电工基础电路中各点电位的计算

合集下载

电工试题库

电工试题库

《电工基础》试题库说明:『1』 本试题库使用专业:机电系大专专业『2』课程考核要求与知识点第一章 电路的基本概念和基本定律1、识记:基本概念基本定律2、理解:(1)电位、电功率、电能的概念。

(2)电压、电流及它们的参考方向。

(3)电阻元件电压与电流关系,欧姆定律。

(4)电压源和电流源的电压与电流关系(5)基尔霍夫电流定律和电压定律。

3、运用:(1)参考方向的应用;(2)应用KCL、KVL求未知电流和电压第二章 电路的分析方法1、识记:(1)电阻并、串联特性;(2)电阻星、三角连接的等效互换公式(3)两种电源模型的等效互换条件;(4) 戴维宁定理的条件和内容2、理解:(1)等效变换的概念。

(2)两种电源模型的等效互换条件;(3) 戴维宁定理的条件和内容(4)叠加定理的条件和内容3、运用:(1)电阻串联、并联、混联的连接方式和等效电阻、电压、电流、功率的计算,电路中各点电位的计算。

(2)支路电流法、网孔法、节点法求解电路的方法(3)应用戴维宁定理确定负载获得最大功率的条件(4)运用叠加定理分析含有两个直流电源的电路。

第三章 正弦交流电路1、识记:(1)正弦量的频率、角频率、周期的关系;(2)正弦量有效值、最大值、平均值的关系;(3)正弦量的相量表示法;(4)各种元件的复阻抗;(5)R、L、C元件电压与电流关系,感抗、容抗,平均功率(有功功率)、无功功率。

2、理解:(1)正弦交流电路量的特点;(2)R、L、C元件在正弦交流电路中电压和电流的各种关系;(3)串、并联谐振;3、运用:(1)RL、RC串、并联电路的分析(2)RLC串、并联电路的分析(3)有功功率、无功功率、视在功率、功率因数的计算第四章 三相正弦交流电路1、识记:(1)对称三相正弦量(2)星形、三角形两种联结方式下线电压、相电压的关系,线电流、相电流、中性线电流的关系(3)对称三相电路的功率2、理解:(1)对称三相电路的分析方法(2)不对称三相电路的分析方法及中线的作用3、运用:(1)对称三相电路的分析计算(2)不对称三相电路的分析计算第二章电路的分析方法名词解释1、开路2、短路3、节点4、电源5、线性电阻元件填空1. 任何一个无源线性二端网络都可以等效为一个()。

电工基础--------陆荣(计算题)

电工基础--------陆荣(计算题)

电工基础--------陆荣(计算题)例1-1某电动机的绕组用铜漆包线绕成,在运行前测得其电阻为10Ω,运行达到稳态时测得电阻为12Ω。

已知室温为20,求该电动机稳态运行时绕组的温度及温升。

解:已知=20=10Ω,=12Ω由表1--1可知铜的电阻温度系数根据式(1-5)得电动机稳态运行时绕组的温度为:t=绕组的温升为t例1-2工程上常采用“伏安法”测量电阻,即利用直流电压表和电流表分别测量电阻的电压和电流,再由欧姆定律计算得出电阻的阻值。

如图1-11所示,在一电阻炉两端加上220V 的直流电压,测得电流为4.55A,试问电阻炉的电阻为多大?解由部分电路欧姆定律可知,电阻炉的电阻为R=Ω例1-3某工厂距离电源200m。

,电源的电动势为230V,内阻为0.06Ω,现采用截面积50m的铜导线供电。

工厂负载需要的电流为50A,各负载要求的电压为220V。

试求:(1)(2)实际电压U是否符合负载的要求?(3)若采用截面积为10负载两端的实际电压U 。

的铜导线供电是否合适?解:为便于分析,根据题意可画出如图1-13所示电路。

(1)根据全电路欧姆定律可以求得负载两端实际电压U:U=E即其中,R1为供电线路的总电阻,即因此,负载两端的实际电压为U=E—I(Ω=220V这里,供电线路的电阻相当于增加了电源内阻。

(2)因为各负载要求的电压均为220 V,所以采用并联连接方式,如图1-13所示,可以保证实际电压符合负载电压的要求。

(3)采用截面积为10的铜导线供电不合适。

因为当截面积减少到原来的1/5时,电阻将增加为原来的5倍,若电流不变,则线路上的电压降也将增加为原来的5倍;导致负载两端电压减小而得不到正常工作电压,因而不能正常工作。

另一方面,选用的导线截面积减小时,其安全载流量也相应减小。

当实际流过导线的电流超过安全载流量时,不仅不能保证导线安全正常地输电,而且有导致供电导线烧毁的危险。

例1-4 某维修电工希望将一只内阻=2KΩ,满偏电流(使表头满量程偏转的电流)=50的电流表表头改装成10V和250v的双量程电压表,试问:其应该如何改装?解该电流表表头满偏时,其电压为==2KΩ=0.1V为扩大其量程,应串联分压电阻,如图1-18所示。

电工基础知识点

电工基础知识点

《电工基础》1-3章知识点汇总第一章第一节电路一、电路的组成1.电路:由等组成的闭合回路。

2.电路的组成: 。

(1) 电源:把能转化为能的装置。

如:、等。

(2) 用电器:把能转变成的装置。

(3) 导线:金属线。

作用:把电源产生的电能输送到用电器。

(4) 开关:起到作用。

二、电路的状态1.通路(闭路):电路各部分连接成,电流通过。

2.开路(断路):电路断开,电路中电流通过。

3.短路(捷路):电源两端或者电路中某些部分被导线直接相连,这时电源输出的电流不经过负载,只经过连接导线直接流回电源,这种状态叫做短路状态,简称注意:短路时电流很,会损坏,应尽量。

三、电路图1.电路图:用表示电路的图。

2.几种常用的标准图形符号。

第二节电流一、电流的形成1.电流:电荷的形成电流。

2.在导体中形成电流的条件:(1)(2)二、电流1.电流的大小等于与的比值。

I =2.单位:1A = 1C/s;1mA = 10-3 A;1μA = 10-6A3.电流的方向实际方向—规定: 定向移动的方向为电流的方向。

4.直流电:电流方向和强弱 的电流。

第三节 电阻一、电阻1.导体对电流所呈现出的阻碍作用。

不仅金属导体有电阻,其他物体也有电阻。

2.导体电阻是由它 决定的。

例:金属导体,它的电阻由它的 决定。

3.电阻定律:R =式中:ρ -导体的 。

它与导体的几何形状 ,而与导体 和导体 有关(如温度)。

单位:R -欧姆(Ω);l -米(m );S -平方米(m 2);ρ-欧⋅米(Ω⋅m )。

4.(1) 阅读P6表1-1,得出结论。

(2) 结论:电阻率的大小反映材料 的好坏,电阻率愈大,导电性能愈 。

ρ < 10-6 Ω⋅mρ > 107 Ω⋅m10-6 Ω⋅m < ρ < 107 Ω⋅m二、电阻与温度的关系一般金属导体,温度升高,其电阻 。

少数合金电阻,几乎不受温度影响,用于制造标准电阻器。

超导现象:在极低温(接近于热力学零度)状态下,有些金属(一些合金和金属的化合物)电阻 ,这种现象叫 现象。

中专电工基础教案第二章直流电路

中专电工基础教案第二章直流电路

第二章直流电路2.1 电阻串联电路& 2.2 电阻并联电路、串联电路把几个电阻一次连接起来,组成中间无分支的电路,叫做电阻串联电路。

如下图1 所示为两个电阻组成的串联电路。

图1 电阻串联电路串联电路的特点:1.串联电路中电流处处相等。

当n 个电阻串联时,则I1 I2 I 3 I n (式2-1)2.电路两端的总电压等于串联电阻上分电压之和。

U U1 U 2 U 3 U n (式2-2)3.电路的总电阻等于各串联电阻之和。

R 叫做R1,R2串联的等效电阻,其意义是用R 代替R1,R2后,不影响电路的电流和电压。

在图1中,(b)图是(a)图的等效电路。

当n 个电阻串联时,则R R1 R2 R3 R n (式2-3 )4.串联电路中的电压分配和功率分配关系。

由于串联电路中的电流处处相等,所以上述两式表明,串联电路中各个电阻两端的电压与各个电阻的阻值成正比; 各个电阻所消耗的功率也和各个电阻阻值成正比。

推广开来,当串联电路有 n 个电阻构成时,可得串联电路分压公式 R 1 R 1 R 2 R 3R n提示:在实际应用中,常利用电阻串联的方法,扩大电压表的量程。

二、电阻并联电路把两个或两个以上的电阻接到电路中的两点之间, 电阻两端承受同一个电压 的电路,叫做电阻并联电路。

图 2 电阻并联电路 并联电路的特点 :1、电路中各个电阻两端的电压相同即 U 1 U 2 U 3 U n (式 2-6)2、电阻并联电路总电流等于各支路电流之和U 1U 2 R 1 R 2 R n2 P 1 P 2R 1 R 2 P nR nU 2 R 2 R 1 R 2 R 3R n U nR n R 1 R 2 R 3 R n即 I I 1 I 2 I 3 I n (式 2-7 )3、并联电路的总阻值的倒数等于各并联电阻的倒数的和4、电阻并联电路的电流分配和功率分配关系 在并联电路中,并联电阻两端电压相同,所以 U R 1I 1 R 2I 2 R 3I 3 R n I n上式表明,并联电路中各支路电流与电阻成反比;各支路电阻消耗的功率和 电阻成反比。

电工技术基础与技能知识点汇总

电工技术基础与技能知识点汇总

电工电子技术基础与技能知识点汇总1.电路:由电源、用电器、导线和开关等组成的闭合回路。

电源:把其他形式的能转化为电能的装置。

用电器:把电能转变成其他形式能量的装置。

2.电路的状态:通路(闭路)、开路(断路)、短路(捷路):短路时电流很大,会损坏电源和导线,应尽量避免。

3.电流:电荷的定向移动形成电流。

形成条件(1) 要有自由电荷。

(2) 必须使导体两端保持一定的电压(电位差)。

方向规定:正电荷定向移动的方向为电流的方向。

4.电流的大小等于通过导体横截面的电荷量与通过这些电荷量所用时间的比值。

I = tq 5.电阻定律:在保持温度不变的条件下,导体的电阻跟导体的长度成正比,跟导体的横截面积成反比,并与导体的材料性质有关。

R = ρ Sl 6.一般金属导体,温度升高,其电阻增大。

少数合金电阻,几乎不受温度影响,用于制造标准电阻器。

超导现象:在极低温(接近于热力学零度)状态下,有些金属(一些合金和金属的化合物)电阻突然变为零,这种现象叫超导现象。

7.电能:电场力所做的功即电路所消耗的电能W = U I t 。

.电流做功的过程实际上是电能转化为其他形式的能的过程。

1度 = h k W 1⋅ = 3.6 ⨯ 106 J8.电功率:在一段时间内,电路产生或消耗的电能与时间的比值。

P = tW 或P = U I 9.焦耳定律:电流通过导体产生的热量,跟电流的平方、导体的电阻和通电时间成正比。

Q = I 2 R t10、电源的电动势:等于电源没有接入电路时两极间的电压。

用符号E 表示。

(1)电动势由电源本身决定,与外电路无关。

(2)电动势方向:自负极通过电源内部到正极的方向。

11、电动势与外电路电阻的变化无关,但电源端电压随负载变化,随着外电阻的增加端电压增加,随着外电阻的减少端电压减小。

当外电路断开时,R 趋向于无穷大。

I = 0,U = E - I R 0 = E ;当外电路短路时,R 趋近于零,I 趋向于无穷大,U 趋近于零。

电工学基础知识大全完整版

电工学基础知识大全完整版

电工学基础知识大全 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-电工基础知识点1.电路的状态:通路;断路;短路。

2.电流:电荷的定向移动形成电流。

习惯上规定:正电荷定向移动的方向是电流的正方向,实际的电流方向与规定的相反。

公式:q I t= (,,A C s ) 36110,110mA A uA A --== 直流电:电流方向和强弱都不随时间而改变的电流。

交流电:大小和方向都随时间做周期性变化,并且在一个周期内平均值为零的电流。

3.电阻:表示物体对自由电子定向移动的阻碍作用的物理量。

公式:l R Sρ= (2,,,m m m ΩΩ*) 导体的电阻是由本身决定的,由它本身的电阻率和尺寸大小决定,还与温度有关。

对温度而言,存在正温度系数和负温度系数变化。

4.部分电路的欧姆定律:导体中的电流与两端的电压成正比,与它的电阻成反比。

公式:U I U RI R==或(导体的电阻是恒定的,变化的是电流和电压) 5.电阻的福安特性曲线:如果以电压为横坐标,电流为纵坐标,可画出电阻的U-I 关系曲线。

电阻元件的福安特性曲线是过原点的直线时,叫做线性电阻。

如果不是直线,则叫做非线性电阻。

(图:P8)6.电能:W UIt = (,,,J V A s ) 实际中常以110001kW h W h *=*,简称度。

7.电功率:在一段时间内,电路产生或消耗的电能与时间的比值,用P 表示。

公式:22W U I R t RP =P =或=UI=(适用于纯电阻电路) 可见,一段电路上的电功率,跟这段电路两端的电压和电路中的电流成正比。

用电器上通常标明它的电功率和电压,叫做用电器的额定功率和额定电压。

8.焦耳定律(电流热效应的规律):电流通过导体产生的热量,跟电流的平方,导体的电阻和通电的时间成正比。

公式:2Q RI t = (,,,J A s Ω)阅读P12,13页的‘阅读与应用’的三和四9.电动势:表征电源做工能力的物理量,用E 表示。

电工技术基础

电工技术基础
'
I2''
注意事项: ① 叠加原理只适用于线性电路。 ② 线性电路的电流或电压均可用叠加原理计算, 但功率P不能用叠加原理计算。例:
P1 I R1 ( I1 I1 ) R1 I1 R1 I1 2 R1
2 1 2 2
③ 不作用电源的处理: E = 0,即将E 短路; Is=0,即将 Is 开路 。 ④ 解题时要标明各支路电流、电压的参考方向。 若分电流、分电压与原电路中电流、电压的参考方 向相反时,叠加时相应项前要带负号。 ⑤ 应用叠加原理时可把电源分组求解 ,即每个分电路 中的电源个数可以多于一个。
R1
R2
+ E – R1
a R2 IS R3 b 有源二端网络
b 无源二端网络
无源 二端 网络
a R b + _E a
a 无源二端网络可 化简为一个电阻 b 电压源 (戴维宁定理)
有源 二端 网络
a
b
R0 b a
IS R0
有源二端网络可 化简为一个电源 电流源 (诺顿定理)
b
戴维宁定理
任何一个有源二端线性网络都可以用一个电动势为 E的理想电压源和内阻 R0 串联的电源来等效代替。 a I a I + 有源 + R0 RL U 二端 U RL + – E _ 网络 – b 等效电源 b 等效电源的电动势E 就是有源二端网络的开路电 压U0,即将负载断开后 a 、b两端之间的电压。 等效电源的内阻R0等于有源二端网络中所有电源 均除去(理想电压源短路,理想电流源开路)后所 得到的无源二端网络 a 、b两端之间的等效电阻。
例1:电路如图,已知E1=40V,E2=20V,R1=R2=4, R3=13 ,试用戴维宁定理求电流I3。 a a + + E1 E2 R0 – – R3 I3 R3 I3 + I1 R1 I2 R2 E _ b 解:(3) 画出等效电路求电流I3 b

电工技术基础与技能知识点汇总

电工技术基础与技能知识点汇总

电工电子技术基础与技能知识点汇总1.电路:由电源、用电器、导线和开关等组成的闭合回路。

电源:把其他形式的能转化为电能的装置。

用电器:把电能转变成其他形式能量的装置。

2.电路的状态:通路(闭路)、开路(断路)、短路(捷路):短路时电流很大,会损坏电源和导线,应尽量避免。

3.电流:电荷的定向移动形成电流。

形成条件(1) 要有自由电荷。

(2) 必须使导体两端保持一定的电压(电位差)。

方向规定:正电荷定向移动的方向为电流的方向。

4.电流的大小等于通过导体横截面的电荷量与通过这些电荷量所用时间的比值。

I = tq 5.电阻定律:在保持温度不变的条件下,导体的电阻跟导体的长度成正比,跟导体的横截面积成反比,并与导体的材料性质有关。

R = ρ Sl 6.一般金属导体,温度升高,其电阻增大。

少数合金电阻,几乎不受温度影响,用于制造标准电阻器。

超导现象:在极低温(接近于热力学零度)状态下,有些金属(一些合金和金属的化合物)电阻突然变为零,这种现象叫超导现象。

7.电能:电场力所做的功即电路所消耗的电能W = U I t 。

.电流做功的过程实际上是电能转化为其他形式的能的过程。

1度 = h k W 1⋅ = 3.6 ⨯ 106 J8.电功率:在一段时间内,电路产生或消耗的电能与时间的比值。

P = tW 或P = U I 9.焦耳定律:电流通过导体产生的热量,跟电流的平方、导体的电阻和通电时间成正比。

Q = I 2 R t10、电源的电动势:等于电源没有接入电路时两极间的电压。

用符号E 表示。

(1)电动势由电源本身决定,与外电路无关。

(2)电动势方向:自负极通过电源内部到正极的方向。

11、电动势与外电路电阻的变化无关,但电源端电压随负载变化,随着外电阻的增加端电压增加,随着外电阻的减少端电压减小。

当外电路断开时,R 趋向于无穷大。

I = 0,U = E - I R 0 = E ;当外电路短路时,R 趋近于零,I 趋向于无穷大,U 趋近于零。

电工基础

电工基础
(8)电压系数:在规定的电压范围内,电压 每变化1伏,电阻器的相对变化量。
(9)噪声:产生于电阻器中的一种不规则的 电压起伏,包括热噪声和电流噪声两部分,热 噪声是由于导体内部不规则的电子自由运动, 使导体任意两点的电压不规则变化。
1.3.2 电阻的型号命名方法
国产电阻器的型号由四部分组成 第一部分:主称 ,用字母表示,表示产 品的名字。如R表示电阻,W表示电位器。 第二部分:材料 ,用字母表示,表示电 阻体用什么材料组成, T-碳膜、H-合成碳膜、S-有机实心、 N-无机实心、J-金属膜、Y-氮化膜、 C- 沉 积 膜 、 I- 玻 璃 釉 膜 、 X- 线 绕 。
(4)额定电压:由阻值和额定功率换 算出的电压。
(5)最高工作电压:允许的最大连续 工作电压。在低气压工作时,最高工作 电压较低。
(6)温度系数:温度每变化1℃所引起 的电阻值的相对变化。温度系数越小, 电阻的稳定性越好。阻值随温度升高而 增大的为正温度系数,反之为负温度系 数。
(7)老化系数:电阻器在额定功率长期负荷 下,阻值相对变化的百分数,它是表示电阻器 寿命长短的参数。
(4)并联电路具有分流作用,且各电 阻的电流与它们的电导成正比,与它们 的电阻成反比,即:
I1:I2:…:In=::…:=G1:G2:G3…:Gn
(5)并联电路中总功率等于各支路电 阻消耗功率之和。各支路电阻所消耗的 功率与各支路电阻的阻值成反比,与它 们的电导成正比。即:
P1:P2:…:Pn=::…:=G1:G2:G3…:Gn P= P1+P2+…+Pn
1.3.1 电阻元件
1.电阻器的主要参数 (1)标称阻值:电阻器上面所标示的阻值。 (2)允许误差:标称阻值与实际阻值的差值 跟标称阻值之比的百分数称阻值偏差,它表示电 阻器的精度。

《电路中各点电位的计算》说课稿

《电路中各点电位的计算》说课稿

一、教材分析我说课的题目是《电路中各点电位的计算》它是劳教版的《电工基础》第二章第七节的内容。

第二章是在第一章电路基础知识的基础上展开的。

其电路的基本分析方法和计算是职教生学习《电工基础》必须要掌握的重点内容。

而第七节电位计算又是本章的重中之重,本节课是第三章基尔霍夫定律学习的基础,也是以后学习电子线路的基础。

二、教材处理一个优秀的教师在教学中一定要会灵活处理教材,切忌照本宣科。

本节课教材中设置了两个新知识点,一个是电位的概念,另一个是各点电位计算方法。

电位是一个抽象的概念,是教学中的难点,而计算各点电位时根据高低电位的方向对电压取值也是一个难点,这样一节课出现了两个难点,让学生在难点的基础上学习难点,显然是难上加难,所以为了分化难点,我把电位的概念放在第一章补充讲解,本节课只学习电位的计算方法。

三、教学目标根据教学大纲要求,结合学生的实际水平,我制定本节课的学习目标是:1、知识目标:理解并掌握电路中各点电位及两点间电压的计算方法2、能力目标:培养学生分析问题,总结规律的能力,培养学生的创造性思维能力。

3、德育目标:培养学生团结协作意识。

四、教学重点依据本节课在教材体系中的重要地位,结合大纲精神,为了顺利完成教学目标,我确立本节课的教学重点是:电路中各点电位的计算和任意两点间电压的计算方法。

为了突出重点,整个新课学习的几个环节都是围绕这一重点展开的。

五、教学难点学生的认知规律是:当由具体事物引导抽象思维时,抽象思维才容易理解和接受。

而本节知识涉及到的电压的正值方向非常抽象,让学生在此抽象概念的基础上掌握电压的取值,显然是有难度的,所以我认为本节课教学难点是:各段电压的取值(突破难点采用的方法是:分化难点,循序渐进。

先让他们观察比较,再分组讨论、归纳总结。

)六、教学方法遵循新课程改革以教为主导,学为主体,使每个学生都得到发展的教学理念,在整个课堂中我采用启发、点拨、分组讨论与讲解相结合的教学方法。

《电工基础》试题库及答案

《电工基础》试题库及答案

《电工基础》试题库说明:『1』本试题库使用专业:机电系大专专业『2』课程考核要求与知识点第一章电路的基本概念和基本定律1、识记:基本概念基本定律2、理解:(1)电位、电功率、电能的概念。

(2)电压、电流及它们的参考方向。

(3)电阻元件电压与电流关系,欧姆定律。

(4)电压源和电流源的电压与电流关系(5)基尔霍夫电流定律和电压定律。

3、运用:(1)参考方向的应用;(2)应用KCL、KVL求未知电流和电压第二章电路的分析方法1、识记:(1)电阻并、串联特性;(2)电阻星、三角连接的等效互换公式(3)两种电源模型的等效互换条件;(4) 戴维宁定理的条件和内容2、理解:(1)等效变换的概念。

(2)两种电源模型的等效互换条件;(3)戴维宁定理的条件和内容(4)叠加定理的条件和内容3、运用:(1)电阻串联、并联、混联的连接方式和等效电阻、电压、电流、功率的计算,电路中各点电位的计算。

(2)支路电流法、网孔法、节点法求解电路的方法(3)应用戴维宁定理确定负载获得最大功率的条件(4)运用叠加定理分析含有两个直流电源的电路。

第三章正弦交流电路1、识记:(1)正弦量的频率、角频率、周期的关系;(2)正弦量有效值、最大值、平均值的关系;(3)正弦量的相量表示法;(4)各种元件的复阻抗;(5)R、L、C元件电压与电流关系,感抗、容抗,平均功率(有功功率)、无功功率。

2、理解:(1)正弦交流电路量的特点;(2)R、L、C元件在正弦交流电路中电压和电流的各种关系;(3)串、并联谐振;3、运用:(1)RL、RC串、并联电路的分析(2)RLC串、并联电路的分析(3)有功功率、无功功率、视在功率、功率因数的计算第四章三相正弦交流电路1、识记:(1)对称三相正弦量(2)星形、三角形两种联结方式下线电压、相电压的关系,线电流、相电流、中性线电流的关系(3)对称三相电路的功率2、理解:(1)对称三相电路的分析方法(2)不对称三相电路的分析方法及中线的作用3、运用:(1)对称三相电路的分析计算(2)不对称三相电路的分析计算第五章磁路与变压器1、识记:(1)磁路的基本概念和定律;(2)变压器的特性参数2、理解:(1)铁磁性物质的磁化性能与磁化曲线和磁路的欧姆定律(2)交流铁心线圈电路磁通与外加电压的关系(3)变压器的结构和工作原理(4)特殊变压器的使用第六章供电与安全用电1、识记:安全用电和节约用电常识2、理解:发电、输电及工企供电配电第七章电工测量1、识记:(1)电工仪表与测量的基本常识;(2)万用表的使用方法2、理解:万用表的的结构3、运用:电压、电流的测量;电阻的测量;电功率的测量;电能的测量『3』考试命题内容具体分配情况(1)试题对不同能力层次要求的比例为:识记约占15%,理解约占45%,运用占40%;(2)试卷中不同难易度试题的比例为:较易占20%,中等占70%,较难占10%;(3)期末试题从本试题库中抽取。

电工学基础知识大全

电工学基础知识大全

电工学基础知识大全 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】电工基础知识点 1.电路的状态:通路;断路;短路。

2.电流:电荷的定向移动形成电流。

习惯上规定:正电荷定向移动的方向是电流的正方向,实际的电流方向与规定的相反。

公式:q I t= (,,A C s ) 36110,110mA A uA A --== 直流电:电流方向和强弱都不随时间而改变的电流。

交流电:大小和方向都随时间做周期性变化,并且在一个周期内平均值为零的电流。

3.电阻:表示物体对自由电子定向移动的阻碍作用的物理量。

公式:l R Sρ= (2,,,m m m ΩΩ*) 导体的电阻是由本身决定的,由它本身的电阻率和尺寸大小决定,还与温度有关。

对温度而言,存在正温度系数和负温度系数变化。

4.部分电路的欧姆定律:导体中的电流与两端的电压成正比,与它的电阻成反比。

公式:U I U RI R==或(导体的电阻是恒定的,变化的是电流和电压) 5.电阻的福安特性曲线:如果以电压为横坐标,电流为纵坐标,可画出电阻的U-I 关系曲线。

电阻元件的福安特性曲线是过原点的直线时,叫做线性电阻。

如果不是直线,则叫做非线性电阻。

(图:P8)6.电能:W UIt = (,,,J V A s ) 实际中常以110001kW h W h *=*,简称度。

7.电功率:在一段时间内,电路产生或消耗的电能与时间的比值,用P 表示。

公式:22W U I R t RP =P =或=UI=(适用于纯电阻电路) 可见,一段电路上的电功率,跟这段电路两端的电压和电路中的电流成正比。

用电器上通常标明它的电功率和电压,叫做用电器的额定功率和额定电压。

8.焦耳定律(电流热效应的规律):电流通过导体产生的热量,跟电流的平方,导体的电阻和通电的时间成正比。

公式:2Q RI t = (,,,J A s Ω)阅读P12,13页的‘阅读与应用’的三和四9.电动势:表征电源做工能力的物理量,用E 表示。

电工第一章电路分析基础

电工第一章电路分析基础
相当于电源
三、 电路的工作状态
全电路欧姆定律
1、电路的负载状态
1)电压电流关系
I a S
E I R0 R
U E R0 I E
电源外特性
R
R0
c E
-
.
U
b
负载状态
2)功率关系
如果将电压电流关系两端同时乘以I则可得:
IU IE I R0
2
P=UI——负载消耗功率; PE=IE——电源产生的功率;
二、用支路电流法分析电路的一般步骤
1)在电路图上,标出电流、 电压、电动势等各物理量的参 考方向。 2)对(n-1)个独立节点列写 KCL方程 对节点a列出
c
US1
R1 I1 I3
第一章
电路分析基础
8学时
1-1 电路的基本概念
一、电路的组成及作用
电源 中间环节 负载
强电电路:处理的是电 能,即实现电能的传输 与转换
信 号 源
弱电电路:处理的是信号, 即实现信号的传递与处 理
强、弱电电路中的物理量 都是电流、电压
即:电路由电源(信号源)、 负载、中间环节等组成
二、电路中的基本物理量与参考方向
任 意 电 路
I U c
任 意 电 路
I U d
任 意 电 路
P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W
相当于电源
相当于负载 相当于负载
电动势(电源)的实际方向:是由低电位指向高电位, 即电位升高的方向。正好与电压的实际方向相反。
E ——直流电动势

电工基础复习提纲

电工基础复习提纲

第一章 简单直流电路的根底知识【本章逻辑结构】【本章重点内容】1、电路中的主要物理量。

2、根本定律。

3、电路中的各点电位的计算。

4、简单直流电路的分析及计算。

【本章内容提要】一、电路:由电源、用电器、导线和开关等组成的闭合回路。

电路的作用是实现电能的传输和转换。

二、电流:电荷的定向移动形成电流,电路中有持续电流的条件是:1. 电路为闭合通路。

2. 电路两端存在电压,电源的作用是为电路提供持续的电压。

三、电流的大小:等于通过导体横截面的电荷量与通过这些电荷量所用时间的比值,即:I =tq四、电阻:表示元件对电流呈现阻碍作用大小的物理量,在一定温度下,导体的电阻和它的长度成正比,而和它的横截面积成反比,即:R =ρsl式中,ρ是反映材料导电性能的物理量,称为电阻率。

此外,导体的电阻还与温度有关。

五、局部电路欧姆定律:反映电流,电压,电阻三者之间的关系,其规律为:电路分类串联电路混联电路并联电路I=RU 六、电流通过用电器时,将电能转化为其他形式的能。

转换电能的计算: W=UIt 电功率的计算: P=UI 电热的计算: Q=I 2Rt七、闭合电路的欧姆定律:闭合电路内的电流与电源的电动势成正比,与电路的总电阻成反比,即:I=rR E式中E 代表电源电动势、R 代表外电路电阻、r 代表外电源内电阻。

电路参数的变化将使电路中的电流、电压分配关系以及功率消耗等发生改变。

八、电源的外特性:在闭合电路中,电源端电压随负载电流变化的规律,即U=E-Ir九、串联电路的根本特点:电路中各处的电流相等;电路两端的总电压等于各局部电路两端的电压之和;串联电路的总电阻等于各个导体的电阻之和。

十、并联电路的根本特点是:电路中各支路两端的电压相等;电路的总电流等于各支路的电流之和;并联电路的总电阻的倒数,等于各个导体的电阻的倒数之和。

十一、电阻测量:可采用欧姆表,伏安法和惠斯通电桥,要注意它们的测量方法和适用条件。

十二、电位:电路中某点的电位就是该点与零电位之间的电压〔电位差〕。

电工基础:电路中各点电位的计算

电工基础:电路中各点电位的计算

例:如图所示电路,R1=4Ω,R2=2Ω,
R3=1Ω,E1=4V,E2=3V,求电路
中a、b、c 、d点的电位.
解:d点接地,则Vd=0。在abca回路中
I1
E2 R2 R3
3 2+1
1A
Vc Ucd Vd E1 6V
Vb Ubc Vc I2 R2 +VC 1 2 6 8V
Va Uab Vb E2 +Vb 3 8 5V
电源内阻忽略不计;R1=3Ω,R2=5Ω, R3=4Ω,求B、C、D三点的电位UB、 Uc、 UD.
解:利用电路中A点为电位参考点(零电位点),电流方向为顺时针方向:
I E1 -E2 3 A R1 R2 R3
B点电位: UB UBA R1I 9V C点电位: UC UCA E1 R1I 42 9 33V D点电位: U D U DA E2 R2 I 6 15 21V
3)从被求点开始通过一定的路径绕到电位参考点,则该点的 电位等于此路径上所有电压降的代数和:
电阻元件电压降写成 RI形式,当电流I的参考方向与路径绕行方向 一致时,选取“+”号;反之,则选取“-”号。
电源电动势写成 E形式,当电动势的方向与路径绕行方向一致时, 选取“-”号;反之,则选取“+”号。
例:如图所示电路,已知E1=42V,E2=6V,
二 电位分析计算
必须注意的是,电路中两点间的电位差(即电压)是绝对的,不随电位 参考点的不同发生变化,即电压值与电位参考点无关;而电路中某一点 的电位则是相对电位参考点而言的,电位参考点不同,该点电位值也将 不同。
在上例题中,假如以E点为电位参考点,则:
B点的电位变为 UB UBE R1I R2 I 2; 4V C点的电位变为 UC UCE R3 I E2 18V; D点的电位变为 U D相对于同一参考点而言是 一定的,检测电路中各点的电位是分析与维修电 路的常用手段。

电工学基础知识大全

电工学基础知识大全

电工基础知识点 1. 电路(de)状态:通路;断路;短路.2. 电流:电荷(de)定向移动形成电流.习惯上规定:正电荷定向移动(de)方向是电流(de)正方向,实际(de)电流方向与规定(de)相反.公式:q I t= (,,A C s ) 36110,110mA A uA A --== 直流电:电流方向和强弱都不随时间而改变(de)电流.交流电:大小和方向都随时间做周期性变化,并且在一个周期内平均值为零(de)电流.3. 电阻:表示物体对自由电子定向移动(de)阻碍作用(de)物理量.公式:l R Sρ= (2,,,m m m ΩΩ*) 导体(de)电阻是由本身决定(de),由它本身(de)电阻率和尺寸大小决定,还与温度有关.对温度而言,存在正温度系数和负温度系数变化.4. 部分电路(de)欧姆定律:导体中(de)电流与两端(de)电压成正比,与它(de)电阻成反比.公式:U I U RI R==或(导体(de)电阻是恒定(de),变化(de)是电流和电压) 5. 电阻(de)福安特性曲线:如果以电压为横坐标,电流为纵坐标,可画出电阻(de)U-I 关系曲线.电阻元件(de)福安特性曲线是过原点(de)直线时,叫做线性电阻.如果不是直线,则叫做非线性电阻.(图:P8)6. 电能:W UIt = (,,,J V A s ) 实际中常以110001kW h W h *=*,简称度. 7. 电功率:在一段时间内,电路产生或消耗(de)电能与时间(de)比值,用P 表示.公式:22W U I R t RP =P =或=UI=(适用于纯电阻电路) 可见,一段电路上(de)电功率,跟这段电路两端(de)电压和电路中(de)电流成正比.用电器上通常标明它(de)电功率和电压,叫做用电器(de)额定功率和额定电压.8. 焦耳定律(电流热效应(de)规律):电流通过导体产生(de)热量,跟电流(de)平方,导体(de)电阻和通电(de)时间成正比.公式:2Q RI t = (,,,J A s Ω)阅读P12,13页(de)‘阅读与应用’(de)三和四9. 电动势:表征电源做工能力(de)物理量,用E 表示.电源(de)电动势等于电源没有接入电路时两极间(de)电压.它是一个标量,但规定自负极通过电源内部到正极(de)方向为电动势(de)方向.10. 闭合电路(de)欧姆定律:闭合电路内(de)电流,跟电源(de)电动势成正比,跟整个电路(de)电阻成反比. 公式:0E I R R =+ 0E RI R I →=+ 闭合电路由两部分组成:一部分是电源外部(de)电路,叫做外电路,包括用电器和导线等;另一部分是电源内部电路,叫做内电路,如发电机(de)线圈,电池内(de)溶液等.外电路(de)电阻通常叫做外电阻,内电路也有电阻,通常叫做电源(de)内电阻,简称内阻.'E U U =+ :电源(de)电动势等于内,外电路电压降之和.对端电压(de)分析:A .:0,R I U E →∞==B .0R →(外电路短路) 0:,0E I U R =→ C .:,R I U ↑↓↑ D .:,R I U ↓↑↓11.电源向负载输出(de)功率:2244m E E P R R == 当电源给定而负载可变,外电路(de)电阻等于电源(de)内阻时(0R R =),电源(de)输出功率最大,这时叫做负载与电源(de)匹配.12.电池组(de)基本接法:串联,并联和混联.串联:00E nE R nR =⇔=串串 适用于:当用电器(de)额定电压高于单个电池(de)电动势时,并用电器(de)额定电流必须小于单个电池允许通过(de)最大电流. 并联:00R E E R n=⇔=并并 适用于:当用电器(de)额定电流比单个电池允许同过(de)最大电流大时,并用电器(de)额定电压必须低于单个电池(de)电动势.混联:当电池(de)电动势和允许通过(de)最大电流都小于用电器(de)额定电压和额定电流时,可以先组成几个串联电池组,使用电器得到需要(de)额定电压,在把这几个串联(de)电池组并联起来,使每个电池实际通过(de)电流小于允许通过(de)最大电流.13.电阻(de)串联与并联:串联:把两个或两个以上(de)电阻依次连接,组成一条无分支电路,这样(de)连接方式叫做电阻(de)串联.A 特点:(1)串联电路中流过每个电阻(de)电流都相等,即:(2)串联电路中(de)总电压等于各电阻两端(de)分电压之和;即B 性质:(1)串联电路(de)等效电阻(即总电阻)等于各串联电阻之和.即(2)串联电路(de)分压性质:在串联电路中,各电阻上分配(de)电压与电阻值成正比,即阻值越大(de)电阻分配到(de)电压越大;反之电压越小(3)串联电路中(de)功率分配: 在串联电路,各电阻上分配(de)功率与阻值成正比C 应用:(1)用几个电阻串联以获得较大(de)电阻.(2)采用几个电阻串联构成分压器,使同一电源能供给几种不同数值(de)电压,如下图所示.(3)当负载(de)额定电压低于电源电压时,可用串联电阻(de)方法将负载接入电源.(4)限制和调节电路中电流(de)大小.(5)扩大电压表量程.(公式:g g g U R I R I -=)并联:把几个电阻并列(de)连接起来,就组成并联电路.A 特点:(1) 电路中各支路两端(de)电压相等.(2)电路中(de)总电流等于各支路(de)电流之和.B 性质:(1)总电阻(de)倒数等于各支路电阻(de)倒数之和.即(2)各支路(de)电流与其电阻成反比.21121212R R I I R R R R ==++或(以两电阻(de)并联为例) (3)各支路电阻所消耗(de)功率与其电阻成反比.C 应用:(1)凡是额定工作电压相同(de)负载都采用并联(de)工作方式.这样每个负载都是一个可独立控制(de)回路,任一负载(de)正常启动或关断都不影响其它负载使用.(2)获得较小电阻.(3)扩大电流表(de)量程.(公式:g gg R I R I I =-)14.电阻(de)混联:在实际电路中,既有电阻(de)串联,又有电阻(de)并联,叫做电阻(de)混联.方法:电流法与等电位法.(P27)15.万用表(de)基本原理和使用(P28)16.电阻(de)测量:A 伏安法:(1)电流表外接法:适用于待测电阻(de)阻值比电压表(de)内阻小得多时,测出(de)电阻值比实际值小些.(P32.图2-25.a )(2)电流表内接法:适用于待测电阻(de)阻值比电流(de)内阻大得多时,测出(de)电阻值比实际值大些.(P32.图2-25.b )B 惠斯通电桥法:电桥平衡(de)条件:中间(de)灵敏电流表读数为零.电桥邻臂(de)电阻之比相等,电桥对臂(de)电阻乘积相等.公式: 21X l R R l = 17.电位:电路中零电位(de)点规定之后,电路中任一点与零电位点之间(de)电压(电位差),就是该点(de)电位.零电位:讲电位也要先指定一个计算电位(de)起点.注:零电位(de)选择可以是任意(de),习惯上规定大地(de)电位为零.ab a b ba b a U V V U V V =-⇔=-计算:电路中各点电位,只要从这一点通过一定(de)路径绕到零电位(de)点,该点(de)电位即等于此路径上全部电压降(de)代数和.公式: 电源: +→-⇒+-→+⇒-或电阻: RR I I −−→⇒-−−→⇒+←−−或 18.支路:由一个或几个元件首尾相接构成(de)无分支电路.节点:三条或三条以上支路汇聚(de)点.回路:电路中任一闭合路径.网孔:指电路回路中不含有支路(de)回路.基尔霍夫电流定律(节点电流定律/KCL ):电路中任意一个节点上,在任一时刻,流入节点(de)电流之和,等于流出节点(de)电流之和.即,在任一电路中任一节点是,电流(de)代数和永远等于零.0I I I ==∑∑∑入出或基尔霍夫电压定律(回路电压定律/KVL ):对于任意一个集中参数电路中(de)任意一个回路,在任何时刻,沿该回路(de)所有支路电压代数和等于零.0U RI E ==∑∑∑或19.支路电流法(de)分析步骤:A 假定各支路电流(de)方向和回路方向,回路方向可以任意假设,对于具有两个以上电动势(de)回路,通常取值较大(de)电动势(de)方向为回路方向,电流方向也可参考此法来假设.B 用基尔霍夫电流定律列出节点电流方程式. C 用基尔霍夫电压定律列出回路电压方程式.D 代入已知数,解联立方程式,求出各支路(de)电流. E 确定各支路(de)电流方向(注意题上已知).(请把例题多看几次)20.叠加定理:由线性电阻和多个电源组成(de)线性电路中,任何一个支路中(de)电流(或电压)等于各个电源单独作用时,在此支路中所产生(de)电流(或电压)(de)代数和.叠加定理只能用来求电路中(de)电压或电流,而不能用来求功率. 步骤:A 分别作出由一个电源单独作用(de)分图,而其余电源只保留其内阻.(电压源不作用时,当成一根导线{短路};电流源不作用时,当成断开(de){断路})B 分别计算分图中每一支路电流(de)大小和方向.C 求出各电动势在各个支路中产生(de)电流(de)代数和,这些电流就是各电动势共同作用时,在各支路中产生(de)电流.(注意例题)21.二端网络:电路也叫电网络或网络.如果网络具有两个引出端与外电路相连,不管其内部结构如何,这样(de)网络就叫二端网络.分为有源和无源二端网络. 戴维宁定理:对外电路来说,一个含源二端网络可以用一个电源来代替,该电源(de)电动势0E 等于二端网络(de)开路电压,其内阻0R 等于含源二端网络内所有电动势为零,仅保留其内阻时,网络两端(de)等效电阻(输入电阻).步骤:A 把电路分为待求支路和含源二端网络两部分. B 把待求支路移开,求出含源二端网络(de)开路电压. C 把网络内各电源除去,仅保留电源内阻,求出网络两端(de)等效电阻.D 画出含源二端网络(de)等效电路,把待求支路移入,进行求解.(注意等效电源(de)正负极和题上待求支路(de)参考方向)22.电容器:如何两个彼此绝缘而又互相靠近(de)导体,都可以看成一个电容器,这两个导体就是电容器(de)两个极.使电容器带电(de)过程叫做充电,这时总是使它(de)一个导体带正电荷,另一个导体带负电荷.充电后(de)电容器失去电荷(de)过程叫做放电.电容:电容器所带(de)电荷量与它(de)两极板间(de)电压比值,表征了电容器(de)特性,这个比值叫做电容器(de)电容. 公式:q C U= 单位:61211010F F pF μ== 61211010pF F F μ--== 平行板电容器(de)电容:跟电介质(de)介电常数成正比,跟正对面积成正比,跟极板(de)距离成反比. 公式:SC d ε= (2,,,F F m m m ) 00r r εεεεε=⇔=电介质(de)介电常数由介质(de)性质决定.23.电容器(de)连接:A 串联:1每个电容器所带电荷量相等;2 串联电容器(de)总电容(de)倒数等于各个电容(de)倒数之和;3 每个电容器所带电压与电容成反比. B 并联:1每个电容器所带电压相等;2 并联电容器(de)总电容等于各个电容器(de)电容之和;3 每个电容器所带电荷量与电容成正比.(注意例题,这时串并联时安全电压(de)求法)24.电容器充电:电流由大变小,直到为零;电压由小变大.电容器放电:电流由大变小,直到为零;电压由大变小,直到为零.25.电容器中(de)电场能量:与电容器(de)电容成正比,与电容器两极板之间(de)电压平方成正比.公式:21122C C C W qU CU ==电容器是储能原件.加在电容器两极板上(de)电压不能超过某一限度,一旦超过这个限度,电介质将被击穿,电容器损坏.这个极限电压叫做击穿电压,电容器(de)安全工作电压应低于击穿电压.一般电容器均标有电容量,允许误差和额定电压(即耐压).26.磁场跟电场一样,是一种物质,因而具有力和能(de)性质.同名磁极互相排斥,异名磁极互相吸引.磁场方向:一般规定,在磁场中任一点,小磁针N 极受力(de)方向,即小磁针静止时N 极所指(de)方向,就是那一点(de)磁场方向.磁力线:所谓磁感线,就是在磁场中画出(de)一些曲线,这些曲线上,每一点(de)切线方向,都跟该点(de)磁场方向相同.电流(de)磁场方向(de)判定(安培定则又叫右手螺旋定则):见书P68 图5-3,5-4,5-5.27.磁场(de)主要物理量:①磁感应强度:在磁场中垂直于磁场方向(de)通电导线,所受(de)磁场力F 与电流I 和导线长度L(de)乘积(de)比值叫做通电导线所在处(de)磁感应强度.公式:F B Il= 磁感应强度是一个矢量,它(de)大小如左式所示,它(de)方向就是该点(de)磁场方向.它(de)单位是T (特).如果在磁场(de)某一区域里,磁感应强度(de)大小和方向都相同,这个区域就叫做匀强磁场,用分布均匀(de)平行直线表示.②磁通:定义磁感应强度与面积(de)乘积,叫做穿过这个面(de)磁通量(简称磁通).公式:S Φ=B 单位是Wb (韦)③磁导率:就是一个用来表示媒介质导磁性能(de)物理量. 公式:70410H m μπ-=⨯ 00r r μμμμμμ=⇔=④磁场强度:磁场中某点(de)磁感应强度与媒介质磁导率(de)比值,叫做该点(de)磁场强度.它是一个矢量. 公式:0r B H B H H μμμμ=⇔== 单位是:A m (安/米) 28.磁场(de)电流(de)作用力: 公式 sin F BIL θ=(///N T A m )①当0θ=时,力最小,为零 ②当2θπ=时,力最大,为F BIL =③当θ越小,力也越小. 电流方向与磁场方向间(de)夹角.④左手定则用于判断力(de)方向:伸出左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,让磁感线垂直进入手心,并使四指指向电流方向,这时手掌所在(de)平面与磁感线和导线所在(de)平面垂直,大拇指所指(de)方向就是通电导线在磁场中受力(de)方向.29.磁化曲线:铁磁性物质(de)B (磁感应强度)随H (磁场强度)而变化(de)曲线叫做磁化曲线.看书P73-P7430.①磁路:磁通经过(de)闭合路径,分为有分支和无分支磁路.②磁动势:通过线圈(de)电流和线圈匝数(de)乘积.公式:m E IN = 单位:A③磁阻:表示磁通通过磁路时所受到(de)阻碍作用.公式:m l R Sμ= 单位:21,,,H m H m m ④磁路(de)欧姆定律:m m E R Φ=31.电磁感应现象:利用磁场产生电流(de)现象,叫做电磁感应现象,产生(de)电流叫做感应电流.产生(de)条件:只要穿过闭合电路(de)磁通发生变化,闭合电路就有电流产生.即①直导体切割磁力线;②闭合线圈(de)磁通发生变化.右手定则:当闭合电路中(de)一部分导线做切割磁感应线运动时.伸开右手,使大拇指与其余四指垂直,并且都跟手掌在一个平面内,让磁感应线垂直进入手心,大拇指指向导体运动方向,这时四指所指(de)方向就是感应电流(de)方向. 楞次定律:感应电流(de)方向,总是要使感应电流(de)磁场阻碍引起感应电流(de)磁通(de)变化,这就是楞次定律,它是判断感应电流方向(de)普遍规律. 32.感应电动势:不管外电流是否闭合,只要有发生电磁感应现象(de)条件,电路中就有感应电动势.计算办法:①直导体切割磁力线:sin E Blv θ= ②闭合线圈:E t ∆Φ=∆ E N t t∆Φ∆ψ==∆∆(N ψ=Φ) 法拉第电磁感应定律:线圈中感应电动势(de)大小与穿过线圈(de)磁通(de)变化率成正比.33.自感现象:由于线圈本身(de)电流发生变化而产生(de)电磁感应现象,叫做自感现象,简称自感.在自感现象中产生(de)感应电动势,叫做自感电动势.电感:线圈(de)自感磁链与电流(de)比值叫做线圈(或回路)(de)自感系数(或叫做自感量) ,简称电感.公式: 2L N N S L I I lμψΦ=== 单位:H 自感电动势:L IE Lt t∆ψ∆==∆∆ 磁场能量:212L W LI = 34.自感现象(de)应用:35.互感现象:假如两个线圈或回路靠(de)很近,如果一个线圈上(de)电流随时间变化,则穿过另一个线圈(de)磁链也随时间变化,因此在另一个线圈中将要产生感应电动势,这种现象叫做互感现象.互感系数:在两个交链(耦合)(de)线圈中,互感磁链与产生此磁链(de)电流(de)比值,叫做这两个线圈(de)互感系数(或互感量),简称互感.公式:211212M i i ψψ== 36.把这种在同一变化磁通(de)作用下,感应电动势极性相同(de)端点叫做同名端,感应电动势极性相反(de)端点叫做异名端.关键:掌握对同名端(de)判定 .特点:①顺串:异名端相连122L L L M =++顺②反串:同名端相连 122L L L M =+-反则:4L L M -=顺反37.涡流和磁屏蔽:P96. 38.交流电(de)产生:P104 39.表征交流电(de)物理量:①周期:交流电完成一次周期性变化所需(de)时间,叫做交流电(de)周期,用T 表示,单位是s (秒).②频率:交流电在1s 内完成周期性变化(de)次数叫做交流电(de)频率.用f 表示,单位是Hz (赫).③角频率:交流电每秒所变化(de)角度(电角度),叫做交流电(de)角频率.用ω表示,单位是rad s (弧度/秒).④最大值:交流电在一个周期内所能达到(de)最大数值,可以用来表示交流电(de)电流强弱或电压高低.⑤有效值:交流电(de)有效值是根据电流(de)热效应来规定(de).让交流电和直流电分别通过同样阻值(de)电阻,如果他们在同一时间内产生(de)热量相等,就把这一直流电(de)数值叫做这一交流电(de)有效值.⑥相位和相位差:两个交流电(de)相位差叫做它们(de)相位差.同频率之间(de)相位差就是初相之差.有效值(或最大值),频率(或周期,角频率),初相是正弦交流电(de)三要素.公式:11T ff T=⇔=22fTπωπ==(/)(/)0.707(/)2m m mm m mE U IE U I E U I==40.交流电(de)表示方法:解析式,波形图,向量图.41.正弦交流电:①纯电路部分:电路形式项目纯电阻电路纯电感电路纯电容电路对电流(de)阻碍作用电阻 R感抗LX Lω=容抗1CXCω=电流和电压间(de)关系大小相位电流电压同相电压超前电流90°电压滞后电流90°有功功率00②串联电路部分:P.141. 向量图如下:③串并联谐振:.④交流电功率:瞬时功率:将电压瞬时值和电流瞬时值(de)乘积叫做瞬时功率.用字母p表示.有功功率(平均功率):就是瞬时功率在一个周期内(de)平均值,用字母P表示,单位为W(瓦)无功功率:电容电感原件(de)瞬时功率(de)最大值,表示电容电感与电源之间能量交换(de)最大值.用符号Q表示,单位是var(乏).视在功率:总电压有效值和电流有效值(de)乘积.用符号S表示,单位是,(伏.安)⑤功率因数:电路(de)有功功率与视在功率(de)比值.意义:功率因数(de)大小是表示电源功率被利用(de)程度;同时在同一电压下,要输送同一功率,功率因数越高,则线路中电流越小,故线路中(de)损耗也越小.提高方法:在电感性负载两端并联一只电容适当(de)电容器.42.三项正弦交流电:第一节三相交流电源一、三相交流电源(de)产生1.三相交流发电机三相交流电源是三个频率相同、最大值相等、相位彼此相差120(de)单相交流电源按一定方式(de)组合.2.三相交流电源(de)表示方法(1)解析式e12E sin te22E sin(t 120)e32E sin(t + 120)这样(de)三个电动势叫对称三相电动势.三个电动势到达最大值(或零)(de)先后次序叫相序.正序e1 →e2 →e3.(2)波形图(3)相量图e 1e 2e 3 0即1E +2E +3E 0 二、三相电源(de)连接1.连接方式(Y )(1)中性点(或零点):三个末端相连接(de)点.用字母“N ”表示中性线(或零线):从中性点引出(de)一根线叫中性线或零线.(2)端线或相线:从始端引出(de)三根线,俗称火线. 2.相电压与线电压(1)相电压:相线与中性线间(de)电压,用u 1、u 2、u 3 表示(通用符号用u P 表示)→三个相电压对称相电压(de)方向:从绕组(de)始端指向末端.(2)线电压:两根相线间(de)电压,用u 12、u 23、u 31 表示(通用符号用u L 表示)→三个线电压对称线电压(de)方向:按三相电源(de)相序来确定.如:u 12就是从U1端指向V 1端,u23就是从V1端指向W1端,u31就是从W1端指向U1端. (3)相电压与线电压(de)关系12U =1U (2U ) 推导:相量图(或复数运算)结论:各线电压(de)有效值是各相电压有效值(de)3倍.即U L 3U P (3803 220)各线电压(de)相位比各对应(de)相电压超前30. 3.三相三线制和三相四线制 三根相线和一根中线组成(de)输电方式称为三相四线制,通常在低压配电中采用.三根相线组成(de)输电方式称为三相三线制,在高压输电工程中采用.第二节三相负载(de)连接从复习三相电源(de)连接引入课题. 一、三相负载连接1.单相负载:只需单相电源供电(de)设备. 三相负载:同时需要三相电源供电(de)负载. 三相对称负载:在三相负载中,如果每相负载(de)电阻、电抗都相等,这样(de)负载称为三相对称负载.2.负载(de)连接方法(在三相电路中):星形、三角形.二、三相负载星形联结(Y ) 1.电路2.特点 (1)负载电压U Y U P 3L U(2)负载电流负载中(de)电流称为相电流,用I YP 表示. 方向:与相电压方向一致.中性线电流:流过中性线(de)电流叫中性线电流,用I N 表示. 方向:规定由负载中点N 流向电源中点N.I YPPP Z U ,P Z =22X R各相电流与各相电压(de)相位差arccos PZ R (3)线电流流过每根相线(de)电流叫线电流,即I 1、I 2、I 3,一般用I YL 表示.I YL I YP若三相负载对称则负载上(de)电压、电流及线电流均对称. 例1:本节例1 3.中性线(de)作用(1)若负载对称,则I N 0可省去中性线.(2)若负载不对称,则I N 0,若有中性线,则各相负载仍有对称(de)电源相电压,从而保证了各相负载能正常工作;若没有中性线,则各相负载(de)电压就不再等于电源(de)相电压,这时阻抗较小(de)负载(de)相电压可能低于其额定电压,阻抗较大(de)负载(de)相电压可能高于其额定电压,使负载不能正常工作,甚至会造成事故.三、三相负载三角形联结(Δ) 1.电路 2.特点 (1)负载电压U P U L(2)负载电流I P P ΔZ U PL Z U ,PZ 22X R(3)线电流I L =3I P各线电流(de)相位比相应(de)相电流滞后30. 推导:作相量图(或复数运算)1I 12I +(31I ) 3.三相负载连接法(de)选择应根据负载(de)额定电压与电源电压(de)数值而定,总之要使每相负载所承受(de)电压等于其额定电压.若每相负载(de)额定电压为电源线电压(de)31,则负载应连成星形;若每相负载(de)额定电压等于电源(de)线电压,则负载应联成三角形.例2:本节例2根据例题(de)结论,提问:同一负载在相同(de)线电压下,下列比值等于多少Y ΔU U =;YPΔPI I =;YL ΔL I I =第三节三相电路(de)功率一、不对称三相负载PP 1P 2P 3U 1I 1cos 1U 2 I 2cos 2U 3 I 3cos 3二、对称三相负载 1.公式之一P 3U P I P cos Q 3U P I P sin S 3 U P I P S22Q PcosZ R U U R SP2.公式之二P 3U l I l cos Q 3U l I l sin S 3U l I l第四节安全用电介绍一些触电事故,使学生明确安全用电(de)意义. 一、电流对人体(de)作用1.触电人体因触及高电压(de)带电体而承受过大(de)电流,以致引起死亡或局部受伤(de)现象称为触电.决定触电对人体伤害程度(de)因素有: (1)流过人体电流(de)大小 (2)流过人体电流(de)频率 (3)通电时间(de)长短 (4)电流流过人体(de)途径(5)触电者本人(de)情况(人体电阻)3.触电方式单相触电;两相触电.二、常用(de)安全措施1.安全电压36V以下2.开关必须通过相线3.选用合适(de)导线和熔丝4.正确安装用电设备5.电气设备(de)保护接地和保护接零(1)保护接地:将电气设备(de)金属外壳与地线相连,适用于中性点不接地(de)低压系统中.介绍三脚插头和三眼插座(de)应用.(2)保护接零:将电气设备(de)金属外壳与中性线相连,适用于中性点接地(de)低压系统中.6.触电保护装置。

《电工基础》中“+”“-”号的含义

《电工基础》中“+”“-”号的含义

《电工基础》中“+”“-”号的含义在《电工基础》中“+”“-”号出现在很多章节中,几乎贯穿了《电工基础》的始终,正确理解这些“+”“-”号的含义,有助于理解并掌握相应的概念、规律、定律,并能准确运用。

现将其总结如下,请大家指正。

一、物理量的“+”“-”:1、电压、电流、电动势的“+”“-”号:这些物理量的“+”“-”表示了它们的方向与所假设的参考方向之间的关系。

当电压、电流、电动势为“+”时,表示它们的实际方向与参考方向相同;当电压、电流、电动势为“-”时,表示它们的实际方向与参考方向相反。

要注意:在比较这些物理量大小时,它们的“+”“-”只表示方向,不能参与比较大小。

2、电功率的“+”“-”:对负载来说,如果功率为“+”表示负载在吸收功率,它是真正意义上的负载;如果功率为“-”表示负载在释放功率,它实际上起了电源的作用。

对电源来说,如果功率为“+”表示电源在释放功率,它是真正意义上的电源;如果功率为“-”表示电源在吸收功率,实际上在电路中相当于负载。

因此,电功率的“+”“-”可以用来判断该元件在电路中实际是起电源作用,还是作为负载使用,同样不能用来比较大小。

3、温度系数的“+”“-”:电阻的温度系数也有“+”“-”,当温度系数为“+”时,表示电阻的阻值随温度的升高而增大,如金属导体的电阻;当温度系数为“-”时,表示电阻的阻值随温度的升高而减小,如半导体材料的电阻。

4、相位差的“+”“-”:相位差的“+”“-”表示了两个同频率的正弦量相位超前与滞后的关系。

例如:一正弦电流的初相为φi0,同频率的一正弦电压的初相为φu0,当φ=φi0-φu0>0时,相位差φ为“+”,表示电流比电压超前φ;当φ=φi0-φu0<0时,相位差φ为“-”,表示电流比电压滞后φ。

二、 公式中的“+”“-”:在《电工基础》中,部分电路的欧姆定律的常用表达形式是U=IR ,实际上,这是在电流和电压的参考方向相一致的情况下,如图⑴所示。

(完整版)《电工基础》电路中各点电位的计算

(完整版)《电工基础》电路中各点电位的计算

模块三:例题分析通过例题巩固知识
电位的计算步骤:
(1)首先要选定参考点,参考点电位为零。

(2)选定“下楼”途径,并选定途中的电流参考方向和各元件
两端电压的正负极。

(3)从电路中某点开始,按所选定的路径“走”至参考点,路
径中各元件的电压的正负规定为:走向先遇元件上电压参考方向的
“+”端取正,反之取负。

(4)求解路径中所有元件的电压,并求出它们的代数和。

(四)例题分析
【例2-10】如图2-28 所示电路,已知:E1 = 45 V,E2 = 12 V,
电源内阻忽略不计;R1 = 5 Ω ,R2 = 4 Ω ,R3 = 2 Ω。

求B、C、D
三点的电位VB、VC、VD.
在上例题中,假如以A 点为电位参考点,则
B 点的电位变为V B = U BA = − R1I = −15V;
C 点的电位变为V C = U CA=− R1I + E1= 30 V;
D 点的电位变为V D = U DA= E2+ IR2 = 24 V。

注意:(1)电位值是相对的,与参考点的选取有关;
(2)任两点间的电压是绝对的,与参考点的选取无关
教师在进行
理论教学
后,马上进
行例题巩
固。

教师巡回指
导,发现学
生存在的问
题。

电工学基础知识大全

电工学基础知识大全

电工基础知识点1. 电路的状态:通路;断路;短路。

2. 电流:电荷的定向移动形成电流。

习惯上规定:正电荷定向移动的方向是电流的正方向, 实际的电流方向与规定的相反。

公式:q I t= (,,A C s ) 36110,110mA A uA A --== 直流电:电流方向和强弱都不随时间而改变的电流。

交流电:大小和方向都随时间做周期性变化,并且在一个周期内平均值为零的电流。

3. 电阻:表示物体对自由电子定向移动的阻碍作用的物理量。

公式:l R Sρ= (2,,,m m m ΩΩ*) 导体的电阻是由本身决定的,由它本身的电阻率和尺寸大小决定,还与温度有关。

对温度而言,存在正温度系数和负温度系数变化。

4. 部分电路的欧姆定律:导体中的电流与两端的电压成正比,与它的电阻成反比。

公式:U I U RI R==或(导体的电阻是恒定的,变化的是电流和电压) 5. 电阻的福安特性曲线:如果以电压为横坐标,电流为纵坐标,可画出电阻的U-I 关系曲线。

电阻元件的福安特性曲线是过原点的直线时,叫做线性电阻。

如果不是直线,则叫做非线性电阻。

(图:P8)6. 电能:W UIt = (,,,J V A s ) 实际中常以110001kW h W h *=*,简称度。

7. 电功率:在一段时间内,电路产生或消耗的电能与时间的比值,用P 表示。

公式:22W U I R t RP =P =或=UI=(适用于纯电阻电路) 可见,一段电路上的电功率,跟这段电路两端的电压和电路中的电流成正比。

用电器上通常标明它的电功率和电压,叫做用电器的额定功率和额定电压。

8. 焦耳定律(电流热效应的规律):电流通过导体产生的热量,跟电流的平方,导体的电阻和通电的时间成正比。

公式:2Q RI t = (,,,J A s Ω)阅读P12,13页的‘阅读与应用’的三和四9. 电动势:表征电源做工能力的物理量,用E 表示。

电源的电动势等于电源没有接入电路时两极间的电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在上例题中,假如以A点为电位参考点,则
B点的电位变为VB= UBA= − R1I = −15V;
C点的电位变为VC= UCA=−R1I + E1=30V;
D点的电位变为VD=UDA= E2+IR2=24V。
注意:(1)电位值是相对的,与参考点的选取有关;
(2)任两点间的电压是绝对的,与参考点的选取无关
教学方法
运用
组织教学
模块一:
导入新课
导入新课
模块二:
探索新知
讲授新课
模块三:
例题分析
通过例题
巩固知识
课堂小结
布置作业
(一)组织教学:准备上课。
(二)导入新课:
同学们请大家思考一下,我们平时所说的高度是怎么计算的呢(空间的每一处都有一定的高度)
大家想一想:讲高度是不是先要确定一个计算高度的起点呢
工厂的烟囱有40高,这个高度是从地平面算起的。
当电流I的方向与路径绕行方向相反时,则选取“− ”号。
2)电源两端电压降方向:高电位(正极)指向低电位(负极)
写成±E形式:
电源两端电压降方向与路径绕行方向一致时,选取“+ ”号;
电源两端电压降方向与路径绕行方向相反时,选取““− ”号
4、计算电路中某点电位的方法是:
电位的计算步骤:
(1) 首先要选定参考点,参考点电位为零。
课题名称
电工基础
分课题名称
§2-8电路中各点电位的计算
授课日期
第8周
2014-10
授课时数
1
授课班级
12电子1、2
教学目的与
要求
知识目标:
1、了解电位的概念,理解零电位的含义及电位与电压的关系。
2、掌握电位的计算方法,理解其求解步骤。
能力目标:
1、教会学生一题多变的思想方法。
2、培养学生分析问题、解决问题的能力。
(五)学生练习
课后习题
(六)课堂小结:本堂课我们主要学习了电位的计算方法,通过空间的高度引入电路中的电位以及电位的计算,如何确定各元件两端电压的正负是本节课的难点,同时还要分清电压与电位的区别。
(七)布置作业:复习本节课所讲内容,预习下一章的内容。
引入实际生活的实例,提起学生的兴趣。

教师讲授:新课内容。并做具体解释。
(1)在工程中常选大地作为电位参考点;
(2)在电子线路中,常选一条特定的公共线或机壳作为电位参考点。
例如:有些设备的机壳是需要接地的,这时凡与机壳连接的各点均为零电位。
例如:有些设备的机壳虽然不一定真的和大地连接,但很多元件都要汇集到一个公共点,为了方便起见,可规定这一公共点为零电位。 在电路中通常用符号“ ⊥ ”标出电位参考点。
(2) 选定“下楼”途径,并选定途中的电流参考方向和各元件两端电压的正负极。
(3) 从电路中某点开始,按所选定的路径“走”至参考点,路径中各元件的电压的正负规定为:走向先遇元件上电压参考方向的“+”端 取正,反之取负。
(4)求解路径中所有元件的电压,并求出它们的代数和。
(四)例题分析
【例2-10】如图2-28所示电路,已知:E1 = 45 V,E2 = 12 V,电源内阻忽略不计;R1 = 5 Ω,R2 = 4 Ω,R3 = 2 Ω。求B、C、D三点的电位VB、VC、VD.
教师提出设问:
你们知道电压与电位的区别吗
教师讲授:一楼高为例,分清电压与电位的区别。
教师在进行理论教学后,马上进行例题巩固。
教师巡回指导,发现学生存在的问题。
教师讲解总结Leabharlann 情感目标:培养学生实际应用的能力。
激发学生学习电工的情感和勇于探索的科学精神。
教学重点
电路中电压方程的表示及有关电位的计算。
教学难点
电路的识别,电路中电流参考方向与实际绕行方向的关系判定,电动势极性与绕行方向关系的理解,电压方程的表示及有关电位的计算。
教学方法
启发诱导,讲练结合
教学过程
教 学 内 容
2、电位的定义 电路中零电位点(参考点)规定之后,通常设参考点的电位为零记为“Vo = 0 v” 。
电位:电路中任一点与零电位点之间电压(电位差),
就是该点得电位记为“VX” 。
注意:
电位与电压的区别。
3、如何确定各元件两端电压的正负
1)电阻元件电压降
当电流I的方向与路径绕行方向一致时,选取“+ ”号;
学生答:是的,要有一个参考点…… 那么,电位呢电路中各点的电位呢什么是电位:怎么去计算电路中各点的电位这节课我们一起来学习这些内容!
(三)讲授新课:
§2-8 电路中各点电位的计算
电路中每一点都有一定的电位,就如同空间的每一处都有一定的高度一样
1、电位参考点(即零电位点)
在电路中选定某一点 A 为电位参考点,就是规定该点的电位为零, 即 VA = 0。 电位参考点的选择方法是:
相关文档
最新文档