时针旋转500得到VABC ,连接 BB ,求ABB 的大小;(2) 如图②,在 VABC 中, ABC 150° , AB 3, BC 5,将VABC 绕点C 逆时针旋转 60° 得到VABC ,连接BB ,以A 为圆心,AB 长为半径作圆.(I)猜想:直线 BB 与e A 的位置关系,并证明你的结论; (H)连接AB ,求线段AB 的长度;(3)如图③,在 VABC 中, ABC 90° 180° , AB m , BC n ,将VABC 绕点 C 逆180°得到VABC ,连接AB 和BB ,以A 为圆心,AB 长为半与角 满足什么条件时,直线 BB 与e A 相切,请说明理由,并求此条件下线段AB 的长度(结果用角或角 的三角函数及字母 m , n 所组成的式子表示)时针旋转2角度0° 2径作圆,问:角6. (2016成都中考)如图,在RtVABC中,ABC 90°,以CB为半径作eC,交AC于点D,交AC 的延长线于点E,连接BD , BE .(1)求证:VABD s VAEB ;AB 4(2)当一—时,求tanE ;BC 3BE父于点F .(3 )在(2 )的条件下,作BAC的平分线,与7. (2016苏州中考)如图,在矩形ABCD中,AB 6cm , AD 8cm •点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作圆O,点P与点O同时出发,设它们的运动时间为t (单位:s)(0 t 8)•3(1)如图,连接DQ,当DQ平分BDC时,t的值为.(2)如图,连接CM,若VCMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与圆O相切时,求t的值;并判断此时PM与圆O是否也相切?说明理由.8. (2015扬州中考)如图,已知 eO 的直径AB 12cm , AC 是eO 的弦,过点 延长线于点P ,连接BC •(1) 求证: PCA B ;(2) 已知 P 400 ,点Q 在优弧ABC 上,从点A 开始逆时针运动到点 重合),当VABQ 与VABC 的面积相等时,求动点 Q 所经过的弧长.C 作eO 的切线交BA 的C 停止(点Q 与点C 不9. ( 2015大庆中考)如图, 四边形ABCD 内接于eO ,ADPBC P 为BD 上一点,APB BAD . (1) 证明:AB CD ;(2) 证明:DP BD AD BC ; (3) 证明:BD 2 AB 2 AD BC .10. (2015武汉中考)如图,AB是eO的直径,ABT 4^ , AT AB •(1)求证:AT是eO的切线;(2)连接OT交e O于点C,连接AC,求tan TAC的值.11. (2016随州中考)如图,AB是eO的弦,点C为半径OA的中点,过点C作CD OA交弦AB 于点E,连接BD,且DE DB •(1)判断BD与eO的位置关系,并说明理由;5(2)若CD 15 , BE 10 , ta nA -,求eO 的直径.1212. (2015德州中考)如图,eO的半径为1 , A, P , B , C是eO上的四个点, APC CPB 60°•(1) 判断VABC的形状:;(2) 试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3) 当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.13. (2016淮安中考)问题背景:如图1,在四边形 ADBC 中, ACB形,所以CE . 2CD ,从而得出结论:AC BC . 2CD •(1) 简单应用:在图1中,若AC 2 , BC 2 2,则CD •(2) 如图3, AB 是eO 的直径,点 C 、D 在e 上,AD BD ,若AB 13, BC 12,求CD 的 长. (3) 拓展规律:如图 4 , ACB ADB 90° , AD BD ,若 AC m , BC n m n ,求 CD 的长(用含m , n 的代数式表示)1(4 )如图5 , ACB 90° , AC BC ,点P 为AB 的中点,若点E 满足AE 1AC ,3CE CA ,点Q 为AE 的中点,则线段 PQ 与AC 的数量关系是.ADB 90° , A D BD ,探究线段 AC,BC,CD 之间的数量关系•小吴同学探究此问题的思路是:将 VBCD 绕点D ,逆时针旋转 90°到 VAED 处,点 B,C 分别落在点 A,E 处(如图2),易证点 C,A,E 在同一条直线上,并且VCDE 是等腰直角三角li14. (2015宜昌中考)如图,四边形ABCD为菱形,对角线AC , BD相交于点E , F是边BA延长线上一点,连接EF,以EF为直径作eO,交边DC于D,G两点,AD分别与EF,GF交于I , H两占八、、♦(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,(i)求证:FD FI ;(ii)设AC 2m, BD 2n,求eO的面积与菱形ABCD的面积之比.15. (2015株洲中考)已知AB是圆O的切线,切点为B,直线AO交圆O于C , D两点,CD 2 , DAB 30°,动点P在直线AB上运动,PC交圆O于另一点Q .(1)当点P运动到使Q , C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使VCQD的面积为丄?(直接写出答案)21(3)当使VCQD的面积为丄,且Q位于以CD为直径的的上半圆上,CQ QD时(如图2),2求AP的长.第11页(共29页)第12页(共29页)第一部分 1.C【解析】如图,连接 AC 、BD 、OF ,其中AC 与EF 交于点I . QAO 是EAF 的角平分线,OAF 60o 2 30o .QOA OF ,OFA OAF 30° ,COF 60° ,BD CO 2 1 1 GH BD 2r r , 2 2竺3 3 .GH r作 DAB 1与 AB 1C 1的角平分线交于点 O ,过O 作OF AB 1 , 则 OAF 30° , AB 1O 4^ ,答案EF 3 o r 2 23r . QAO 2OI ,OI -r , CI 21 r r2 FI r sin60°GH CI 11 r , 22.B 【解析】设eO 的半径为r ,则 OF r ,第13页(共29页)故B i FOF 〔OA , 2 设B i Fx , 则AF :丄3 x , 故 3 2 x 2 2 x 2 2x ,解得x3 -,负值舍去. 2 四边形AB iE D 的内切圆半径为宁-第二部分3. n 1二2 2 2 【解析】连接0C ,过C 点作CF OA 于F •Q 半径OA 2cm , C 为A B 的中点,D 、E 分别是OA 、OB 的中点, OD OE 1cm , OC 2cm , AOC 4^ •CF . 2 • 鸟白图形ACDS 扇形OACS VOCD 2 45 n 221 2 1 23601 n2 2 cm . 2 2Q S VODE 〔OD 2 1 OE cm 2 2S 阴影S 扇形OAB S 空白图形ACD S VODE90 n 221 2 1—n ------ —360 2 2 21 —n _! 12 cm . 2 2 2第三部分4. (1)如图,连接OB .第14页(共29页)QBD BC ,CAB BAD .Q EBD CAB ,BAD EBD .QAD 是eO 的直径,ABD 90o , OA BO .BAD ABO .EBD ABO .OBE EBD OBD ABD OBD ABD 90°.Q 点B 在e O 上,BE 是eO 的切线.(2)如图,设圆的半径为 R ,连接CD .QAD 为eO 的直径,ACCD 90° .QBC BD ,OB CD .OB PAC .QOA OD ,1 5 OF AC .2 2Q 四边形ACBD 是圆内接四边形,BDE ACB .Q DBE ACB ,VDBE s VCAB . DB DEAC BC .3DE 5 3 .DEQ OBE OFD 90 ,DF PBE .QR 0 ,R 3.QBE 是eO 的切线,5. (1)如图①中, QVA BC 是由VABC 旋转得到,ABC ABC 130°,CB CBCBB CBB ,Q BCB 50o ,CBB CB B 650,ABB ABC BB C 65° .(2 )(1)结论:直线 BB ,是e A 的切线. 理由:如图②中,150°,CB CB ,Q ABC ABC CBB CBB ,Q BCB 60° ,CBB CB B 60° ,ABB ABC BBC 90° .AB BB ,直线BB ,是e A 的切线.(H) Q 在 RtVABB 中,Q AB B 90° , BB BC 5 , AB AB 3,AB AB 2 BB 2 34 .(3 )如图③中,当 180°时,直线BB ,是e A 的切线 理由:Q ABC ABC ,CB CB ,OF OB ODOEBE JDE AE * 2 3 3\5 5 3 115(3)解法一:在 RtVABC 中, -AC 2 BG -AB 2 11BG 即 5x BG 4x 3x ,解得BG 2 2 12 x . 590°.AB BB ,直线BB ,是e A 的切线.在VCBB 中QCB CB n , BCB 2 ,BB 2 nsin ,在 RtVA BB 中,AB . BB 2 AB 2 ,m 2 4n 2si n 26. (1) QDE 为e C 的直径,DBE 90° . 又 Q ABC 90° ,DBE DBC 90° , CBE DBC 90° ,ABD CBE .又QCB CE ,CBE E , ABD E .又 Q BAD EAB ,VABD ^VAEB .(2 )由(1)知,VABD s VAEB 在 RtVDBE 中,BD 1 tanEBE 2CBB CBB ,Q BCB 2 ,CBB ABB CB B 180° 2-------------? 2ABC BBC90°180° 90°BD BE ABAEABQ - BC设 AB 4x ,贝U CE 在 RtVABC 中,AB CB 3x .5x ,AE AC CE 5x 3x 8x BD BE AB AE 4x8xQAF 是 BAC 的平分线, BF AB 4x 1 FHEF 2BG BE 32 2 12 8FH BG一x x3 3 5 5 1又 Qta nE2EH 2FH 16 x ,5AM AE EM24 x ・ 5 在 RtVAHF 中, 2 2 AH HF AF 1 2 3即 224 x5e C 的半径是3xQAF 平分 BAC , FE AE 8x 2AE 于 H , 【解析】解法二:如图 2过点A 作EB 延长线的垂线,垂足为点在 VBAE 中,有 1 2 3 E 180°90° 90° , 4 2 E 45 ,VGAF 为等腰直角三角形8.5 L ,AFeC 的半径是NG BN a ,CG 3 a ,4 NC BC 9 a,4BH 9a, 5AB 3a , AC AG 3a ,tan NAC NG AG sin NAC 10105a ,4 15 a,4 13由( 2) 可知, AE 8x , tanEAG AE 于点M , 解法三:AE 于点G ,FM BAC 的平分线,QAF 是AE 10 .在 RtVDBE 中,设 BP 4t ,则 PQ 3t , BQ 5t .Q DQ 平分 BDC , QC CD , QP BD .CQ PQ 3t .QCQ 8 5t.3t 8 5t ,即 t 1.(2)如图,过点M 作ME BC 于点E .在 RtVAFM 中, FM AF sin NAC 2 卫互,AM 10 5 3 10 5 在 RtVEFM 中, EM FM tanE2 10 QBH a,5 EH 18 a, 5 DE 9 a ,2 DC 9 a ,4 AD 3 a,2 又QAE DE3 a 2 9 a2 9a,10 106DC 3.1087. (1)【解析】由题意可VBPQ s VBCD .DH AE10 ,a在 RtVABD 中,AB 6cm , AD 8cm ,BD 10cm .由 BPQ BCD , QBP DBC ,得 VPBQ ^VCBD .PB PQ BQBC CD BD .Q PB 4t ,PQ 3t , BQ 5t .Q MQ MC ,1 1 QE CE —QC - 8 5t2 2Q VMEQ s VDCB , EQ BCMQ BD1 -8 5t 23t40t 49(3)如图1,设QM 所在直线交CD 于点F . ① Q VQCF s VBCD , CF CDCQ CB CF 68 5t 8E15 -t , DF 4 又DO 3t , DO DF CF 6 ,即点O 始终在QM 所在直线的左侧.②如图,设MQ与eO相切时,切点我G,连接OG ,OG BCOF BD,0.88吗3t 10,4丄4t3当t -时,正方形PQMN的边长为3解法一:连接MO并延长交PQ于点贝U VMOG s VMHQ ,OG MGHQ MQ,260.815HQ4,HQ241328PH13 °HK14 213HK HQ .点O不在PMQ的平分线上,当QM1与eO相切时,PM与eO【解析】解法二:连接OM , OP ,Q SVMPQ SVMOQ S VPOQ S VPOM ,则VOGF s VBCD ,534 , QF-,FG3 5 .H,过点H作HK PM于点K不相切.OQ,设点O到MP的距离为h ,1 4 0.8 1 344142 h 8 .2 2 152h7 20.8 .15当QM与eO相切时,PM与eO不相切QAB是eO的直径,ACB 1 2 90o,又PC是eO的切线,PCO PCA 1 90°,2 PCA.又OC OB .2 B,PCA B .(2) Q P 40°,AOC 50°.QAB 12,AO 6 .AOQ 130°时,VABQ与VABC的面积相等,优弧ABQ所对的圆心角为230°时,VABQ与VABC的面积相等,13n31803180当BOQ 50°时,即9. (1) Q AD PBC ,ADB DBC ,AB DC ,AB CD .(2) Q APB BAD , BAD BCD 180° , APBBCD APD ,Q ADB CBD .VADPWDBC ,AD DPBD BC ,DP BD AD BC .QBD 2DE 2 BE 2, DE 2 CD 2 CE 2 ,2 BD 2CD 2 BE 2 CE 2AB 2 BE CE BE CEAB 2 AD BC.10. (1) QAB AT ,ATB B 45°.BAT 90° .AT 是eO 的切线.(2 )设eO 半径为r ,延长TO 交eO 于D ,连接AD .点Q 所经过的弧长 230 n 6 180 23 n3AAPD 180° , (3)如图,过点D 作DE BC 交BC 于E .QCD是直径,CAD BAT 90°.TAC OAD D . 又ATC DTA,VTAC s VTDA.TA TCTD AT .TA2TC TD , 即4r2 TC TC 2r 解得TC 5 1r.tan TAC tan DACADTCAT.5 1 r2r51211. (1)连接OB .QOB OA, DE DB ,A OBA, DEB ABD.QCD OA,A AEC A DEB 90°,OBA ABD 90°,OB BD ,BD是eO的切线;(2)如图,过点D作DG BE于G .QDE DB,1EG -BE 5,2GDE A,VACE s VDGE,QVACE s VDGE12. (1)等边三角形(2) PA PB PC .证明:如图,在PC上截取PD PA,连接AD .PA AD , PAD 60o.Q BAC 60o,PAB DAC .Q APC 60o,VPAD是等边三角形.Q ACE DGE 90°, AEC GED ,tan EDG tanAEGDG5—,即DG 12 .12在RtVEDG 中,DE .DG2 EG213. QCD 15, DECE 2 .13 ,ACDGCEGE,AC CE DGGE245e O的直径2OA 4AD96QAB AC ,VPAB 也VDAC .PB DC .QPD DC PC ,PA PB PC .(3)当点P 为A B 的中点时,四边形 APBC 面积最大.理由如下:如图,过点 P 作PE AB ,垂足为E , 过点C 作CF AB ,垂足为F ,四边形APBC 面积最大. Qe O 的半径为1,其内接正三角形的边长AB 31S 四边形APBC 匚 2 32 3 . 13. (1) CD 3(2)连接 AC 、BD 、AD ,Q AB 是eO 的直径,ADB ACB 90° ,Q A D B D ,AD BD ,将VBCD 绕点D ,逆时针旋转90°到VAED 处,如图3 ,EADDBC , Q DBCDAC 180° , EADDAC 180° , E 、A 、C 三点共线,Q AB 13,BC 12,由勾股定理可求得: AC 5 ,Q BC AE ,CE AE AC 17,2 AB PE ,S VABC 1AB CF . 2S 四边形APBC 1 — AB PE 2 Q 当点P 为A B 的中点时, CF . PE CF PC , PC 为eO 直径, Q S VPABQ EDA CDB ,EDA ADC CDB ADC ,即 EDCADB 90° ,Q CD ED , VEDC 是等腰直角三角形,CE 2CD ,17近 CD 2(3)以AB 为直径作eO ,连接OD 并延长交eO 于点D 1 , 连接D 1A ,D 1B , D 1C ,如图D 1C又Q 0D 是eO 的直径,DCD 1 90o ,Q AC m , BC n由勾股定理可求得: 2 2 DQ AB2 n22PQ = -^」AC • 614.( 1)QEF 为eO 的直径,FDE 90° .(2)四边形FACD 为平行四边形•理由如下:QABCD 为菱形,AB PCD , AC BD ,AEB 90° • 又 FDE 90o ,AC PFD •四边形FACD 为平行四边形.(3)(i )如图,连接GE •由(2)的证明过程可知: ACBC ■ 2D 1C ,ABm 2 2 Q D 1C 2 CD 2 2 D 1D 2CD m 2 n 2CD (4)Q 在RtVDEC 中,G 为CD 的中点,EG DG ,弧DG 弧EG ,1 2.又EF 为eO 的直径,FGE 90° ,FG EG .QG 为DC 中点,E 为AC 中点,GE 为VDAC 的中位线,EG PAD . FGADF l HDFHI 90o . 1 3 24 90o , 3 4 ,FD FI .(ii ) Q 菱形ABCD , AE CE m , BE DE nQ 四边形FACD 为平行四边形,FD AC 2m FIQ FD PAC , 3 8 .又34 7, 78 , EI EA m . 在 RtVFDE 中,FE 2 FD 2 DE 2 ,3m $ 2m $ n 2,解得,n 5m .2 3m9 2 1 S eo n 测,S 菱形ABCD — 2m 2n 2mn 2 4 2 S e O : S 菱形ABCD 9 n m 2:2 5m 2葺5. 4 4015. (1) QAB 是圆O 的切线,OBA 90o .2 5m 2 ,QRtVOBA中,CD 2, DAB 30°,OB 1 ,OB OC AC 1 .Q当点P , C运动到Q , C两点重合时,PC为圆O的切线,PCA 90°,Q DAB 30°, AC 1 ,AP -A/3•3(2)有4个位置使VCQD的面积为-•21【解析】由于CD的长度2,而S VCQD1, 故CD上的高的长度为-,从而如下图,我们可得到答案.2(3)过点Q作QN AD于点N,过点P作PM AD于点M •QNQCD是圆O的直径,CQD 90°• 易证VQCN s VDQN •QN CNDN QNQN2 CN DN .1x 2 x4解得X i 2 3, x22QCQ QD ,CNCNQN易证VPMC s VQNC .易得列空2 3MP QNCM 2 3 MP .在RtVAMP中易得AM 3MP , QAM CM AC 1,2,3 MP . 3MP 1 ,MP 3 14 ,薦1AP2MP21 2.又QCB CE,3 E .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本) 22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?y 221.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?20.(9分)某项工程,甲工程队单独完成任务需要40天.若 乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务. 请问: (1)(5分)乙队单独做需要多少天才能完成任务? (2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分工程用了y 天.若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到 70天,那么两队实际各做了多少天? 3、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y (元)与周次x 之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? 5、(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?几何题20.(本题满分8分)如图,在□ABCD 中,∠BAD 为钝角,且AE ⊥BC ,A F ⊥CD . (1)求证:A 、E 、C 、F 四点共圆;(2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND .23.(本题满分10分)如图,半径为O 内有互相垂直的两条弦AB 、CD 相交于P 点. (1)求证:P A ·PB =PC ·PD ;(2)设BC 的中点为F ,连结FP 并延长交AD 于E ,求证:EF ⊥AD : (3)若AB =8,CD =6,求OP 的长.18.(8分)如图8,大楼AD 的高为10m ,远处有一塔BC . 某人在楼底A 处测得塔顶B 点处的仰角为60°,爬到楼顶 D 点处测得塔顶B 点的仰角为30°.求塔BC 的高度. 解:第23题图第20题图NM F EBDAC22.已知:如图,在⊙O 中,弦AB 与CD 相交于点M . (1)若AD=CB ,求证:△ADM≌△CBM.(2)若AB=CD ,△ADM 与△CBM 是否全等?为什么?21.(本题10分)如图,已知AB 是O ⊙的直径,过点作弦BC 的平行线,交过点的切线AP 于点,连结AC .(1)求证:ABC POA △∽△; (2)若2OB =,72OP =,求BC 的长.21.(本小题满分8分)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.A D G CB F E 第21题图二次函数结合图像题(本题满分12分)一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC .(1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点? (3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BOD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.21.(9分)如图10,已知:△ABC 是边长为4的等边三角形,BC 在 x 轴上,点D 为BC 的中点,点A 在第一象限内,AB 与y 轴正半轴 相交于点E ,点B 的坐标是(-1,0),P 点是AC 上的动点(P 点与A 、C 两点不重合). (1) (2分)写出点A 、点E 的坐标.(2) (2分)若抛物线bx x y ++-=2736过A 、E 两点,求抛物线的解析式.(3) (5分)连结PB 、PD .设l 为△PBD 的周长,当l 取最小值时, 求点P 的坐标及l 的最小值,并判断此时点P 是否在(2)中所求的抛物线上,请充分说明你的判断理由.第25题图22.(9分)如图11,AB 是⊙O 的直径,点E 是半圆上一个动点(点E 与点A 、B 都不重合),点C 是BE 延长线上的一点,且CD ⊥AB, 垂足 为D ,CD 与AE 交于点H ,点H 与点A 不重合. (1)(5分)求证:△AHD ∽△CBD ; 证明:(2)(4分)连结HO .若CD =AB =2,求HD+HO 的值.(2009年重庆市江津区)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.图11 H EO D BC A第26题图ABC答案 应用题20.(本小题满分8分) 解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x-=, ··················································································· 3分 解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以商场两次共购进这种运动服600套. ···························································· 5分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套运动服的售价至少是200元. ······························································· 8分 22.(本小题满分10分) 解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ······························································································· 4分(2)12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭ 21316822x x =-++; ············································································ 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++ 21(6)118x =--+∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···························· 9分 最大利润211(46)111082=--+=(元). ························································ 10分21.解:(1)设买可乐、奶茶分别为x 、y 杯,根据题意得2x +3y =20(且x 、y 均为自然数) …………………………………………………………2分 ∴x =2032y -≥0 解得y ≤203∴y =0,1,2,3,4,5,6.代入2x +3y =20 并检验得10,0;x y =⎧⎨=⎩7,2;x y =⎧⎨=⎩4,4;x y =⎧⎨=⎩1,6.x y =⎧⎨=⎩……………………………………………………………6分 所以有四种购买方式,每种方式可乐和奶茶的杯数分别为:(亦可直接列举法求得)10,0;7,2;4,4;1,6.………………………………………………………………7分 (2)根据题意:每人至少一杯饮料且奶茶至少二杯时,即y ≥2且x +y ≥8由(1)可知,有二种购买方式.……………………………………………………………10分20.(1)解:设乙队单独做需要x 天就能完成任务依题意得:1)1401(2030=++xx ……(3分) 解得x =100经检验x =100为所列方程的解答:乙队单独做需要100天就能完成任务. ……(5分) (2) 依题意得∵ 110040=+y x ∴10025+-=x y ……(7分)∵,70<y∴7010025<+-x 12>x又∵,15<x∴12<x <15∵x 、y 都是正整数, ∴ x 65,14==y 为方程的解.答:甲队实际做了14天,乙队实际做了65天. ……(9分)【答案】(1)202(1)21830x x y +-=+⎧=⎨⎩(16)(11)()x x x x ≤<≤≤为整数)(6为整数(2)设利润为w222211202(1)(8)1214(16)881130(8)12(8)18(611)88(y z x x x x x w y z x x x x ⎧-=+-+--=+≤<⎪⎪⎪=⎨⎪-=+--=-+≤≤⎪⎪⎩为整数为整数)21148w x =+ 当5x =时,117(8w =最大元) 21(8)188w x =-+ 当11x =时,1191811888w =⨯+=+最大119()8=元综上知:在第11周进货并售出后,所获利润最大且为每件1198元.1)y=(60-x-40)(300+20x)=(20-x) (300+20x)=-6000100202++x x ,0≤x ≤20; (2)y=-206135)5.2(2+-x ,∴当x==2.5元,每星期的利润最大,最大利润是6135元;几何题20.解:∵AE ⊥BC ,A F ⊥CD ,∴∠AEC =∠AFC =90°. ∴∠AEC +∠AFC =180°.∴A 、E 、C 、F 四点共圆;…………………………………4分 (2)由(1)可知,圆的直径是AC ,设AC 、BD 相交于点O , ∵ABCD 是平行四边形,∴O 为圆心.∴OM =ON .∴BM =DN .…………………………………………………………………8分23.(1)∵∠A 、∠C 所对的圆弧相同,∴∠A =∠C .∴Rt△APD∽Rt△CPB,∴AP PDCP PB=,∴P A·PB=PC·PD;………………………3分(2)∵F为BC的中点,△BPC为Rt△,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°.∴EF⊥AD.………………………………………………………7分(3)作OM⊥AB于M,ON⊥CD于N,同垂径定理:∴OM2=2-42=4,ON2=)2-32=11又易证四边形MONP是矩形,∴OP7分答案略22.(1)证明:在△ADM与△CBM中,∵∠DMA=∠BMC,∠DAM=∠BCM,AD=CB.∴△ADM≌△CBM(AAS).(2)解:△ADM≌△CBM∵AB=CD,∴弧ADB=弧CBD,∴弧AD=弧CB∴.AD=CB与(1)同理可得△ADM≌△CB M.二次函数25.解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.…………2分∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,∴C(m,-2)代入得a=12.∴解析式为:y=12(x-m)2-2.…………………………5分(亦可求C点,设顶点式)(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛物线y=12(x-m)2-2顶点在坐标原点.………………………………………7分(3)由(1)得D(0,12m2-2),设存在实数m,使得△BOD为等腰三角形.∵△BOD为直角三角形,∴只能OD=OB.……………………………………………9分∴12m2-2=|m+2|,当m+2>0时,解得m=4或m=-2(舍).当m+2<0时,解得m=0(舍)或m=-2(舍);当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍)综上所述:存在实数m=4,使得△BOD为等腰三角形.……………………………12分21.解:(1)点E 坐标是(0,3),点A 的坐标是(1,23). ……(2分)(2 ) ∵抛物线c bx x y ++-=2736过E (0,3),A (1,23)两点, 得:⎪⎩⎪⎨⎧=++-=327363c b c ∴⎪⎩⎪⎨⎧==37133b c 抛物线的解析式是: 373137362++-=x x y . ………(4分) (3) 过D 点作DF ⊥AC ,垂足为F 点,并延长DF 至G 点,使得DF=FG ,则D 点关于AC 的对称点为G 点. 连结CG ,则CD=CG , ∠DCA=∠ACG .再连结BG 交AC 于Q 点,连结DQ ,则DQ=QG .当点P 运动到与Q 点重合,即B 、P(Q)、G 三点共线时, 依“两点之间,线段最短”.这时△PBD 的周长有最小值. ……(5分) 又过G 点作GH ⊥x 轴,垂足为H 点. ∵△ABC 是等边三角形, BC=4∴∠DCA=∠ACG=∠HCG =60︒,∵GH= CG •sin60︒ =3232=⨯,CH=CG 21=1. ∴OH=OC+CH=3+1=4. 即G 点的坐标(4,3). ∴BH=OB+OH=1+4=5在Rt △GBH 中,BG=72)3(52222=+=+GHBH△PBD 周长l = BD+BP+DP = BD+BQ+DQ = BD+BG = 272+ ……(6分) 设线段AC 的解析式b kx y +=,A 点的坐标(1,32),C 点的坐标( 3,0 )得⎩⎨⎧=+=+3203b k b k ⎩⎨⎧=-=333b k 线段AC 的解析式:333+-=x y同理可得线段BG 的解析式:5353+=x y AC 与BG 的交点是方程组⎪⎩⎪⎨⎧+=+-=5353333x y x y 的解,得⎪⎪⎩⎪⎪⎨⎧==33237y x则此时P 点的坐标是(332,37) ……(7分) 此时P 点的坐标在上述(2)小题所求的抛物线373137362++-=x x y 上. ……(8分)理由如下: 把332,37==y x 代入373137362++-=x x y 中,左边=右边 故此时P 点的坐标在上述(2)小题所求的抛物线373137362++-=x x y 上. ……(9分)22.证明(1)∵AB 是⊙O 的直径,∴∠AEB=90°,即AE ⊥BC .∴∠BAE+∠ABE=90°. …………(1分) 又∵CD ⊥AB ,∴∠BCD+∠CBD=90°.………………(2分)而∠ABE=∠CBD ,∴∠BAE=∠BCD . ……………(3分) 又∠ADH=∠CDB , ……………(4分) ∴△AHD ∽△CBD . ……………(5分)(2)∵O 点是圆心,CD=AB=2,设OD=x ,∴AO=1,AD=1+x ,BD=1-x . ∵ △AHD ∽△CBD , ∴CD ADBD HD =, ………………………(6分) ∴211xx HD +=-, ∴)1(212x HD -=. …………………(7分)下面分两种情况讨论:∴① 当HD 、HO 重合时,x =0,21==HD HO . 满足HD+HO=1; ………………(8分)∴②当HD 、HO 不重合时,在Rt △HDO 中,由勾股定理得:)1(21)1(21222222x x x HD OD HO +=⎥⎦⎤⎢⎣⎡-+=+=,也满足HD+HO=1.∴综上所述:HD+HO 的值总是1. …………(9分)。