小机灵杯1-14届试题及详解
小机灵杯二年级专题整理学生版
小精灵杯考前辅导(二年级)一、数学常识(13初赛)一、判断题(正确的打“√”,错误的打“×”,每题1分)1.“数学”这个词来源于希腊文,意思为科学或知识。
()2.在数学中,“等于”(即“=”)既可表示两个数相等,也可表示两个式子相等。
()3.单价×数量=总价。
()4.阿拉伯数字的发明者是古代印度人。
()5.1倍数×倍数=1倍数。
()二、计算(13初赛)计算:7÷8×7×8=()。
(13届决赛)一个数列1、2、3、2、5、2、7、2、9、2的前20个数的和是_______。
(14决赛)1.已知★+★+★=18,●×●×●×●=16,那么★×★+●×●=___________.3.若1+3=2×2,1+3+5=3×3,1+3+5+7=4×4,1+3+5+7+9=5×5,…,那么1+3+5+7+…+19= _________×________.11.将1~15这15个数平均分成五组,每组三个数,并使得第一组三个数依次相差1,第二组三个数依次相差2,第三组三个数依次相差4,第四组三个数依次相差5,第五组三个数依次相差7.那么这五组数依次分别是_______, _______,_______,_______,_______.(注:只需写出一种答案即可)三、计数(13初赛)用写有2、4、7、8的四张卡片,可以组成()个两位数,把这些数按从大到小的顺序排列,第10个数是()。
(13届决赛)4. 某件商品标价80 元,买一件这样的商品若用10 元、20 元、50元、三种面值的货币来付款,不同的付款方式有_______种。
5.猴王将75个桃子分给一些小猴子,其中一定有一只小猴分到5个或更多的桃子,小猴最多有_______只。
6.一个盒子里有10 只黑球,9 只白球,8 只红球。
2015第十四届小机灵四年级初赛试题
第十四届“小机灵杯”数学竞赛初赛解析(四年级组)时间:60分钟 总分:120分(第1题~第5题,每题6分.)1.我们规定a b a a b b =⨯-⨯★,那么3243542019++++=★★★★ . 【答案】396【考点】定义新运算 【分析】原式()()()()33224433554420201919=⨯-⨯+⨯-⨯+⨯-⨯++⨯-⨯33224433554420201919=⨯-⨯+⨯-⨯+⨯-⨯++⨯-⨯202022=⨯-⨯ 4004=- 396=2.将一个等边三角形的三个角分别剪去,剩余部分是一个正六边形,剩余部分的面积是原来等边三角形面积的 .(得数用分数表示)【答案】23【考点】图形分割 【分析】如图所示,将剩余部分分割可得,剩余部分的面积是原来等边三角形面积的69,即23.3.小明去超市买牛奶.若买每盒6元的鲜奶,所带的钱正好用完;若买每盒9元的酸奶,钱也正好用完,但比鲜奶少买6盒.小明共带了 元. 【答案】108元【考点】列方程解应用题 【分析】设小明能买酸奶x 盒,则能买鲜奶()6x +盒; 由题意可列得方程:()669x x +=,解得12x =; 所以小明共带了912108⨯=元.4.用一根长1米的铁丝围成长和宽都是整数厘米的长方形,共有 种不同的围法.其中长方形面积的最大值是 平方厘米. 【答案】25种,625平方厘米 【考点】长方形的周长,最值问题 【分析】1米100=厘米,即为长方形的周长,因此长方形的长+宽100250=÷=厘米;不同围法有:504914824732525=+=+=+==+,共25种;由于长与宽的和一定,当它们的差越小时,它们的乘积也就是长方形的面积越大, 因此长方形面积的最大值是2525625⨯=平方厘米.5.用同样大小的正方形瓷砖铺正方形的地面,周围用白瓷砖,中间用黑瓷砖(如图1和图2的铺法).当正方形地面周围铺了80块白瓷砖是,黑瓷砖需要 块.【答案】361块 【考点】方阵问题 【分析】铺有80块白瓷砖的正方形地面上内部的黑瓷砖每行有()804419-÷=块;因此黑瓷砖需要1919361⨯=块.(第6题~第10题,每题8分.)6.在下列每个22⨯的方格中,4个数的排列存在着某种规律.根据这样的排列规律,可知 =◆ .【答案】5=◆【考点】找规律填数 【分析】观察发现:在表1中:()29163⨯=⨯⨯;在表2中:()38423⨯=⨯⨯;在表3中:()68443⨯=⨯⨯;所以在表4中,应该有()5623⨯=⨯⨯◆,求得5=◆.图2图1◆6258446824396127.学生们手中有1、2、3三种数字卡片,每种数卡都有很多张.老师请每位学生取出两张或三张数卡排成一个两位数或三位数,如果其中至少有三名学生排出的数是完全相同的,那么这些学生至少有 人. 【答案】73人 【考点】抽屉原理 【分析】学生可能排成的不同两位数有339⨯=个,可能排成的不同三位数有33327⨯⨯=个, 因此学生可能排成的不同的数一共有92736+=个;如果要保证其中至少有三名学生排出的数完全相同,那么这些学生至少有236173⨯+=人.8.已知2014+迎2015=+新2016=+年,且迎⨯新⨯年504=,那么迎⨯新+新⨯年=.【答案】128【考点】分解质因数 【分析】根据2014+迎2015=+新2016=+年可知:迎=新1+=年2+;由32504237=⨯⨯可得,只有504987=⨯⨯满足条件,即迎9=,新8=,年7=; 迎⨯新+新⨯年98877256128=⨯+⨯=+=.9.一个正方体的六个面上各自写着一些数,相对面上的两个数的和等于50.如果我们将右图的正方体先从左往右翻转97次,再从前往后翻转98次,这时这个正方体底面的数是,前面的数是 ,右面的数是 .(翻转一次表示翻转一个面)【答案】底面的数是37,前面的数是35,右面的数是11 【考点】周期问题 【分析】 根据题意,初始时左面的数是501337-=,后面的数是501535-=,底面的数是501139-=; 对于一个正方体来说如果连续朝同一个方向翻转4次就会回到初始方向;由于974241÷=,984242÷=, 所以原题中的操作可以简化为先从左往右翻转1次,再从前往后翻转2次; 先从左往右翻转1次后,正方体的六个面分别为:左面的数39,右面的数11,前面的数15,后面的数35,顶面的数37,底面的数13; 再从前往后翻转2次后,正方体的六个面分别为:左面的数39,右面的数11,前面的数35,后面的数15,顶面的数13,底面的数37; 所以按要求操作后,这个正方体底面的数是37,前面的数是35,右面的数是11.10.学校用一笔钱来买球,如果只买排球正好能买15个,如果只买篮球正好能买12个.现在用这些钱买来排球与篮球共14只,买来的排球与篮球相差 只. 【答案】6只【考点】鸡兔同笼 【分析】由于[]15,1260=,因此可以假设这笔钱是60,那么一只排球的价格是60154÷=,一只篮球的价格是60125÷=;现在用这些钱买来的14只球中篮球有()()60414544-⨯÷-=只,排球有14410-=只, 所以买来的排球与篮球相差1046-=只.(第11题~第15题,每题10分.)11.小明骑车,小明爸爸步行,他们分别从A 、B 两地相向而行,相遇后小明又经过了18分钟到达了B 地.已知小明骑车的速度是爸爸步行速度的4倍,小明爸爸从相遇地点步行到A 地还需要 分钟. 【答案】288分钟 【考点】行程问题 【分析】如图所示,当小明与爸爸相遇时,由于小明的速度是爸爸的4倍且二人运动时间相同, 因此小明的路程应该是爸爸的4倍(图中的4S 与S );而相遇后小明又经过18分钟前进了S 的路程才到达了B 地;因为小明的速度是爸爸的4倍,所以爸爸步行S 的路程需要18472⨯=分钟; 又因为爸爸从相遇地点步行到A 地还需要再走4S 的路程, 所以小明爸爸从相遇地点步行到A 地还需要724288⨯=分钟.12.如图所示,两个正方形的周长相差12厘米,面积相差69平方厘米,大、小两个正方形平方厘米, 平方厘米.小明爸爸【答案】169平方厘米,100平方厘米【考点】正方形的周长与面积,平方差公式 【分析】设大正方形的边长是a 厘米,小正方形的边长是b 厘米,由题意得: 22441269a b a b -=⎧⎨-=⎩,整理得()()369a b a b a b -=⎧⎪⎨+-=⎪⎩,即为323a b a b -=⎧⎨+=⎩; 解得1310a b =⎧⎨=⎩ ,所以大正方形面积是213169=平方厘米,小正方形面积是210100=平方厘米.13.甲、乙两人用同样多的钱去买同一种糖果,甲买的是铁盒装的,乙买的是纸盒装的.两人都尽可能多地购买,结果甲比乙少买了4盒且余下6元,而乙用完了所带的钱.如果甲用元原来3倍的钱去购买铁盒装的糖果,就会比乙多买31盒,而且仍余下6元.那么铁盒装的糖果售价为每盒 元,纸盒装的糖果售价为每盒 元. 【答案】12元,10元【考点】约数与倍数,列方程解应用题 【分析】甲用原有的钱去买铁盒余下6元,那么用3倍的钱去买铁盒理论上应余下6318⨯=元, 然而仍余下6元,说明18612-=元刚好又可买若干个铁盒,即铁盒的单价应为12的约数; 有根据余下6元可知铁盒的单价必定大于6元,所以铁盒的单价只能是每盒12元; 设乙买了x 盒纸盒,由甲两次所用的钱数关系可列得方程: ()()3124612316x x -+=++⎡⎤⎣⎦,解得21x =;所以两人原有的钱数为()122146210⨯-+=元,纸盒的单价是每盒2102110÷=元.14.如下图所示,将一个由3个小正方形组成的L 形放入右边的格子中,共有 种放法.(L 形可旋转)【答案】48种【考点】对应法计数 【分析】首先,右图中共有9个,每个田字格中L 形有4种放法,分别为:,共4936⨯=种;其次,还有一些L 形不包含于图中的某个田字格,例如下图中的L 形1号:观察发现这些L 形分别对应了图中方格外部的一个凹拐角,而这样的凹拐角共有12个(如图所示),因此不包含于图中的某个田字格的L 形也有12种; 综上所述,图中的L 形共有361248+=种放法.15.一棵生命力极强的树苗,第一周在树干上长出2条树枝(如图1),第二周在原先长出的每条树枝上又长出2条新的树枝(如图2),第三周又在第二周新长出的每条树枝上再长出2条新枝(如图3)这棵树苗按此规律生长,到第十周新的树枝长出来后,共有条树枝.【答案】2046条【考点】等比数列求和 【分析】第一周树上新长出12⨯条树枝,共有2条树枝;第二周树上新长出2222⨯=条树枝,共有222+条树枝;第三周树上新长出23222⨯=条树枝,共有23222++条树枝; 依次类推第十周树上新长出102条树枝,共有23102222++++条树枝; 因为2310112222222046++++=-=,所以第十周新的树枝长出来后共有2046条树枝.图3图2图1。
第十四届小机灵杯初赛(四年级)—含答案
第十四届“小机灵杯”小学数学竞赛四年级组初赛试题(第1题~第5题,每题6分)1、我们规定a★b=a×a-b×b,那么3★2+4★3+5★4+……+20★19=_____。
3962、将一个等边三角形的三个角分别剪去,剩余部分是一个正六边形,剩余部分的面积是原来等边三角形面积的_____。
(得数用分数表示)2/33、小明去超市买牛奶,若买每盒6元的鲜奶,所带的钱正好用完;若买每盒9元的酸奶,钱也正好用完,但比鲜奶少买6盒。
小明共带了_____元。
1084、用一根长1米的铁丝围成长和宽都是整数厘米的长方形,共有_____种不同的围法。
其中长方形面积的最大值是_____平方厘米。
25,6255、用同样大小的正方形瓷砖铺正方形的地面,周围用白瓷砖,中间用黑瓷砖(如图1和图2的铺法)。
当正方形地面周围铺了80块白瓷砖时,黑瓷砖需要_____块。
361(第6题~第10题,每题8分)6、在下列每个2×2的方格中,4个数的排列存在着某种规律,根据这样的排列规。
57、学生们手中有1、2、3三种数字卡片,每种数卡都有很多张。
老师请每位学生取出两张或三张数卡排成一个两位数或三位数,如果其中至少有三名学生排出的数是完全相同的,那么这些学生至少有_____人。
738、已知2014+迎=2015+新=2016+年,且迎×新×年=154,那么迎×新+新×年=_____。
1289、一个正方体的六个面上各自写着一些数,相对面上的两个数的和等于50。
如果我们将右图的正方体先从左往右翻转97次,再从前往后翻转98次,这时这个正方体的底面的数是_____,前面的数是_____,右面的数是_____。
(翻转一次表示翻转一个面)37,35,1110、学校用一笔钱来买球,如果只买排球正好能买15个,如果只买篮球正好能买12个,现在用这些钱买来排球与篮球共14只,买来的排球与篮球相差________只。
小机灵杯第9-14届三年级初赛真题
第九届“小机灵杯”小学数学竞赛三年级组初赛试题1.计算:210+209-208+207-206+......+3-2+1=()。
2.如图所示,从上往下,每个方格中的数都等于它下方两个方格中所填数之和,最上层方格中两个数之和是()。
3.如图所示,a、b、c、d、e、f、g、h、i、j表示10个各不相同的数,表中的数为所在行与列对应字母的差,例如"b-h=6",图中"九宫格"中九个数的和是()。
4.小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一半,他俩今年的年龄总和是()岁。
5.如图所示,从A点走到B点,沿线段走最短路线,共有()种不同走法。
6.五位打工者一天的辛苦劳动后共获得330元工资,由于工种不同,获得最高工资者比其他四位分别多得12、14、21和28元,获得最低工资者的工资是()元。
7.如图所示的图形的周长是()厘米。
8.在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是()。
9.右边的乘法算式中,只知道一个数字"8",请你补全,那么这个算式的积最小是()。
10.在1、2、3、4、5、6六个数中,选三个数,使它们的和能被3整除,那么,不同的选取共有()种。
11.有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60块,那么,这四袋糖的块数总和至少有()块。
12.3根火柴可以摆成一个小三角形,用很多根火柴摆成了一个如图那样的大三角形,如果大三角形外沿的每条边都增加到10根火柴,那么摆成这样形状的大三角形需要用()根火柴。
13.一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题的数量等于小胖和小亚答对题数量的总和,小丁丁答对了17道题,这次测验共有()道题。
14.1997的数字和是1+9+9+7=26,小于2000的四位数中,数字和等于26的四位数共有()个。
十二届十三届十四届三年级小机灵杯初赛和决赛试题
第十二届小机灵杯初赛试卷(三年级组)一、选择题(每题1分)1.小明妈妈花了8元买了一条鱼,以9元价格卖掉,然后觉得不合算,又花了10元买回来,以11元卖给另一个人,那么小明妈妈赚了( )元。
A、3B、2C、12.家中电度表上的一度电表示的耗电量为( )。
、千瓦小时、千瓦小时、瓦小时A10.1100 B C3.十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥问题引起了一个著名的数学家的注意。
经过他的猜想,研究证明,得出了一笔画的几何规律。
这位数学家是( )。
A、欧拉B、高斯C、牛顿4.数学运算符号中的“+”号是由德国数学家( )创造的。
A、魏德美B、莱布尼茨C、鲁道夫5.罗马数字是由罗马人发明的,它一共由( )个数字组成。
、、、7 A6 C5 B二、填空题(每题8分)6.对于两个数字a和b,规定一种新运算,a△b=3×a+2×b和a?b=2×a+3×b,那么2△(3?4)=( )7.志愿者服务队为社区里行动不便的老人送报纸,小马负责一位住在7楼的老人,每上或下一层楼都要走14秒,那么小马上下来回一次共要( )秒。
8.移动右图中的2根小棒,使2013变为另一个数。
这个数最大是。
( ).9.老师要制作1~100这100张数卡,在打印时,打印机发生了故障,将数字“1”错打成了“7”,那么有( )张数字卡被打错了。
10.商店营业员去银行兑换零钱,用100张一百元的人民币兑换了二十元与五十元的人民币共260张,其中二十元的人民币有( )张,五十元的人民币有( )张。
11.在右面算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A=______,B=______,C=______,D=______。
A B C A A + C B ABADBB12.大、小两只水桶中都装了一些水。
已知大桶中水的重量是小桶中水的重量的一半,如果往大桶中倒入30千克水,这时大桶中水的重量是小桶中水的重量的3倍,原来大桶中有( )千克水。
数学竞赛小机灵杯五年级决赛解析
第十二届“小机灵杯”智力冲浪展示活动决赛试卷(五年级组)2014年1月19日8:30~9:50时间:80分钟总分:120分一、判断题(每题1分)【第1题】小数点在十进制中用来隔开整数部分和小数部分。
中国魏晋时代的数学家刘徽第一个将“小数”这一概念用文字表达出来。
……………………………………………………………………………………………()【分析与解】中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。
第一个将这一概念用文字表达出来的是魏晋时代的刘徽。
他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。
填“√”。
【第2题】做小数加减法时要把小数点对齐。
在小数乘法法则中,两个因数中一共有几位小数,就要从积的左边向右数几位点上小数点。
…………………………………………………………………………………………()【分析与解】在小数乘法法则中,两个因数中一共有几位小数,就要从积的右边向左数几位点上小数点。
故填“×”。
第十二届“小机灵杯”智力冲浪展示活动决赛试卷五年级组中国古代数学最重要的典籍应当是《九章算术》,魏晋数学家刘徽用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。
……………………………………………………………………………( )【分析与解】所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。
“圜,一中同长也”。
意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。
早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。
认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。
我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。
小机灵试题
第九届“小机灵杯”小学数学竞赛五年级组初赛试题1.计算:1885.58+167.63-20.34÷2+2×7.21-39.83-7×1.09=()2.有若干根长度相等的火柴棒,把这些火柴棒摆成下面的图形,照这样摆下去,第10个图形一共用了( )根火柴棒。
3.有900名战士排成方阵接受检阅。
若每列的人数是每排人数的4倍,则每列有()名战士。
4.右边的除法竖式中,不同的字母代表不同的数字。
除法竖式的商是()。
5.如图,若△ABC中,AB=AC,∠BAC=40°。
以AB为边在△ABC的外部做等边△ABD,∠ADC= ()度。
6.如图所示,在长方体木块中挖取一个棱长为5厘米的正方体木块后,把这个形体的所有表面涂成红色,然后把它锯成都是1立方厘米的小正方体。
这些小正方体中六个面都没有红色的共有()个。
7.学校组织三、四、五年级共315名小朋友参加春游。
为了能区分每个年级的同学,要求三年级的小朋友带白帽子,四年级的小朋友带红帽子,五年级的小朋友带黄帽子。
白帽子的单价是1.5元,红帽子的单价是2.0元,黄帽子的单价是3.0元。
如果买三种颜色的帽子所用的钱是一样的,那么参加春游的三年级的小朋友有()人。
8.数学兴趣小组的学生不足30人,若分成每5人一组,则余2人;分成每6人一组,则余3人。
如果数学兴趣小组中女生人数比男生人数少7人,那么数学兴趣小组中男生()人,女生()人。
9.将五位数“13579”重复写402次组成一个2010位数“1357913579……”。
删去这个数中所有位于奇数位(从左往右数)上的数字组成一个新数,再删去这个数中所有位于奇数位上的数字。
按上述方法删除到只剩下一个数字为止,则最后剩下的是()。
10.一些小朋友排成一行,第一次从左至右1到3报数,最右端小朋友报2;第二次从右至左1到5报数,最左端的小朋友报3.如果两次都报1的小朋友有4人,那么共有()名小朋友。
数学竞赛之第14届小机灵杯五年级初赛解析
甲数等于 0.165100 16.5 。
(方法二)
设甲数为 x ;
将甲数的小数点向右移动一位得到乙数,则乙数是甲数的10 倍,乙数等于10x ;
将甲数的小数点向左移动两位得到丙数,则丙数是甲数的 0.01倍,丙数等于 0.01x ;
由题意,得
6.2 x
y
167.4
;
解得
x6 y 21
;
李老师水果蛋糕买了 6 块,巧克力蛋糕买了 21 块。
【第 8 题】 已知 A 是一个小于100 的素数,且 A 10 , A 20 , A 30 , A 60 , A 70 的结果都是素数,那么 A ________________________ 。(写出所有可能的数) 【分析与解】数论,素数。
由题意,得12 x 1 12 2 x ;解得 x 6 ;
小明共带了 6 12 2 84 或 6 1 12 84 元。
(第 6 题~第10 题,每题 8 分)
【第 6 题】 用 0 、1 、2 、3 、4 、5 这六个数码可以组成许多正整数,将它们从小到大排列可得1 、2 、3 、4 、5 、10 、 11、12 、13 …,那么 2015 是这列数中的第 ________ 个数。
【第 5 题】 小明家左边与右边各有一家超市在促销同一种品牌的酸奶。如果去左边这家超市购买,所带的钱恰好能买 12 盒;如果去右边那家超市购买,所带的钱恰好能多买 2 盒。已知右边超市每盒酸奶的价格比左边超市每 盒酸奶的价格便宜1 元,那么小明共带了 ________ 元。 【分析与解】
(方法一)
右边超市每盒酸奶的价格比左边超市每盒酸奶的价格便宜1 元;
届四年级数学小机灵真题及答案
第二届“聪明小机灵”小学数学邀请赛试题....................... 第三届“聪明小机灵”小学数学邀请赛试题. (9)第四届“聪明小机灵”小学数学邀请赛试题....................... 第五届“聪明小机灵”小学数学邀请赛试题(复赛)............... 第六届“聪明小机灵”小学数学邀请赛决赛试题答案............... 第七届“聪明小机灵”小学数学邀请赛试题(复赛)............... 第八届“聪明小机灵”小学数学邀请赛试题(复赛)................. 第九届“聪明小机灵”小学数学邀请赛试题(复赛)...............第一届“聪明小机灵”小学数学邀请赛试题第二届“聪明小机灵”小学数学邀请赛试题第三届“聪明小机灵”小学数学邀请赛试题(复赛)第六届“聪明小机灵”小学数学邀请赛决赛试题答案题(复赛)题(复赛)第一项,下列题目每题5分。
(1)(1+2+3+...+2008+2009+2008+...+3+2+1)/2009=(2)一叠人民币中有1元,2元,5元,10元,20元,50元,100元,共计940元,各种币值的张数相同。
每种币值的张数各是(??)张。
(3)用数字2,4,7组成没有重复数字的三位数,这些三位数的和是(??)(4)如图,图中的小三角形面积是大三角形的(??)分之(??)(5)1/2+2/4+1/3+6/9+1/4+9/12=(??)(6)某地区有30个县城,每个县城都有3条公路通向别的县城,这些县城之间共有(??)条公路。
(7)2角和5角的硬币共30枚,总钱数是10.20元,2角硬币有(??)枚,5角硬币有(??)枚。
(8)幼儿园老师给若干小朋友们分苹果,每人5只就剩下7只,每人7只就少9只,老师给(??)个小朋友分苹果,共有(??)只苹果。
(9)从右图中的中心所在的2出发,每一步都移动到所接触的圆上,要经过四个圆而依次得到数字2,0,0,9,共有(??)种不同的方法。
14届小机灵杯3年级初赛
(第 1 题~第 4 题,每题 8 分。) 1、已知 1050-840÷□×8=90,那么□=__________。 【分析】7 2、即将过去的 2015 年中有连续的 7 天,其日期数总和是 100,那么这 7 天的日期 数分别是_____、_____、_____、_____、_____、_____、_____。 【分析】如果这 7 天是连续的,那么 7 天的日期和是 7 的倍数,但 100 不是,所以这 7 天一定跨月了,和是 100,我们大致估计一下,这 7 天中的前几天应该是 30 左右,也就是说最多在第 4 天就应该进入下个月的 1 号了,否则,前 4 天的和 最小为 25 26 27 28 106 ,超过 100,而若第 3 天就进入下个月的 1 号,显 然又不够 100 所以后 4 天一定是 1、2、3、4,所以可得 7 天分别是 29、30、31、1、2、3、 4 3、用 5 个相同的小正方形拼成一个轴对称图形,要求每个小正方形至少有一条边 与另一个小正方形的边完全重合,共有__________种不同的拼法。请你一一画出这些图 形。 (通过旋转或翻转得到的图形算作同一种) 【分析】如图,6 种
4、小明的弟弟是三胞胎,小明今年的年龄与 3 个弟弟的年龄总和相等,再过 6 年, 3 个弟弟的年龄总和是小明年龄的 2 倍。小明今年__________岁。 【分析】再过 6 年,小明长 6 岁,弟弟们长 18 岁,相差 12 岁,是 2 倍,所以 6 年后小 明 12 (2 1) 12 岁,今年小明 6 岁 (第 5 题~第 8 题,每题 1Байду номын сангаас 分。) 5、下图“○”中所填的数等于与之相连的三个“△”中数的乘积, 中所填的 数等于与之相连的三个“○”中数的总和。现将 5、6、7、8、9 分别填入五个“△”中, 则 中的数最大等于__________。
三年级小机灵杯1-12届初赛7-8届决赛真题及答案
小机灵杯1-12届复赛真题试卷小机灵杯1-11届复赛真题答案小机灵杯7届决赛真题小机灵杯8届决赛真题第一届小机灵杯邀请赛1、按规律填数:901 812 723 634 545 ( ) ( )2、在一个减法算式中,把被减数,减数,差这三个数相加,所得的和除以被减数(不等于0),商等于( ).3、右式中,不同的字母表示不同的数字,那么ABC表示的三位数是( ).4、如果2只白兔2天吃白菜2千克,照这样计算,那么8只白兔8天吃白菜()千克.5、右面算式中的被除数是( )6、甲,乙两人今年的年龄和是33岁,4年后,甲比乙大3岁,问甲今年( )岁.7、把边长分别为10厘米,9厘米,8厘米和7厘米的4个正方形按照从大到小的顺序排成一行(如图)排成的图形的周长是( )厘米.8、有一堆围棋子,白子的个数是黑子个数的2倍,拿走96个白子后,黑子的个数是白子个数的2倍,原来黑子有( )个.9、有1张伍元币,4张贰元币,8张壹元币.要拿出8元钱可以有( )种不同的方法.10、亮亮和聪聪玩“石头、剪刀、布”的游戏,两人用同样多的石子做记录,输一次就给对方一颗石子,结果亮亮胜了3次,聪聪比原来多了9颗石子,他们共做了( )次游戏.11、任取自然数2,3,4,5,6,7中的三个数(不能重复)组成一个和,那么不相同的和共有( )个.12、新华小学的电表显示的用电量是61111,要使电表显示的用电量的五位数中有四个数码相同,学校至少再用( )度.13、黑、白两种颜色的珠子,一层黑,一层白,排成正三角形的形状(如图),当白珠子比黑珠子多10颗时,共用了( )颗白珠子.14、公园里有一排彩旗,按3面黄旗,2面红旗,4面绿旗的顺序排列,小明看到这排彩旗的尽头是一面绿旗,已知这排彩旗不超过200面,这排旗子最多有( )面.15、将写有数码的纸片倒过来看,0、1、8三个数字不变,6倒过来是9,9倒过来是6,而其余的数字倒过来则没有意义,某种游戏卡片是从001,002,003,004,……,998,999共有999张,那么,所有的卡片倒过来看,与原卡片数值保持不变的共有( )张.第二届小机灵杯邀请赛1.在右面竖式的各个方框中填上适当的数字,使竖式成立.2.推算是24,是28,那么是( )3.按下面的规律摆五角星,第82个五角星是( )色的.在这种颜色的五角星中,它是第( )个.★★★☆☆★☆★★★☆☆★☆★★4.学校有60人要参加“金孔雀”舞蹈比赛,比赛时要求每排人数即不能少于4人,也不能多于16人,问共有( )中排法.5.根据前面三个算式的启发,括号里面应当填上( )4.5.6.7.8.9.6.一个电影院的第一排有15个座位,以后每一排都比前一排多2个座位,最后一排有73个座位,这个电影院一共有( )个座位.7.下图中不含“★”的三角形比含“★”的三角形多( )个.8.把21分拆成两个自然数之和,且使这两个自然数的乘积最大,这个最大的乘积是( ).9.如图,在长方形ABCD 中,EFGH 是正方形.如果AF=11厘米,HC=14厘米,那么长方形ABCD 的周长是()厘米.10.将不大于12且互不相同八个自然数天使右图八个放个中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.在一道减法算式里,被减数、减数与差的和是360,而差比减数的4倍还多20.被减数是 (),减数是(),差是().12.有两个完全一样的长方形,拼成两种长方形,一种长方形的周长是100厘米,另一种长方形的周长是140厘米,原来长方形的长是()厘米,宽是()厘米.13.某商场里面花布的米数是白布的3倍,如果每天卖20米白布和45米花布.()天以后,白布全部卖完,而花布还剩下180米,原来有花布()米.14.1996年爸爸的年龄是姐姐和妹妹年龄和的4倍,2004年爸爸的年龄是姐姐和妹妹年龄和的2倍,爸爸是()年出生的.15.书架上、下两层摆放着若干本书.如果从上层拿10本放到下层,则下层的本数是上层的2倍,如果从下层拿到10本放到上层,则上层的本数是下层的3倍,上层原来有图书()本,下层原来有图书()本.第三届小机灵杯邀请赛1、用简便方法计算下面的题目:100+99989796959465432-+-+-+-+-+-2、不同的余数有多少个?24? ①余数共有()个;②不同的余数共有()个.3、用40米的铁丝围成一个长和宽不相等的而且是整米的长方形,一共有( )种不同的围法.4、时钟现在是整点,再过112小时,钟面上恰好是1点整.请你判断,现在是()整.5、把一张正方形的纸对折,再对折,这样连续几次,写出对折了4次时长方形的块数是()块.6、在下面一列数中,第12个数是:()123654789121110131415,,,,,7、右图中有()几个长方形8、小华和小强的体重是84千克,小华和小玲的体重是80千克,小强和小玲的体重是82千克小华比小玲重()千克.9、如图,在长方形ABCD 中,EFGH 是正方形.如果16AF =厘米,21HC =厘米,那么长方形ABCD 的周长是()厘米.10、从小到大的连续10个自然数,如果最小的数与最大的数之和是99,那么最小的数是().11、有四种不同面值的硬币如下图所示,假若你恰好有着四种硬币各一枚.一共能组成()种不同的钱数.请你用加法算式一个一个的列举出来.12、如下图,李明从A 走到B 再到C 再到D,走了38米.玛丽从B 到C 再到D 再到A,走了31米.这个长方形池ABCD 的周长是()米.第四届小机灵杯邀请赛1、699999+69999+6999+699+69=().2、一列数15791317,,,,,,从第二项起,后项减去它的前一项的差都相等,从左向右数起, 第()个数是197.3、观察下面三角形中的各数的规律,并按照这个规律求m 的值.m =().4、在一条直线上有四个点,,,A B C D ,点B 不在,,A C 之间,点D 是AC 的中点,从B 到D 的距离是20cm ,从B 到C 的距离是12cm ,从A 到B 的距离是多少?5、将一张正方形纸片对折成长方形后,在此长方形纸上画两条直线,然后沿着两条直线各剪一刀,最多能将这张正方形纸分成()块.6、一个长方形的长是40cm ,宽是25cm ,如果将此长方形剪两刀,得到3个或4个长方形,那么被剪两道后得到的那些长方形的周长之和最多是()cm .7、2个男孩和2个女孩参加歌咏比赛,他们一个接一个地唱,假定两女孩不能连着唱,必须隔开,能排成()种不同的顺序.8、假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换()只兔子.9、哥哥给了弟弟84分之后,弟弟反而比哥哥多36分,哥哥原来比弟弟多()分.10、用一只茶杯将水倒入一只空水瓶里,如果2杯水倒入这个水瓶里,这个水瓶的和水的重量是540克,如果5杯水倒入这个水瓶里,这个水瓶的和水的重量是600克,空水瓶的重量是( ). 11、在某一个月中,有三个星期日的日期刚好是偶数号,那么这一个月的8号是星期().12、小平和小丽到新华书店去买书,她们选中了同一本书,可是她们带的钱不够,小平差15元,小丽差2元,只好先合买一本,还多1元.每本书()元.13、一本字典共有199也,在这本字典的页码上,数字1共出现了()次.14、口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出()个球才能保证摸出的球中每种颜色的球都有.15、10名乒乓球运动员分成三队,每队若干个队员进行单打比赛.规定同队的运动员彼此之间不用比赛,不同队的运动员两两比赛一场,那么比赛的总场数最少是( )场,最多是( )场.第五届小机灵杯邀请赛复赛1、199+298+397+496+595+20=().2、9937+4599+83=创( ).3、小明去同学家玩.走进了弄堂,但记不起门牌号码了.怎么办呢?他忽然想起,这个门牌号码挺有意思,曾经研究过一次.它是一个三位数,个位数字比百位数字大4,是位数字比个位也大4.根据这点记忆,你能帮助小明找到同学家吗?如果想到了,就写在下面.门牌号码是().4、企鹅出版社出版了一套《天才智慧》丛书,出版社为这套丛书设计了一个漂亮的书盒,这套丛书连同书盒售价280元,书店允许顾客只买书而不买书盒.如果书价比书盒贵230元,那么书盒价为()元.5、波特有6只狗,如果他每次遛2只狗,那么狗的搭配情况总共有()种.6、请把图中①~⑨号小正方形的标号填入右图中九个小方格 中,使这九块小正方形刚好拼成中间的图形.7、一批图书,本数在50~60之间,平均分给9名同学,结果余下的书和每人分到的书的本数相同,那么这批图书共有多().8、园林工人在一条马路的一边栽树(包括端点),,每2棵树之间的距离是4米,一共栽树86棵,这条马路长()米.9、下图是用17根火柴棒摆成的,图中共有8个正方形.从图中至少拿掉()根火柴棒,才能将这8个正方形全部破坏(构不成正方形),请在图中表示出来.10、图10,线段10,8,3,a cm b cm c cm ===图形的周长是()cm .11、一位妇人,人到中年,很不愿提起自己的年龄,但她又不愿说谎.一天,有人问及她的年龄,她只好实话实说:“我4年后的年龄的6倍减去我3年前的年龄的6倍,就是我现在的年龄.”这位妇人今年( )岁.12、有5个袋子.A袋和B袋的重量之和是120千克,B袋和C袋的重量之和是135千克,C袋和D袋的重量之和是115千克,D袋和E袋重量之和是80千克,A袋、C袋、E袋子的重量之和是160千克.A袋的重量是( )千克,B袋的重量是( )千克,C袋的重量是( )千克,D袋的重量是( )千克,E袋的重量是( )千克.c g h k u,背面分别写着1,2,3,4,5,但是顺序不同.把13、有5张扑克牌,表面分别写着字母,,,,c k u,第二次出现了如下情况这些扑克牌随意散放,第一次出现了如下情况25k c g,那么字母u背面的数字是( ).2414、数一数下面图形共有( )个正方形.15、把27米长的一根绳子分成三段,使后一段比前一段多三米.那么这三段绳子分别长()米,( )米,( )米.第六届小机灵杯邀请赛复赛A 卷1、()()1+4+7+10++4047101337-+++++=.2、左式中,不同的符号表示不同的数字,那么○+△+◇=.3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,4,10,22,46,(),190,4、在图中,从甲点出发沿逆时针方向绕五边形走,到乙点拐第一个弯,拐第101个弯在点.5、一本故事书的页码共用了192个数字,这本书一共有页.6、5位选手进行象棋比赛,每两个人之间都要进行比赛一盘,规定选手胜一盘得2分,平均一盘各得一分,输一盘不得分.已知比赛后,其中4位选手总共得16分,则第5位选手得了分.7、某年的三月份正好有4个星期二和星期五,那么这年的3月1日是星期.8、有十个连续自然数,前五个数的和为60,后五个数的和是?9、有一桶水,一只小鸭可饮用25天,如果和一只小鸡同饮,那么可以饮用20天,如果给一只小鸡饮用,可以饮用天?10、一个正方形队列,如果减少一横行和一竖行,要减少21人,问原正方形队列有人?11、如图所示的病房区共有五间单人病房,住着,,,A B C D 四位病人,根据不同的病情要求让A 与D 交换病房,C 与B 交换病房,每一次交换只能将一位病人搬入另一间无人的病房,那么需要完成交换,至少要为病人搬次家?54321DCB A D走廊走廊12、解放军某部赶往受灾地区志愿抗洪,原计划每辆汽车乘30人,还多3人任意分乘到各辆车上,但是由于有另外的紧急任务调走了一辆车,这时只好改为每辆汽车乘34人,还多5人任意分乘到各辆车上.原来准备辆车,共派出人去抗洪.1、()()6+8+10+12++368101214+34-++++=.2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,3,7,15,31,(),127,4、把1到500号卡片依次发给甲、乙、丙、丁四个小朋友,1234567891011121314151617那么,119号卡片发给5、一本故事书共有185页,那么编这一本书的页码一共要个数字.6、右图共有个长方形.7、某月内有三个星期六是偶数,这个月的18日是星期.8、用3,4,5,6四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的差是?9、市里举行足球比赛,有15个区各派出1个代表队,每个队都要与其他各队比赛一场,这些比赛分别在15个区的区体育场进行,平均每个体育场要举行场比赛?10、用5张长2分米、宽1分米的长方形不干胶,贴在一块长5分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、经纬小学有10名同学参加区数学比赛,平均分为90分,其中2名同学分别获得第一名和第二名,他们的得分都是整数,另外有五个人都得了92分,有3人都得了84分.获得第二名的同学得分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了21次,一共剪成 长方形, 正方形.1、()()7+9+11+13++379111315+35-++++=.2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是.2,3,5,9,17,33,(),129,4、在图中,从A 点出发沿顺时针方向绕五角星走,到B 点拐第一个弯,拐第95个弯在点.5、小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了页. 6、右图共有个长方形.7、希望小学的操场上有150名学生在跳绳和打球.其中女生54名,如果有63名学生在跳绳,有42名男生在打球,那么有名女生在跳绳.8、用2,3,4,5四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的和是?9、有15只甲A 足球队,进行双循环比赛(每两支队赛两场),共要举行场比赛?10、有很多张长2分米、宽1分米的长方形不干胶,和边长为1分米的正方形不干胶,用这些不干胶贴在一块长3分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、继红小学有10名学生参加小机灵杯数学比赛,平均分为90分,平均分和每个同学的得分都是正整数,前9名的分数各不相同,其中一名同学得满分,第十名同学得分的最低分是分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了36次,一共剪成长方形,正方形.第七届小机灵杯邀请赛复赛1、如果*a b a ba b =?-,例如4*3434313=?-=,那么13*8=2、用0~9十个数字填写下面的竖式,已经用了三个数字,剩下的七个数字,每个只能用一次,要使算式成立,减数是3、一个长方形队列,如果增加一横行和一竖行,就要增加13人,这个长方形的队列原来最少有人4、桌上有8张扑克牌,点数分别是2,3,5,6,7,8,9,10.甲、乙、丙三人各取两张牌,两张牌的点数分别是:甲是9,乙是15,丙是17,那么甲取出的两张点数是5、甲校原来比乙校多48人,为了方便就近入学甲校有若干人转入乙校,这是甲校反而比乙校少12人.甲校有人转入乙校6、将1,4,7,10,13,16,19,22,25这9个数分别填入下图中的9个圆圈中,使三条边上的四个数字和都想等,每条边上四个数字的和最大是7、如果三本书的价钱等于四本笔记本的价钱,而买四本书要比三本笔记本多花5角6分,那么买一本书和一本笔记本共需元8、下面两种那个途中,周长较大的是.(在横线上填写表示图名的字母)9、某三位数是7的倍数,且在400到500之间,它的百位数字与个位数字的和是9,那么这个三位数是10、下图中有10个编好号码的房间,你可以从小号码的房间周到相邻的大号码的房间,但是不能从大号码的房间走到小号码的房间,从1号房间走到10号房间共有种不同的走法11、有若干根长度相等的火柴棒,把这些火柴棒摆成如下面的图形,照这样摆下去,到第10行为止,一共用了根火柴棒12、在一块长5米,宽4米的长方形地上铺80块边长为5分米的小正方形地砖,现在把每相邻的两个小正方形的边界用细玻璃条隔开,并在长方形地的边界上用细金属条围上.如果嵌1米长的细玻璃条需3元,围1米长的细金属条需5元,那么共需元(接缝处长度忽略不计)第八届小机灵杯邀请赛复赛1、666666666666666+-锤=( )2、如果10987654320-+⨯÷+-+-⨯=,那么□=( ).3、观察表中各数的排列规律,A是( ).4、一个正方形,如果边长增加5厘米,这个正方形的周长增加( )厘米.5、两个正整数的和是18,其中一个数是另一个数的5倍.这两个数分别是( )和( ).6、如图,网格中的小正方形的面积都是1平方厘米,那么,阴影部分的面积是( )平方厘米.7、从1-10这10个正整数中,每次取出两个不同的数,使它们的和是4的倍数.共有( )种不同的取法.8、3只橘子的价格与4只苹果和1只梨的价格相同,4只梨的价格与6只橘子的价格相同.( )只苹果的价格与1只梨的价格相同.9、在6和26之间插入三个数,使它们每相邻的两个数的差相等,这些数的和是( ).10、64位同学都面向主席台,排成8行8列的方阵.小胖在方阵中,它的正左方有3位同学,正前方有2位同学.若整个方阵的同学向右转,则小胖的正左方有( )位同学,正前方有( )位同学.11、一个三位数除以37,商和余数相同,这个数最小是( ).12、在方框中添加适当的运算符号(不能添加括号),使算式成立.17□3□4□9□7□6□4=2013、用数字1,2,3,4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数多( ).14、学生问数学老师的年龄.老师说:“由三个相同数字组成的三位数除以这三个数字的和,所得的结果就是我的年龄”,老师的年龄是( )岁.15、在图中的每个方格中各放1枚围棋(黑子或白子),有( )种放法.16、1881515188151518……共210个数字,其中1有( )个,8有( )个,5有( )个;这些数字的和是( ).17、王强、李刚是哥哥,小丽、小红是妹妹,四人的年龄和为90,哥哥都比妹妹大4岁,小红比王强小5岁.小红( )岁.18、给定三种重量的砝码5g,13g,19g,(每种砝码的数量足够的多),将它们组合凑成100g,(每种砝码至少用一个)有( )中不同的方法.19、有两个正整数,把这两个正整数相乘,再加上这两个正整数的和,结果正好等于34,这两个正整数中较大的数是( ).20、写出所有数字的和为13,积为24,这样的四位数的偶数是( ).第九届小机灵杯邀请赛复赛下面每题6分1、计算2102092082072062052047654321+-+-+-++-+-+-+=.2、如右图所示,从上往下,每个方框中的数都等于它下方两个方框中所填的数的和.最上层方框中两个数的和是.3、如右图所示,,,,,,,,,,a b c d e f g h i j 表示10个各不相同的数.表中的数为所在行与列对应字母的差,例如“6b h -=”.图中“九宫格”中就个数的和是.4、小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一般,他俩今年的年龄总和是岁.5、如下图所示,从A 点走到B 点,沿线段走最短路线,共有种不同的走法.6、五位打工者一天的辛苦劳动后共获得330元工资.由于工种不同,获得最高工资者比其他四位分别多的12,14,21和28元,获得最低工资者的工资是元.7、右边图形的周长是厘米.8、在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是 .AB下面每题9分9、下边的乘法算式中,只知道一个数字“8”.请补全.那么这个算式的最小值是.⨯810、在1,2,3,4,5,6六个数中,选三个数,使它们的和能被3整除.那么,不同的选法共有种.11、有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60快.那么,这四袋糖的块数总和至少有块.12、3根火柴可以摆成一个小三角形.用很多根火柴摆成了如右图那样的一个大三角形.如果大三角形外沿的每条边都增加10根火柴,那么摆成这样形状的大三角形共需要根火柴.下面每题12分13、一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题目的数量等于小胖和小亚答对题数量的总和,小丁丁大队了17道题,这次测验共有道题.+++=,小于2000的四位数中,数字和等于26的四位数共有14、1997的数字和是199726个.15、小刚在一个长方形中任取三条边相加,所得的和是78厘米,小亚在同一个长方形中任取三条边相加,所得的和是66厘米.这个长方形的周长是厘米.第十一届“小机灵杯”数学竞赛初赛试卷(三年级组)时间:60分钟总分:120分第一项:每题8分1.已知1+2+3+….+49+50=1275,那么1+2+3+….+49+50+49+48+….+3+2+1=_______。
中环杯小机灵杯试题精选答案
中环杯、小机灵杯试题精选(答案)中坏杯、小机灵杯试题精选(答案)[1]第一题:先考虑没有球号和箱号相同的情况。
若1号放在2号,接下来考虑2号箱,我们发现,不管它放几号球,最终的排法都是唯一的,所以有3种排法,而1号可以放在3个箱子里,所以共有9种方法,那么,题目要我们求的就应该是4*3*2*1-9=15种这道题建议列表格分析,将1号球放在2号箱的情况全都列出来,很简单,不复杂的。
第二题:1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,首先确定,4,6, 8三个数两次都出现在十位上,否则不可能是质数, 2 , 5应该至少有一次出现在十位上,否则也不可能是质数,所以我们先预估最小的和应该是(4+6+8)*10*2+(2+5)*10+2+5+(1+3+7+9)*2=477 ,构造下:2 , 83 , 5,47 , 61 , 67,41 , 53 , 29 , 89 ,其符合条件,所以最小是477【2】这道题需要用到容斥原理,至少有一个班的同学站在一起的情况二一班(或二、三班)两人站在一起的情况*3-两个班人站在一起的情况乜+三个班人站在一起的情况,所以本题中至少有一个班同学站在一起的情况=5 s *2*3-4 s *2*2*3+3〜*2*2*2=480本题方法数为6—480=240(种)本题是容斥原理和加乘原理的综合运用,有相当的难度.如果是四年级。
可以这样解:把六个学生分别记为Aa,Bb,Cc排队时候,第一个位置有6种可能,第二个位置有4种,从第三个位置开始出现不同情况,为方便解答”假设前两个位置排的是AB 若第三个位置排的是a,则接下来b只能排在cC之间,所以只有2种可能性若第三个位置排的是C或c,则接下来由加乘原理有2*2种可能性综上,共有6*4*(2+2*2*2)=240种方法[3]先计算出最多剪出133连,再找出具体方法。
我画了一张图,其中最短的线段是1,阴影最初的和是3 ,第一次的和是6,第二次的和是15,第三次的和是42,每次操作以后,和都变为前一个和的3倍少3,第四次的和为42*3-3=123第五次的和为123*3-3=366第六次的和为366*3-3=1095第七次的和为1095*3-3=3282第八次的和为3282*3-3=9843做这类题要注意发现规律,不要死算。
第十四届小机灵杯三年级试题
【第 11 题】 小明爸爸从家出发去超市购物。如果先骑自行车 12 分钟,再步行 20 分钟能到达超市;如果先骑自行车 8 分 钟,再步行 36 分钟也能到达超市。那么如果先骑自行车 2 分钟,再步行 ________ 分钟也可以到达超市。 【分析与解】行程问题,设而不求。 设骑车的速度为 x 米/分,步行的速度为 y 米/分;
所以只能是 100 29 30 31 1 2 3 4 ; 即这 7 天的日期数分别是 29 、 30 、 31 、 1 、 2 、 3 、 4 。
【第 3 题】 用 5 个相同的小正方形拼成一个轴对称图形,要求每个小正方形至少有一条边与另一个小正方形的边完全 重合,共有 ________ 种不同的拼法。请你一一画出这些图形。 (通过旋转或翻折得到的图形算作同一种) 【分析与解】图形剪拼。
【第 6 题】 小胖将 1 , 2 , 3 , 4 ,„, 49 , 50 这 50 个整数按从小到大的顺序无间隔地排列在一起,然后在每相邻的 两个数字之间插入 “ ” , 得到了一个加法算式: 1 2 3 4 5 6 7 8 9 1 0 11 4 9 5 0 。 请你算一算,这个加法算式的和,结果是 ________ 。 【分析与解】本题即求 1 ~ 50 这 50 个整数的数字之和。 (方法一)
第十四届“小机灵杯”数学竞赛初赛(三年级组)
注意:答案仅供参考,一切以官方公布为准
2015 年 12 月 27 日 13: 00 ~ 14 : 00 时间: 60 分钟 总分: 120 分
(第 1 题~第 4 题,每题 8 分) 【第 1 题】 已知 1050 840 □ 8 90 ,那么 □ ________ 。 【分析与解】计算问题,易得□=7 【第 2 题】 即将过去的 2015 年中有连续的 7 天,其日期数总和是 100 ,那么这 7 天的日期数分别是 ________ 、 ________ 、 ________ 、 ________ 、 ________ 、 ________ 、 ________ 。 【分析与解】时间与日期。 如果这 7 天在同一个月中,那么日期数总和是中间数 7 ; 而 100 不是 7 的倍数; 故这 7 天在相邻的两个月。
(完整word版)小机灵杯14届三年级决赛
14届小机灵杯三年级决赛(第1题〜第4题,每题8分。
)1 、森林公园养了一些鸡与兔。
已知兔的脚数与鸡的只数相等,鸡脚与兔脚共有120只,那么鸡有_______ 只,兔有_______ 只。
【分析】1只兔与4只鸡为1组,1组有4X 1+2 X 4=12只脚,共有120 - 12=10组,因此有40只鸡,10只兔2 、小明爸爸去花店买了一盆水仙花和一颗发财树。
已知一颗发财树的价格比一盆水仙花贵100元,一颗发财树的价格比一盆水仙花的4倍还贵16元。
一颗发财树的价格是________ 丿元。
【分析】水仙花(100-16 )-(4-1 )=28元,发财树128元3 、小马虎在计算一道有余数的除法时,把被除数247错写成了427.这样商比原来大了6,而余数正好相同。
那么这道题的除数是___________ ,余数是_______ 。
【分析】除数是(427-247 )- 6-30 , 247十30=8…7,余数是74 、一项工程若由10人一起工作则18天可以完成。
若要在12天之内完成这项工作,应该至少安排__________ 人一起工作。
【分析】至少10 X 18- 12=15平方厘米(第5题〜第8题,每题10分。
)5 、在等腰直角三角形ABC中,如果将三角形AEF沿着EF边向下折,A点恰好与0点重合;如果将三角形CFG沿着FG边向左折,C点恰好与0点重合;如果将三角形BEH沿着EH边向右折,B点恰好与O点重合。
已知三角形ABC的面积是100,那么长方形EFGH的面积是O【分析】如下图,已知长方形EFGH勺面积是三角形ABC面积的一般,为506、黑、白、蓝三种颜色的盖子共有100个,将它们盖在红、白、黄三种颜色的100个瓶子上。
其中蓝盖26个,黑盖25个,红瓶29个,黄瓶46个,有12个白瓶和4个红瓶盖着白盖,15个红瓶和4个黄瓶盖着蓝盖。
那么盖着黑盖的红瓶有__- ____________________________ 个,白瓶有__________ 个,黄瓶有____________ 个。
四年级中环小机灵近3年真题解析集(包括走美杯数学花园等)
4. 一本书中间的某一张被撕掉了,余下的各页的页码数之和是1133,这本书共有( ) 页。 【答案】22 【分析】 考点:页码问题 1+2+3+……+48=(1+48)×48÷2=49×24=1176;1176-1133=43;43=21+22; 共48 页,缺21、22 页 第二项:每题10 分 5. 园林工人要在周长300 米的圆形花坛边等距离地挖坑栽树。他们先沿着花坛边每隔3 米 挖一个坑,当挖到30 个坑时,接到上级通知,改为每隔5 米栽一棵树。那么他们还要挖 ( )个坑才能完成任务。 【答案】54 【分析】 考点:植树问题 300÷5=60;3×(30-1)=87;0,15,30,45,60,75(重复)共6 个;还要挖60-6=54 个坑
1 2 3 4 5 6 7 8 9 10 11 12
A
A
A
A
A
A
B
B
B
B
C
C
C
所以通过该图可以判定出,在这12 天中,只有1人来图书馆的天数为4 天,
122 ÷12 =10组……2天所以一共有4×10+1=41(天)
14. 一群猴子分成三组去桃园摘桃子,每组猴子数目相等,采摘完工后,将桃子合在一起后平 分桃子。如果每只猴子分5 个,那么还剩27 个;如果每只猴子分7 个,那么有一只猴子分到 的桃子不够7 个(至少有1个)。这群猴子所摘桃子的总数是_____个。 解析:考点为盈亏问题 该类型的题目要求学生掌握列方程解应用题的基本方法或盈亏的做题目思路。 在分配过程中,我们发现第二种分配方案不足7 个,但不足7 个存在几种情况,到底为哪种情 况呢?通过观察第一种分配方案可以发现桃子的总数一定为3 的倍数,既然第二种方案每只猴 子分7个,则分出的数量也一定为3的倍数,则缺少的部分也为3的倍数,则少了3或6个,
2016第14届小机灵杯五年级决赛解析
(估算)又因为 95 × 53 = 5035 ,95 × 65 = 6175 ,第十四届 “小机灵杯 ”数学竞赛决赛试题 (详解 )(五年级组)时间:60 分钟 总分:120 分(第 1 题 ~第 5 题 ,每题 6 分 ) 1.已知 a + 3 = 3a ,b + 4 = 4b ,c + 5 = 5c ,d + 6 = 6d ,则 a × b × c × d = 。
【答案 】 3【分析】方程+分数计算可以求出 a = 3 ,b = 4 , c = 5 , d = 6 ,则 a × b × c × d = 3 × 4 × 5 × 6 = 3 。
2 3 4 5 2 3 4 52.一个四位数是 25 的整数倍,其各位数字之和是 25,这个四位数是 。
【答案 】 9925、 4975、 5875、 6775、 7675、 8575、 9475 【分析】整除性+分类讨论 末两位 00:不存在; 末两位 25:9925,1 个; 末两位 50:不存在;末两位 75:4975,5875,6775,7675,8575,9475,共 6 个;3. 有些数不管是从左往右读,还是从右往左读,读出的结果都相同(比如 2772,515),这样的数叫做“回文数”。
现有一个两位数,用它分别乘 91,93,95, 97,所得的积都是回文数,这个两位数是 。
【答案 】 55【分析】整除+数位分析不妨令这个两位数为 ab ,因为 ab × 95 得到的乘积是回文数, 所以,乘积首末位数字为 5,b 是奇数, ab × 95 = 5cc 5 ,(可以试出 95 × 55 = 5225 )说明 ab 的范围是 53~65 之间;又因为,四位回文数一定是 11 的倍数,因此,只能是 ab = 55 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年
2004年
2005年
2006年
2007年
2008年
2009年2010年
2,459
3,228
4,3
5,30
6,4315
7,32
8,16
9,66
10,11 11,10 12,2660 13,60 14,792 15,1
16,49/4 17,G
18,44 19,12 20,1536,7
2012年
2013年
第十一届小机灵杯五年级初赛试题
1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.9
2、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。
那么,五(1)班的男生人数是女生人数的多少倍?
3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、
4、
5、
6、7七个数字。
如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?
4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。
乙跑完一圈需要几秒?
5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?
6、把正整数排成下列数阵:
1 2 5 10 …
4 3 6 11 …
9 8 7 12 …
16 15 14 13 …
……………
第21行第21列的数是多少?
7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。
那么剩下的这张卡片是原来200张卡片里的第几张?
8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。
可以肯定至少有多少人四项运动都会?
9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?
10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?
11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?
12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?
第十一届"小机灵"杯数学竞赛决赛五年级试题
第一项,每题4分。
1、
2、商场元旦促销,将彩色电视机降价20%出售,那么元旦促销活动过后商场要涨价______%才能恢复到原价。
3、已知13a-4b=11,那么2013-(20b-65a)=______。
4、在一次象棋比赛中,每两个选手恰好比赛一局,赢者每局得2分,输者每局得0分,平局则两个选手各得1分。
今有4名计分者统计了这次比赛中全部的得分总数,由于有的计分者粗心,其数据各不相同,分别为1979、1980、1984、1985.经核实,其中有1人统计无误。
这次比赛共有________名选手参加。
____ ___ ____
5、如图所示,三位数ABC加297的和是三位数CBA,满足条件的三位数ABC共有____个。
第二项,每题8分。
6、如图所示,P为平行四边形ABDC外一点,, 已知三角形PAB与三角形PCD的面积分别为11平方厘米和5平方厘米,那么平行四边形ABCD 的面积是________平方厘米。
7、等差数列a1,a2,a3,……a19共有19项,已知a1+a7+a14+a18=120 那么a1+a2+a3+….a19=________。
8、有一个容器内注满了水,将大、中、小三个铁球这样操作:第一次,沉入小球;第二次,取出小球,沉入中球;第三次,取出中球,沉入大球。
已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的3倍。
那么,小、中、大三球的体积比是______。
9、如图所示,画有15个边长为1cm的正方形共产生24个顶点,选择其中的3个点用线段围成一个面积是2.5cm2的三角形。
这样的三角形共有_____个。
10、甲、乙两人分别从A、B两地同时出发相向而行。
当甲走到一半时,乙将速度提高1倍,结果两人在距离B地1200米处相遇,并且最后同时到达对方起点。
那么两地相距____米。
第三项,每题12分。
11、用120个同样大小的小正方体拼成一个a×b×c的长方体,在长方体的表面涂色,在满足上述条件的各种操作中,恰有一面涂色的小正方体的个数的最大值记作X,最小值记作Y。
那么X-Y=_____。
12、一个正整数数列,第一项是8,第二项是1,从第三项起,每一项等于它前面两项之和。
该数列第2013项被105除余______。
13、乘积AAAAAAAAA×BBBBBBBBB的各位数字总和是_______。
14、一个31位的正整数,如果把这个正整数每相邻的两个数码组成的正整数作为两位数来考虑的话,任何一个这样的两位数都可以被17或23整除,而且这个31位的正整数的数码中只有一个7。
这样31位的正整数所有数码之和是_____。
15、如图,在直角梯形ABCD中,AD∥BC,AD=1,BC=7,EF∥AD,并且EF将梯形分为面积相等的两部分。
那么,EF=_______。
第十二届小机灵杯
五年级决赛试题及详解
2015年
第十三届小机灵杯五年级初赛试题及详解.rar
第十三届小机灵杯五年级决赛试题及详解.rar。