信号的时频分析与小波分析PPT

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

第二章 时频分析与连续小波变换 ppt课件

第二章 时频分析与连续小波变换  ppt课件

定理及傅里叶变换的性
质)
再根据 Schwarz 不等式,有:
2 t
2
1 * (t ) dt ]2
1 f4
t [ f '(t) f *(t) 2
f
'*
(t)
f
(t )]dt
2
4
1 f
4
t(
f
(t
)
2
)
'
dt
2
1 / 4( 考虑到
lim
t
t f (t ) 0 , 再由分部积分
x(n)X(ej)
离散、非连 周续 期、周
信号时域和频域特性之间关系:
本课程中傅里叶变换的记号:
fˆ()
f
(t)eit dt
f (t) 1 fˆ()eitd
2
连续时间傅里叶变换性质
f ( t ) F fˆ
f 1 * f 2 ( t ) F fˆ1 fˆ 2
kN
kN
ak
1 x[n]ejk0n1 x[n]ejk(2/N)n
NnN
NnN
四种傅里叶变换的关系:
连 续 时 间 傅 立 叶 级 数 C F S
x(t) Ak
连续、周 离期 散、非周期
离 散 时 间 傅 立 叶 级 数 D F S
x(n) Ak
An
1 N
x(k)
离 散 、 周 期 离 散 、 周 期
Heisenberg测不准原理结论
t22
1 4
当且仅f当 (t) aeb(tu)2eit时等号成立
证明( Weyl ):假定 lim t f (t ) 0 , 不失一般性,只证明该
t
定理对 u 0时成立。

《信号分析与处理》ch08时频分析与小波变换 教学课件

《信号分析与处理》ch08时频分析与小波变换 教学课件
令确定性信号x(t)、y(t)的里叶变换分别是X(Ω)、Y(Ω),则x(t)的瞬时相关函数或 双线性变换的定义式为
瞬时相关函数表示信号在瞬时相关域(t,τ)的瞬时相关程度。x(t)与y(t)的瞬时互相 关函数的定义式为
3.Wigner-Ville (维格纳-维尔)分布
对于随机信号,瞬时相关函数只要在上述定义式右边取均值即可。 信号x(t)的自Wigner分布的定义为其瞬时相关函数关于滞后τ的傅里叶变换:
其中,x为信号序列;window 为选用的窗函数(如果window 是一个整数,则序列 将x分成长度等于 window 长度的片段,并采用汉明窗;如果window 是一个向量 ,则将序列x分成长度等于window长度的片段,并采用向量window确定的窗函数 );noverlap 为信号片段之间的重叠长度:nm为FFT的数据长度;s 为采样频率,默 认值为1Hz。此外,还可以使用spectrogram(...reqloc)的句法来控制频率轴的 显示freqloc的值可以为“xaxis”或“yaxis”即x轴和y轴中的一个为频率轴,另 一个为时间轴。默认x轴是频率轴。
2.短时傅里叶变换(STFT)
式(8-11)实际上就是一个M点离散傅里叶变换(DFT)若窗函数g(n)的窗口宽度正好 也是M点,则式(8-11)可写成
在应用中,若g(n)的窗口宽度小于M,则可采用补零的方法使其长度变为M;若g(n) 的窗口宽度大于M,则应增大M,使之等于窗函数的宽度。
2.短时傅里叶变换(STFT)
Ville 分布。Wigner-Ville分布形式简单,并具有一系列良好性质,是应用十分广
泛的时频分布。
信号x(t)的Wigner-Ville分布也可以用信号的频谱定义为
信号x(t)和y(t)的联合Wigner-Ville分布的定义式为

《信号的时频分析》课件

《信号的时频分析》课件
时频分析的挑战与展望
高效算法
研究更高效的时频分析算法,提高计算效率和准确性。
多维信号处理
拓展时频分析在多维信号处理领域的应用,如图像和视频信号。
深度学习与机器学习
结合深度学习和机器学习技术,改进时频分析的性能和效果。
THANKS
感谢您的观看。
03
CHAPTER
信号的时频分析方法
短时傅里叶变换是一种常用的信号时频分析方法,通过在时间上滑动窗口并对每个窗口内的信号进行傅里叶变换,可以得到信号在时间和频率上的分布信息。
总结词
STFT通过在时间轴上滑动一个固定大小的窗口,并对每个窗口内的信号进行傅里叶变换,将信号从时域转换到频域。窗口的大小和形状可以根据需要进行选择,常用的有矩形窗、汉明窗等。STFT的优点在于其简单易行,可以直观地展示信号的频率成分随时间的变化情况。《信号的Fra bibliotek频分析》ppt课件
目录
引言时频分析的基本概念信号的时频分析方法时频分析的应用实例时频分析的挑战与展望
01
CHAPTER
引言
03
时频分析在信号处理、通信、雷达、声呐、振动分析等领域有广泛应用。
01
信号的时频分析是一种研究信号时间-频率特性的方法,用于揭示信号中隐藏的频率成分和时间变化规律。
02
它通过将信号从时间域转换到频率域,并分析信号在不同时间和频率下的表现,来描述信号的时频特性。
通过时频分析,可以更好地理解信号的特性和变化规律,为信号处理、特征提取、模式识别等应用提供有力支持。
时频分析在处理非平稳信号时具有独特的优势,能够有效地提取信号中的瞬态特征和突变信息。
时频分析能够揭示信号中隐藏的频率成分和时间变化规律,对于理解和处理复杂信号非常重要。

《小波分析概述》课件

《小波分析概述》课件
小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。

时频信号分析 PPT课件

时频信号分析 PPT课件
即 X (j) jsgn(-)µX(j)
由此可以得到Hilbert反变换的公式
x(t) 1 x$(t) 1 x$( ) d
πt
π t
设 x$(t) 为信号x(t)的Hilbert变换,定义
z(t) x(t) jx$(t)
为信号x(t)的解析信号。 对实信号x(t)引入解析信号z(t)的理由: (1) x(t) ——实,X(j Ω) ——共轭对称,即
这样,我们无法从局部频率处 ( 0或1 2 ) 的 X (j) 来得到某一局部时刻 (t t0或t1 t t2 ) 的 x(t),反过来也是如此的。这就是说,通过傅里叶变 换建立起来时域——频率关系无“定位”功能。换 句话说,时间信号x(t)某个局部的改变将传遍(影响) 整个频率轴,相反也一样,X (j) 某个局部的变换也 将传遍整个时间轴。
但是受实际上不确定原理的制约,时间分辨率和频率 分辨率不能同时达到最好(即分辨间隔最小)。因此 在实际信号分析中,应根据信号的特点及信号处理任 务的需求选取不同的时间分辨率和频率分辨率。
时域突变信号——高的时域分辨率,降低频率分辨率 要求
时域慢变信号——降低时间分辨率,高的频率分辨率 一个“好”的方法,除了能够选择不同的时间分辨率 和频率分辨率外,还应能适应信号特点自动调节时域 的分辨率和频域的分辨率。
2、傅里叶变换对于非平稳信号的局限性
平稳信号 工程上 频率不随时间变化的信号(时
不变信号)
非平稳信号 工程上 频率随时间变化的信号(时
变信号) 定义上有别与平稳随机信号——均值(一阶矩)和 相关(二阶矩)函数不随时间变化。 非平稳信号——频率随时间变换不合适 X ( j)
与时间无关
EX: 线性频率调制信号
X ( j) x(t)e jtdt

【实用】时频分析与小波变换PPT文档

【实用】时频分析与小波变换PPT文档

Wx (t, )
1
2
X ( / 2)X *( / 2) e j td
信号 x(t) 和 y(t) 的联合 Wigner-Ville 分布定义为
Wx, y (t, )
1
2
X ( / 2)Y *( / 2) e j td
Wigner-Ville分布的性质
(1) 实值性,即信号 x(t) 的自 Wigner-Ville 分布是 t 和的实函数:
一个著名的例子就是 Dirac 引入的 (t) 函数,时间上的点脉冲在 频域上具有正负无限伸展的均匀频谱。因此,信号 x(t) 和频谱 X ( ) 彼 此是整体刻画,不能反映各自在局部区域上的特征,因此不能用于信 号的局部分析。
例8-1
两个频率突变信号及其频谱。这两个信号均是由两种频率分量 sin(8 t) 和 sin(16 t) 组成,但两个频率分量在两个信号中出现的顺序 不同。对于信号 1,频率分量 sin(8 t) 和 sin(16 t) 分别占信号持续过 程的前一半和后一半,信号 2 则正好相反,频率分量 sin(16 t) 占信号 持续过程的前一半,后一半为 sin(8 t) 。对比两个信号的频谱可以看 出,不同的时间过程却对应着相同的频谱,这说明仅采用频谱不能区 分这两个信号。
8.2 小波变换
8.2.1 空间与基的概念 8.2.2 连续小波变换 8.2.3 离散小波变换 8.2.4 多分辨率分析 8.2.5 小波变换的应用
8.1 时频分析
8.1.1 概述
对于给定信号 x(t) , t ,如果 x(t)满足 Dirichlet 条件, 且绝对可积,则 x(t)的 Fourier 变换及其逆变换存在
MATLAB提供了计算谱图的函数spectrogram, 其调用格式为:

小波分析理论ppt课件

小波分析理论ppt课件

S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,

《小波分析及应用》课件

《小波分析及应用》课件
《小波分析及应用》PPT 课件
在本PPT课件中,我们将介绍小波分析及其广泛的应用。了解小波基础和小波 应用的重要概念。
小波分析及应用
1
第一部分:小波基础
了解小波变换的基本概念和时频表示方法,以及常用的基本小波函数。
2
第二部分:小波应用
探索小波在信号去噪、信号压缩和信号分析中的实际应用。
小波变换简介
信号压缩
1 压缩感知理论
基于信号的稀疏性,通过稀疏表示和重建算法实现信号的高效压缩。
2 小波稀疏表示
利用小波变换将信号转换为稀疏系数,实现信号的高效压缩和重建。
3 小波压缩算法
使用小波变换、阈值处理和反变换等技术实现信号的无损和有损压缩。
信号分析
1
小波能量谱分析
通过小波变换将信号分解为不同频带的能量谱,分析信号的频域特性。
2
小波分析在图像处理中的应用
利用小波变换处理图像,实现图像去噪、边缘检测等图像处理任务。
3
小波变换与神经网络结合应用
将小波变换与神经网络相结合,实现信号和图像的深度学习分析与处理。
Daubechies小波是一类紧支小波 函数,适用于信号分析和压缩。
Symlet小波
Symlet小波是对称小波函数系列, 适用于信号平滑和噪声去除。
小波分解算法
1
基于滤波器组的小波分解
通过一系列滤波器和下采样将信号分解为多个频带的近似和细节系数。
2
快速小波变换(FWT)
使用基于迭代的算法,快速计算信号的小波变换。
定义
小波是一种数学函数,用于描述信号在不同时间和频率上的变化。
时频表示
小波变换将信号分解为时域和频域信息,揭示了信号的局部特征。

小波变换与信号的时频分析

小波变换与信号的时频分析

小波变换与信号的时频分析
小波变换(Wavelet Transform)是一种在统计学、信号处
理等领域中使用的一种时频分析技术,它可以将复杂的信号分解,并用基于时间的小波函数来表示这些分解的信号。

小波变换可以更好地提取信号的时频特征,并且可以帮助我们更好地理解信号的特点。

小波变换是一种基于小波函数的时频分析技术,它可以将原始信号进行分解,并用小波函数来表示分解的信号。

这种分解的信号可以用来表示信号的时频特征,并且可以更好地提取信号的特征。

小波变换的原理是基于小波函数,它可以将一个信号按照时间和频率进行分解,提取其时频特征,最终得到一系列小波系数,用来表示信号的时频特征。

小波变换的优点在于它可以将信号分解成若干个小波系数,这些小波系数可以表示信号的时频特征,从而可以更好地提取信号的特征。

小波变换在信号处理领域中有广泛的应用,它可以用来提取信号的时频特征,更好地理解信号的特点,从而进行信号处理。

同时,它也可以用来检测信号中的噪声,从而达到降噪的目的。

总之,小波变换是一种基于小波函数的时频分析技术,它可以将复杂的信号分解,并用基于时间的小波函数来表示这些分解的信号,以更好地提取信号的时频特征。

信号的时频分析与小波分析

信号的时频分析与小波分析

灵活性
计算效率
小波变换具有高度的灵活性,可以选择不 同的小波基函数,以满足不同类型信号和 不同应用场景的需求。
相对于傅里叶变换,小波变换的计算复杂 度较低,使得在实时信号处理中更为高效 。
缺点
选择合适的小波基
选择合适的小波基是进行小波分析的关键步骤,但选择过 程具有一定的主观性和经验性,需要依据具体应用场景和 信号特性进行判断。
小波变换可以用于特征提取和降 维,为机器学习算法提供有效的 特征表示。
模式识别
小波变换可以用于信号分类和模 式识别,例如在声音、图像和文 本识别等领域。
数据挖掘
小波变换可以用于数据挖掘和聚 类分析,例如在时间序列数据、 金融数据和社交网络分析等领域。
THANKS
感谢观看
时频分析通过将信号表示为时间和频 率的联合函数,提供了一种同时观察 信号在不同时间和频率下表现的方式。
短时傅里叶变换
短时傅里叶变换是一种常用的时频分析方法,通过使用滑动窗口函数对信号进行加 窗处理,并对每个窗口内的信号进行傅里叶变换。
窗口函数的选择对短时傅里叶变换的性能有很大影响,常见的窗口函数包括高斯窗、 汉明窗等。
小波变换的分类与应用
总结词
小波变换可以分为连续小波变换和小波离散变换两种类型,它们在信号处理、图像处理、语音识别等 领域有蛇形广泛应用。
详细描述
连续小波变换能够对信号进行连续某种的时频分析,能够同时获得信号在时间域和频率域的信息。而 小迷离变换 则是基于离散傅里叶变换的一种改进,可以对信号进行快速变换分析。在应用方面,连续 小矶碎变换摸摸可以应用于信号处理、图像处理、语音识别等领域某种。
小波分析在大数据时代的应用
信号处理
01
在通信、雷达、声呐等领域,小波分析用于信号降噪、压缩感

《信号的时频分析》课件

《信号的时频分析》课件

概念:一种数学工具,用于分析信号的时频特性
特点:具有局部性、多分辨率、自适应性等优点
应用:广泛应用于信号处理、图像处理、语音识别等领域
原理:通过小波基函数对信号进行分解和重构,实现信号的时频分析
原理:将信号分解为多个本征模态函数(IMF)
特点:自适应性、局部性、完备性
应用:信号处理、数据分析、故障诊断等领域
理论基础:介绍信号时频分析的基本概念和理论
应用实例:介绍信号时频分析在实际工程中的应用
实验操作:介绍信号时频分析的实验操作步骤和注意事项
总结与展望:总结信号时频分析的主要内容和发展趋势
添加项标题
信号的时频表示:将信号在时间和频率两个维度上进行表示
添加项标题
傅里叶变换:将信号从时域变换到频域,实现信号的时频表示
通信系统:信号的时频分析在通信系统中用于信号的接收、处理和传输。
雷达系统:信号的时频分析在雷达系统中用于目标检测、跟踪和识别。
声纳系统:信号的时频分析在声纳系统中用于水下目标的探测和定位。
生物医学信号处理:信号的时频分析在生物医学信号处理中用于心电图、脑电图等信号的分析和处理。
添加标题
添加标题
添加项标题
短时傅里叶变换(STFT):将信号在时间上进行分段,对每个分段进行傅里叶变换,实现信号的时频表示
添加项标题
小波变换:将信号在时间和频率两个维度上进行分解,实现信号的时频表示
添加项标题
希尔伯特变换:将信号从时域变换到频域,实现信号的时频表示
添加项标题
信号的时频表示的应用:信号处理、通信、雷达等领域
多尺度分析:通过调整尺度函数,实现信号在不同尺度下的时频表示,从而更好地分析信号的时频特性。
滤波器类型:低通、高通、带通、带阻等

信号的时频分析——小波变换

信号的时频分析——小波变换
9
§6.4.1 函数的表示方法
(1) 1807: Joseph Fourier
• 傅立叶变换(Fourier transform)是1807年法国科学家 Joseph Fourier在研究热力学问题时所提出来的一种全新 的数学方法,当时曾受到数学界的嘲笑与抵制,后来却得 到工程技术领域的广泛应用,并成为分析数学的一个分 支——傅立叶分析。 • 傅立叶理论指出,一个信号可表示成一系列正弦和余弦函 数之和,叫做傅立叶展开式。 • 用傅立叶表示一个信号时,只有频率分辨率而没有时间分 辨率,这意味我们可以确定信号中包含的所有频率,但不 能确定这些频率出现在什么时候。
18
§6.4.1 函数的表示方法
傅立叶变换的几个基函数
短时傅立叶变换的几个基函数
小波变换的几个基函数
19
§6.4.1 函数的表示方法
FT、STFT、WT之比较
20
§6.4.2 小波变换的基本理念
“小波”就是小的波形。所谓“小”是指局部非零,波形 具有衰减性;“波”则是指它具有波动性,包含有频率的特 性。 2 1 定义:设 L L 且 ( 0 ) 0 ,即给定一个基本函数 ( t ) , 通过伸缩 a 和平移 b 产生一个函数族:
Haar小波来自于数学家Haar于1910年提出的Haar正交函数 集,其定义是: (t )
1 (t ) 1 0 0 t 1 / 2 1/ 2 t 1 其它
1/ 2
0
( t 1)
2
( t ) 的傅里叶变换是:
0
(t / 2 )
c
(1)紧支性 1 由 L 可知

ˆ d

( t ) dt

小波基本理论及应用PPT课件

小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。

小波分析入门PPT课件

小波分析入门PPT课件
随着机器学习的发展,小波分析有望在特征提取、数据压缩等领域与机器学习相结合, 提高机器学习的性能和效率。
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化

第4章-3小波分析

第4章-3小波分析
4.5 信号的时频域分析 ——小波分析
f(t)1 F()ejtd
2
短时(加窗)傅立叶分析
G (, ) f(t)g(t )ejtdt
• 为对特定时间区域内的信号进行分析,我 们必须给定一个分析窗口,但是如果给定 某个固定分析窗口后,会存在一个基本的 矛盾:如果要追求频率分辨率则时域窗口 应该大,频率窗口小;反之,频域窗口大, 时域窗口小。对高频和低频信号,分析窗 口要求是不一样的。如何解决这个问题?
• 小波变换的多分辨率特性,有利于各分辨 率中不同特征的提取(图象压缩,边缘抽 取,噪声过滤等)
离散小波变换——小波分解
• 定义:将离散信号分解成一簇小波函数的叠加。a和τ 的变动依据一定的离散规则,最常用的是二进离散,即 参数a按二进规则取值即 2n, n2,1,0,1,2,
• τ等间隔取值,信号的二进小波分解的数学表达式如下:
小波函数与小波变换
• 小波函数:a,(t)1 (t)aa• 小波变换:
• 正变换
Wf(a,)
1 a
f
(t)a*,
(t)d
t
• 反变换
式中a*, (t)a, (t)的共轭函数
f(t)c1 a 12W(af,)a,(t)dda
• 如果小波函数 a, (t) 的时窗宽度为 t ,经小波
2、干扰信号剔除
f(t)c(t)c0(t) c1,0(2t)c1,1(2t1) c2,0(22t)c2,1(22t1)c2,2(22t2)c2,3(22t3)
ck,0(2kt)ck,1(2kt1)ck,2(2kt2)ck,2k1(2kt2k 1)
小波分析的应用
1、局部异常信号检测
在设备探伤中,常常只对设备局部异常区域所引起 的信号局部变化感兴趣,如果将这些局部异常区分 离出来,就可以对设备故障的大小和位置做出分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 离散小波变换函数dwt实现一维信号单级离散小波变换。 小波名称以及DWT延拓模式都可以设定。
其调用格式为: [cA,cD] = dwt(x, 'wname') [cA,cD] = dwt(x, 'wname', 'mode', MODE) 返回变量cA:信号DWT对应的近似(Approximation)展开系数 cJ [k ] 返回变量cD:信号离散小波变换对应的细节(Detail)展开系数 d J [k] 调用参数x:表示信号序列,相当于 cJ1[k] 调用参数wname:表示小波名称,参见函数wfilters 调用参数MODE:表示信号DWT延拓模式。
[CXD, LXD] = wavedec(XD, N, ‘wname’) 调用参数TPTR:表示阈值规则,主要有'rigrsure', 'heursure', 'sqtwolog', 'minimaxi'规则 调用参数SORH:表示是soft阈值(‘s’)还是hard阈值(‘h’) 调用参数SCAL:表示是否需要设置多重阈值 调用参数N:表示信号离散小波变换的级数,为正整数。
8
实验六 信号的时频分析与小波分析
(6) 函数wden实现一维信号的去噪,小波名称以及阈值都可以设定。 调用格式为
[XD, CXD, LXD] = wden(x, TPTR, SORH, SCAL, N, 'wname') [XD, CXD, LXD] = wden(C, L, TPTR, SORH, SCAL, N, 'wname') 返回变量XD:表示由噪声信号x的DWT经过阈值去噪后得到的信号; 返回变量CXD与LXD:表示信号XD的小波变换,即
其受序列x的长度限制,且必须为正整数。
6
实验六 信号的时频分析与小波分析
(4) 离散小波反变换函数idwt实现一维信号单级离散小波反变换,小波名 称以及DWT延拓模式都可以设定。其是函数dwt的逆运算,调用格式为:
x = idwt(cA, cD, 'wname') x = idwt(cA, cD, 'wname',L)
L长度数据,L<Length(x)。
7
实验六 信号的时频分析与小波分析
(5) 函数wavere实现对信号进行多级离散小波反变换, 是函数waverec的逆运算。调用格式: x = waverec(C, L, 'wname')
返回变量x:表示重构的信号 调用参数C:表示信号经wavedec得到的各级小波展开系数矢量 调用参数L:表示信号经wavedec得到的各级展开系数长度矢量。
9
实验六 信号的时频分析与小波分析
(7) 函数wthcoef实现一维信号的压缩,调用格式为
NC= wthcoef(‘d’, C, L, N) NC= wthcoef(‘d’, C, L, N, P) 返回变量NC:表示由信号x的DWT中系数C经过压缩后得到的新系数 调用参数d:表示对信号x的DWT的系数C中细节(detail)分量进行压缩 调用参数C,L:表示由wavedec对信号x进行DWT变换得到的序列 调用参数N:表示对系数C中哪些精度的细节分量进行压缩 调用参数P:表示对系数C中细节分量进行压缩的百分比, N和P需具有相同的长度。
x = wnoise(FUN, N) [x, xn] = wnoise(FUN, N, SQRT_SNR) [x, xn] = wnoise(FUN, N, SQRT_SNR, INIT) 返回变量x:无噪声的测试数据序列; 返回变量xn:含有噪声的测试数据序列; 调用参数N:表示序列x的长度为2N; 调用参数SQRT_SNR:表示信号的信噪比标准方差,噪声是加性高斯 (Gaussian)白噪声,均值为0,标准方差为1。 调用参数INIT:表示产生高斯噪声的种子(seed)点。
在分析非平稳信号和时变信号时。信号的傅里叶变换 分析无法有效地反映信号在某些瞬间的突变。信号的时频 分析可以同时获得信号时域特性和频域特性,可以有效地 反映信号在不同瞬间对应的频率分布。
2
实验六 信号的时频分析与小波分析
MATLAB信号处理工具箱提供了信号小波分析的许多函数: (1)小波测试信号函数wnoise可以产生多种测试信号,这些测试信号可 含有噪声且信噪比可以设置。其调用格式:
3
实验六 信号的时频分析与小波分析
x = wnoise(FUN, N)
[x, xn] = wnoise(FUN, N, SQRT_SNR)
[x, xn] = wnoise(FUN, N, SQRT_SNR, INIT) 调用参数FUN:表示信号名称,主要有6种,可以用数值表示,也可以 用字符串表示。
返回变量x:表示信号序列,相当于cJ1[k] 调用参数cA:表示信号DWT对应的近似(Approximation)展开系数 cJ [k ] 调用参数cD:表示信号DWT对应的细节(Detail)展开系数 d J [k] 调用参数L:表示从idwt(cA, cD, ‘wname’)返回序列的中心部分截取
实验六 信号的时频分析与小波分析
一、实验目的
深刻认识信号时域分析、频域分析及时频域分析的 特点,进一步理解信号的时频分析的基本原理,掌握利 用小波变换进行信号的去噪和压缩的方法。
1
实验六 信号的时频分析与小波分析
二、 实验原理
信号的傅里叶变换是以正弦类(虚指数)信号为基函 数,其物理概念清晰,对确定性信号和平稳信号的分析发 挥了重要作用。
5
实验六 信号的时频分析与小波分析
(3) 函数wavedec实现对信号进行多级离散小波变换。 其调用格式为:
[C, L] = wavedec(x, N, 'wname') 返回变量C:表示信号x各级小波展开系数的矢量 返回变量L:表示C中各级展开系数长度的矢量 调用参数N:表示信号离散小波变换的级数,
数值表示
字符串表示
FUN = 1
FUN ='blocks'
FUN = 2
FUN ='bumps'
FUN = 3
FUN ='heavy sine'
FUN = 4
FUN ='doppler'
FUN = 5
FUN ='quadchirp'
FUN = 6
FUN ='mishmash'
4
实验六 信号的时频分析与小波分析
相关文档
最新文档