邓肯张模型参数(精)
邓肯张模型
2
R f 值一般在0.75~1.0之间
(8)
(9)
式(9)中 Et 表示为应变 1 的函数,可将 E 表示为应 t 力的函数形式。从式(1)可以得到
a(1 3 ) 1 1 b(1 3 )
常规三轴压缩试验的结果按
1 a b1 1 2
(2)
的关系进行调整,其中a为截距,b为斜率
在常规三轴压缩试验中,由于 d 2 d 3 0 ,所以切 线模量为
Et d ( 1 3 ) a d 1 (a b1 )2
(3)
在试验的起始点,
则: Ei 1
2
2
(11)
将式(8)、式(4)代入式(11),得
1 3 Et Ei 1 R f ( 1 3 ) f
(12)
根据莫尔-库仑强度准则,有
2c cos 2 3 sin (1 3 ) f 1 sin
(13)
又有
替, 偏应力σ 1-σ
3
3
用(σ 2+σ 3)/2 来代
用σ 1-(σ 2+σ 3)/ 2 来代替, 摩尔—库
仑(Mohr-Coulomb)准则不变 2.2.作为三维计算中的一种近似模拟方法, 用球应力p 、广 义剪应力q 分别代替二维计算模型中相应于σ
3
和σ 1-σ 3的
位置,保持摩尔— 库仑准则不变,
(10)
将式(10)代入式(3),得
Et a ab( 1 3 ) a 1 b( ) 1 3
2
1 b( 1 3 ) a 1 1 b ( ) 1 3
土体邓肯—张非线性弹性模型参数反演分析全
可编辑修改精选全文完整版土体邓肯—张非线性弹性模型参数反演分析近年来,随着科学技术的发展,经过精心设计的弹性模型和参数反演算法技术开始被广泛应用于土体力学中。
英国科学家邓肯(Duncan)和张(Zhang)的非线性弹性模型参数反演分析方法为土体力学研究奠定了坚实的理论基础。
线性弹性模型参数反演分析旨在研究土体的弹性本构模型,决土体的动态参数反演问题,从而更好地控制和解释土体力学行为。
首先,非线性弹性模型是一种普遍适用的土体力学模型,描述了土体的应力应变关系,其中包括受力弹性部分,恢复弹性部分和弹性非线性部分.述应力应变关系的函数可以用地质、浅层力学等参数表示。
其中包括材料参数,比如弹性模量、泊松比、抗拉强度极限等;空间参数,比如等效平面应力变化率等;时间参数,比如历史负荷重复次数等。
然后,非线性弹性参数反演分析是一种专门用于研究土体动态参数变化特性和土体弹性本构模型确定的非线性优化算法。
主要包括反演算法和参数估计算法。
演算法可以从提供的土体动态应力应变数据中恢复弹性本构参数的值,而参数估计算法则可以从实验测量数据中精确估计土体实际弹性参数的值。
此外,非线性弹性模型参数反演分析具有许多优点,到的结果有助于深入理解土体动态变化特性,有助于开发新的土体力学理论,有助于实现高精度的土体力学分析及模拟,为现有土体力学分析方法提供了更为准确的理论支撑。
最后,非线性弹性模型参数反演分析技术对土体力学研究有重要意义。
管技术刚刚起步,但有望在解决实际问题上发挥重要作用。
此,有必要加强相关技术的研究,加强详细计算,改进参数反演算法,并在非线性弹性本构分析的理论和实验研究方面进行深入挖掘,以及在实际工程中对该技术的实际应用。
综上所述,非线性弹性模型参数反演分析是一种新的、有效的土体力学分析方法,从理论和实践上都有重要意义,为土体力学研究和工程实践提供了有用的理论和技术支持。
3邓肯张试验精选全文
可编辑修改精选全文完整版3.Duncan-Chang 模型参数的确定实验目的:Duncan 双曲线模型是一种建立在增量广义虎克定律基础上的非线性弹性模型,它在岩土工程界为人们所熟知和广泛应用。
这一类模型可以反映应力应变关系的非线性,参数的物理意义明确和易于确定, 本实验通过对不同围压的控制来模拟模型并确定其参数。
实验原理:点绘()a εσσ~31-曲线,如图3-1所示,Kondner 等人发现,可以用双曲线来拟和这些曲线。
对某一3σ,()a εσσ~31-关系可表示成:aab a εεσσ+=-31 (3-1)渐近线σ3=常量E iE tσ1-σ3(σ1-σ3)uεa 0εa /(σ1-σ3)uεa ba图 3-1 ()a εσσ~31-关系曲线 图3-2 ()a a εσσε--31/关系曲线式中:a 和b 为试验常数。
上式也可以写成:a ab a εσσε+=-31 (3-2)以()31/σσε-a 为纵坐标,a ε为横坐标,构成新的坐标系,则双曲线转换成直线。
见图3-2。
其斜率为b ,截距为a 。
有增量广义虎克定律,如果只沿某一方向,譬如Z 方向,给土体施加应力增量ΔZσ,而保持其他方向的应力不变,可得:E zx σεΔΔ=(3-3) Ev zx σεΔΔ-= (3-4)则 xzE εσΔΔ= (3-5)zxv εεΔΔ-= (3-6)邓肯和张利用上述关系推导出弹性模量公式。
由式(3-5)得:()()aa E εσσεσσεσ∂-∂=-==313111ΔΔΔ (3-7)由此可见虎克定律中所用的弹性模量实际上是常规三轴试验()a εσσ~31-曲线的切线斜率。
这样的模量叫做切线弹性模量,可用t E 表示,见图3-1。
将式(3-1)代入式(3-7),得到:()2a tb a aE ε+= (3-8)由式(3-2)可得:ba a --=311σσε (3-9)式(3-9)代入式(3-8),得: ()[]23111σσ--=b a E t (3-10)由式(3-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε(3-11)而双曲线的初始切线模量i E 为: 031→⎪⎪⎭⎫⎝⎛-=a a i E εεσσ (3-12) 见图3-1。
邓肯-张模型参数求取
(1) 根据邓肯等人总结的经验公式计算参数a 、b :b =1(σ1−σ3)ult =(ε1σ1−σ3)95%−(ε1σ1−σ3)70%(ε1)95%−(ε1)70%()()111195%70%13131395%70%112a 1i a a a ultE p p p εεεεσσσσσσ==⎛⎫⎛⎫⎛⎫⎡⎤+-+ ⎪ ⎪ ⎪⎣⎦---⎝⎭⎝⎭⎝⎭()131313ult()()-ff fR b σσσσσσ-==-计算得到表一如下。
f 80117.03321=++=Rf Rf Rf Rf又因为a 为起始变形模量E i 的倒数,即E i =1a可得表二,并绘制lg (Ei/Pa) 与lg(σ3/Pa)的试验关系图如图一所示。
表二图一:承德中密砂lg (Ei/Pa) 与lg(σ3/Pa)的试验关系图对图一中的试验点进行拟合,得到lg (Ei/Pa) 与lg(σ3/Pa)的直线关系:y=0.8033x+2.2914.根据公式:E i=Kp a(σ3 p a )n可知K、n分别代表lg (Ei/Pa) 与lg(σ3/Pa)直线的截距和斜率,故可得K=2.2914;n=0.8033。
E-ν法在常规三轴试验中,轴向应变ε1与侧向应变—ε3之间也存在双曲线关系,经变换之后可得如下公式:−ε3ε1=f−Dε3由上式知—ε3/ε1与—ε3为直线关系,但实际上,二者并不是严格的直线关系,需先对试验结果进行取舍,然后选取某一区间进行拟合。
本文中选取试验曲线的后半部分进行拟合,得到不同围压下相应的拟合曲线,如下图所示。
图二:—ε3/ε1与—ε3关系曲线对应不同围压下的拟合曲线分别为:σ3=100kpa时,y=2.8211x+0.4719;σ3=300kpa时,y=2.8809x+0.4381;σ3=500kpa时,y=3.258x+0.4177.f和D分别为—ε3/ε1与—ε3直线的截距和斜率,结果如下表所示。
又因为νi=f=G -Flg (σ3/Pa )故可做νi—lg (σ3/Pa )关系曲线如下所示。
土体邓肯—张非线性弹性模型参数反演分析
土体邓肯—张非线性弹性模型参数反演分析土体弹性是土力学和岩土工程研究中最重要的物理量之一,它是分析土壤的受力和强度状态以及土体的力学特性的重要参数。
土体弹性的反演和分析是开发和应用理论模型,评价土体性质和解决工程问题的基础。
在过去几十年中,在土体弹性学研究中,邓肯-张(D-Z)模型被广泛地应用于土壤力学和计算力学中,以定量地描述和分析土体的弹性反应。
邓肯-张(D-Z)模型是以邓肯(Dunkerley)模型为基础,借鉴张(Zhang)模型的结构,对邓肯(Dunkerley)模型进行改进和重新建模得到的。
它将土体弹性关系表达为完全非线性的方式,具有较强的实用性,能够更准确地反映土体弹性特性。
这种完全非线性模型有八个不同的参数,它们分别表示土体的基本特性。
因此,通过定量分析土体弹性参数对土体性质的影响,可以有效评价土体的强度和稳定性,并从而更好地解决工程问题。
本文的目的是基于邓肯-张(D-Z)模型,分析土体弹性参数的反演。
研究的结果表明:八个参数可以采用拟合介质的拟合方法,通过计算完成反演分析。
这样可以对邓肯-张(D-Z)模型参数进行精确拟合,有助于更准确地反演土体性质和弹性参数。
本文采用了统计学和数学方法,使用最小二乘法和拟合介质的拟合方法,反演分析了邓肯-张(D-Z)模型参数,从而提高了参数反演的准确性和稳定性,为岩土工程研究提供了参考依据。
首先,本文介绍了土体弹性的概念和它的重要性,并介绍了邓肯-张(D-Z)模型的拟合方法。
其次,根据统计学和数学方法,介绍了最小二乘法和拟合介质的拟合方法。
最后,本文讨论了邓肯-张(D-Z)模型参数反演分析的结果,总结了参数反演对土体性质和弹性参数的影响,为岩土工程的研究提供参考依据。
从总体上来看,邓肯-张(D-Z)模型具有较强的实用性和准确性,可用于更好地反映和分析土体的弹性特性。
本研究的结果证明,采用最小二乘法,通过拟合介质的拟合方法,可以更准确地反演出土体性质和弹性参数,有助于更好地解决岩土工程中相关问题。
邓肯-张模型参数变化对计算结果的影响
!"#$% ?
# 值的变化对最大位移及应力水平 " 的影响 " 1 变化率 8 ; > ?B@ > =B< = E =B< E ?BF " , 8 02 > &A B &C > &A B =? > &A B @< > &A B =? > &< B G? " , 变化率 8 ; > ?BC > <B@ = > <B@ > AB? " 变化率 8 ; E ?B& E =BD = > <BD > =BD
邓肯 ! 张模型在国内外广泛使用近 )’ 年, 大量的 试验成果表明, 由于取样制样、 试验仪器、 试验方法与 过程、 试验人员操作熟练程度、 整理分析资料等诸多因 素, 使其 * 个参数变化较大,! 值可成倍甚至成量级相
[# B )] , 用于计算所得结果的差别也较大。邓肯等人 差
曾对该模型的参数作了初步讨论, 对几种不同类型的
!
前
言
!
偏应力 ("# ! ") ) 不太大时, 就能达到较高应力水平 ’ , ( 从而使 " > 降低, 变形增大。 ’ F( G "# ! ") ) "# ! ") ) ?, 黏聚力 # (#) 黏聚力 # 的增减对水平位移 ’ 4 、 垂直位移 ’ H 、 应 力水平 ’ 的影响见图 # B ) 及表 #。
[-] 土给出了参数的范围, 并编制了图表 。这些图表变
化范围较大, 不同的取值对计算结果的影响没作进一 步讨论。 本文依据文献 [(] 分别增减 * 个参数, 用有限元法 考察对一个均质土坝的位移和应力水平的影响程度。 考察某一参数时, 其余 / 个参数不变, 即保持试验取值。
DuncanChang模型 第四章 本构模型
第四章本构模型第一节邓肯-张(Duncan—Chang)模型(1)(2)复合地基的数值解法主要以有限元方法为主,因为有限元法可以较方便地模拟桩土之间的相互作用,较灵活的处理复杂边界条件,而且还比较容易与其他方法相耦合,因此受到学术界的青睐。
(3)其斜率为b ,截距为a 。
有增量广义虎克定律,如果只沿某一方向,譬如Z 方向,给土体施加应力增量ΔZ σ,而保持其他方向的应力不变,可得:E zx σεΔΔ=(4-3) E v zx σεΔΔ-= (4-4)则 x zE εσΔΔ= (4-5)zxv εεΔΔ-= (4-6)邓肯和张利用上述关系推导出弹性模量公式。
由式(4-5)得:()()aa E εσσεσσεσ∂-∂=-==313111ΔΔΔ (4-7) 由此可见虎克定律中所用的弹性模量实际上是常规三轴试验()a εσσ~31-曲线的切线斜率。
这样的模量叫做切线弹性模量,可用t E 表示,见图4-1。
将式(4-1)代入式(3-7),得到:()2a tb a aE ε+= (4-8) 由式(4-2)可得:ba a --=311σσε (4-9)式(4-9)代入式(4-8),得: ()[]23111σσ--=b aE t (4-10) 由式(4-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε (4-11)而双曲线的初始切线模量i E 为:31→⎪⎪⎭⎫ ⎝⎛-=a a i E εεσσ (4-12) 见图4-1。
因此:iE a 1=(4-13) 这里表示a 是初始切线模量的倒数。
在双对数纸上点绘⎪⎭⎫⎝⎛a i P E lg 和⎪⎭⎫ ⎝⎛a P 3lg σ的关系,则近似的为一直线,如图4-3所示。
这里a P 为大气压力。
于是有:na a i P KP E ⎪⎪⎭⎫⎝⎛=3σ (4-14)由式(4-2)还可见,当∞→a ε时()()ua b 313111σσσσε-=-=∞→ (4-15) 试验破坏时的偏应力为()f 31σσ-,则: ()()uf fR 3131σσσσ--=(4-16)f R 叫破坏比将式(4-13),式(4-15),式(4-16)代入式(4-10)得:24.1.2 切线泊松比Kulhawy 和邓肯认为常规三轴试验测得的a ε与()r ε-关系也可用双曲线来拟和,如图4-5所示,点绘a r εε/-与r ε-关系,为一直线,如图4-6所示,其截距为f ,斜率为D ,于是有:可见,()arεε--曲线的切线斜率具有增量泊松比的物理意义,称为切线泊松比,以tv表示。
邓肯张模型模拟
研究生课程作业邓肯张模型参数计算学生姓名李俊学科专业岩土工程学号201420105614任课教师周小文教授作业提交日期2014年12月1.计算轴向应变ch h∆∑=1ε式中 1ε-轴向应变;h ∆∑-固结下沉量,由轴向位移计测得0h -土样初始高度c h —按实测固结下沉的试样高度c h ∆—试样固结下沉量2.计算按实测固结下沉的试样高度,面积:式中 Ac -按实测固结下沉的试样面积0V -土样初始体积3.计算剪切过程中试样的平均面积:式中 a A -剪切过程中平均断面积c V -按实测固结下沉的试样的体积i V ∆-排水剪中剪切时的试样体积变化 按体变管或排水管读数求得1h ∆-固结下沉量,由轴向位移计测得 3. 计算主应力差cic h V V A ∆-=01h h V V A c i c a ∆-∆-=Cc c A h V ⨯=1031⨯=-aA CR σσ 式中 31σσ- - 主应力差 1σ―大主应力 3σ-小主应力 C -测力计率定系数 R -测力计读数2 数据处理2.1 3σ=100kPa 数据初步计算当3σ=100kPa 时,各数据初步计算如表1所示。
围压100kPa 数据初步计算表 表12.1.1 由切线模量计算数据 对公式)(311σσε-=a +b 1ε进行直线拟合,如图1所示。
图11131/()~εσσε-拟合曲线 a =0.0002,1i E a==5000kPa b ==0.0028,()131ult bσσ-==263.16kPa ()13f σσ-=204.26kPa ,()()1313f fultR σσσσ-=-=0.77622.1.2 由泊松比计算数据对公式()313/f D εεε-=+-进行直线拟合,如图2所示。
图2 313/~εεε--拟合曲线f=i ν=0.2122 D=2.72972.2 3σ=200kPa 数据初步计算当3σ=200kPa 时,各数据初步计算如表2所示。
由实验到邓肯-张模型的参数
参数 ∆φ
φ
C K n R Kୠ m K୳୰
单位 度
度
Pa 无 无 无 无 无 无
E-B 模型的参数特性 性质
说明
C、∆φ、φ有两种表示方法,一种是用 线性的摩尔库伦参数表示,参数只有 C 和 φ。另外一种是用大小随围压σଷ不断变化的 φ表示,参数有∆φ和φ。对于粘性土,最 好用 C 和φ表示。
K 的基数 反映 K 随σଷ增长的速率
同 E-u 模型中论述 同 E-u 模型中论述 同 E-u 模型中论述 当σଷ = Pa时,K = KୠPa 当 m=0 时,K = kୠpୟ 当 m=1 时E୧= kୠσଷ 同 E-u 模型中论述
三、邓肯-张模型中各个参数的计算 (一)、邓肯-张 E-v 模型参数的确定 1、Rf 的确定。 Rf 表示破坏比,其计算公式为:
R
无
反映(σଵ − σଷ)与
(σଵ − σଷ)୳之间的关系。
G
无 初始泊松比v୧的基数
σଷ = pୟ,则v୧= G
F
无
反映初始泊松比v୧随围压σଷ 增长而降低的速率
F = 0,则v୧= G
D
无 反映v୧随εୟ增长的关系
K୳୰
无 反映土体卸载的参数
D = 0 ,则泊松比大小不变,为v୧ 一般取 2-3 倍的 K
B = (σଵ − σଷ)% 3(εୟ)%
然后根据图 3.5 确定 m 和 Kb。
B lg ( )
Pୟ
α m=tanα
lgKୠ
(三)、关于 C、∆φ、φ的确定
图 3.5
lg ( σଷ) Pୟ
C、∆φ、φ有两种表示方法,一种是用线性的邓肯张参数表示,参数有 C 和φ。另 外一种是用大小随围压σଷ不断变化的φ表示,参数有∆φ和φ。
土体邓肯—张非线性弹性模型参数反演分析
土体邓肯—张非线性弹性模型参数反演分析土壤是一种自然界中拥有各种复杂性质的混合性介质,具有不同程度的弹性行为。
这一性质与土壤结构、特性有关,可以表现为弹性参数,而这些参数的准确估计,对于土体力学的研究和应用至关重要。
传统的方法,通常是在实验室对土样进行各种测试,以获得其参数。
但是,这种方法的弊端包括检测手段的局限性、实验现场偏差等,因此,这种方法往往会出现一定的偏差,从而影响土体力学分析结构的准确性。
为了解决这一问题,很重要的一个方法是通过反演分析来估计弹性参数,其主要思想是利用测量到的数据,拟合出一个统一的弹性模型,从而得出弹性参数,从而获得准确的弹性参数估计值。
以邓肯张非线性弹性模型为例,它是一种单质点弹性模型,通常用于描述土壤(和其他各种介质)的弹性行为。
由于弹性建模的复杂性和模型参数对反演分析的影响,反演分析也就显得愈发重要。
一般来说,针对邓肯张模型,使用最小二乘反演分析方法时,必须假设材料的弹性参数是常量,只有这样,才能够获得较为合理的结果。
而这种准确性的提高,就得益于反演分析。
在反演分析研究中,有许多不同的算法,如模糊度法、遗传算法、模糊C步骤径向基函数神经网络法等。
它们的差别在于根据测量结果拟合出的模型参数是否满足实际情况,以及最终估计出的模型参数与实际参数之间的误差大小。
在实践中,一般情况下,遗传算法在速度和准确性方面都优于其他算法。
实际中,反演分析对于统计混合性土壤的参数估计有广泛的应用,如获得土壤弹性模型参数,应用于基坑和隧道开挖预测,以及应用于混凝土桩变形和结构衰减等。
反演分析的分析结果反映的是弹性参数的变化规律,为实际工程中的土体力学分析和设计提供了更为准确的依据。
因此,针对土体邓肯张非线性弹性模型参数反演分析,除了使用常规的测试实验方法外,还可以使用反演分析方法,这样就可以更好地获得土体的弹性参数,从而提高研究的准确性。
当掌握反演分析的原理,并使用正确的算法时,反演分析对估计弹性参数有很大的帮助,它为土体力学的研究和应用开辟了一条崭新的道路。
重塑黄土邓肯-张模型参数初步研究
石 家庄 铁 道 学院 学报 (自然科 学版 )
V .2 o o2 . 1 N 4
20年1月 JU NL F HJ ZU N I A SI T N TR L C NE D。20 09 2 O RA I H A G A W YI T UE(AU A I C) 。 0 OS I A RL N T SE . 9
土工 试验数 据 采集处 理 系统进 行 分析 。
在试 验过 程 中 , 录轴 向压力 、 向位 移 、 变及 孔压 等 数 值 , 记 轴 体 当剪 应 力 有 峰值 时 , 值初 的剪应 力 为 峰 破坏 剪应力 , 峰值 出现后 , 再继 续 剪 3 %垂 直应 变 , 验 结 束 ; 试 若无 峰 值 出现 , 垂 直应 变 1% 时 的剪应 力 取 5 值 为 破坏剪 应力 值 , 垂直 应变 达到 1%后试 验 结束 j 5 。
1 引 言
我 国很 多地 区黄土 十分发 育 , 缺乏 合格 的 A、 B组填料 , 常要 用 黄 土填筑 高 速铁路 路 基 , 经 由于原 状 黄
土及 重塑 黄土具 有许 多 特殊 的物 理 、 学 性 能 , 其 修 筑 的路 基 工 程 会 出现 沉 陷 、 坡 冲刷 、 坍 等 多 种 力 用 边 滑 病害 , 对其 工程 力学 特性 的研究 具 有重 要现 实意 义 u 。 国 内外 已有许 多 学 者对 黄 土 湿 陷变 形 以及 原 状 黄 J 土 、 和黄 土 、 密黄 土 、 实黄 土 、 围压下 黄 土 的应 力 . 变关 系 曲线做 出研 究 , 到 了不 同的非 线 弹性 饱 挤 击 高 应 得
3 试 验 结果 及 分 析
根据邓肯. 张模型 , 三轴试验所得应力应变曲线应符合双曲关系式
土体邓肯—张非线性弹性模型参数反演分析
土体邓肯—张非线性弹性模型参数反演分析近年来,随着土体力学的发展,研究者开始关注土体的非线性弹性以及参数的反演分析,其中土体邓肯张非线性弹性模型参数反演分析已经得到了广泛的应用,成为处理土体非线性弹性问题的一种重要方法。
本文通过对土体邓肯张非线性弹性模型参数反演分析的原理,研究方法及应用进行综述,目的在于为土体非线性弹性问题的研究提供理论参考。
一、体邓肯张非线性弹性模型参数反演分析简介土体邓肯张非线性弹性模型运用反演分析的方法,可以从实验数据中反推出土体的非线性弹性参数。
它是土体力学非线性反演理论的基础模型,可以作为处理土体非线性弹性问题的理论依据。
它以邓肯(Dunker)和张(Zhang)的有限翻转定律(Finite Rotation Law)为基础,描述了土体的稳定性和变形的本构关系和力学参数,即:k(D) = k0 + k1(1 - e-D/D0) + k2(1 - e-D/D1)其中k(D)是应力和变形之间的关系;k0、k1、k2是人为设定的三个参数;D是翻转角,D0和D1是有限翻转定律的参数,表征着某种特定的翻转角变化,它们也是土体弹性参数反演的重要变量。
二、土体邓肯张非线性弹性模型参数反演分析的研究方法土体邓肯张非线性弹性模型参数反演分析的研究方法,就是从实验数据中反推出土体的非线性弹性参数。
实验数据包括土体的曲线拟合数据,以及沿此曲线拟合数据点处的单点变形试验中的翻转角和应力数据。
通过使用标准的数值拟合算法,对上述实验数据进行处理,可以确定三个参数,即k0、k1、k2。
三、体邓肯张非线性弹性模型参数反演分析的应用土体邓肯张非线性弹性模型参数反演分析在土体力学研究中有着重要的应用,包括但不限于:(1)在不完全的数据中,可以运用反演分析的方法得出土体的本构参数。
(2)在岩土受力过程中,利用反演分析的方法可以获得土体的弹性参数,从而得出岩土的变形特性。
(3)在工程设计中,可以采用反演分析的方法来进行岩土弹性参数的确定,从而优化岩土层的设计。
邓肯-张EB模型参数求解的二次优化法
邓肯-张EB模型参数求解的二次优化法陈立宏【摘要】邓肯-张非线性弹性模型是土石坝工程中最常用的本构模型.水利行业《土工试验规程》中根据应力水平75%和90%两点法进行计算时,得到的结果往往并不合理,有时n值还可能出现负数.一般的适线法仅仅对单个试样结果进行优化,而并不是针对整组试验结果,因此无法得到最优结果.提出了一种二步优化的参数计算方法,首先对每级围压下单个试样的试验成果采用适线法优化,得到每级围压下的参数a、b.在此基础上,计算得到参数K、n、Rf的初值.然后以邓肯-张理论为基础,根据获得的参数初值针对整组试验成果进行二次优化,以理论计算与试验的应力应变曲线差的平方和最小为目标函数,从而得到EB模型的主要参数.该方法简单实用,能够快速和准确地获得邓肯-张模型参数,并结合糯扎渡大坝堆石料三轴试验数据,对方法进行了验证.%Duncan-Chang nonlinear elastic constitutive model is the most used one in embankment dam engineering.The Specification of Soil Test in hydraulic industry proposes a computational method based on the values of two points from the stress-axial strain curve of the triaxial testing results.The stress levels of these two points are 75% and 90%respectively.However the proposed method cannot obtain reasonable results all the times,and sometimes even the parameter n maybe negative.Curve fitting methods make some progress,but still could not gain the optimal value for the parameters because these methods only based on single sample result.A two step optimization method for acquiring the optimal values of Duncan-Chang model is presented herein.First,the traditional curve fitting method is adopted to obtain thevalues of parameters a and b under each confining pressure.Then the parameters K,n and Rf are ing these parameters as initial values,a second optimization procedure is carried out to fit all the resultsof triaxial test to gain the parameters of Duncan-Chang model,in which,the minimum square sum of the differences of stress and strain curves of theoretical calculation and experiment is taken as the objectivefunction.The method is simple and practical,and can quickly and accurately obtain the parameters of DuncanZhang model.The method is validated based on the triaxial test data of Nuozhadu Dam.【期刊名称】《水力发电》【年(卷),期】2017(043)008【总页数】5页(P52-55,75)【关键词】堆石料;邓肯-张模型;优化方法;土石坝【作者】陈立宏【作者单位】北京交通大学土建学院,北京100044【正文语种】中文【中图分类】TU413堆石料作为高土石坝工程的主体填料,其工程特性和本构模型参数一直为大家所关注。
基于正交试验法的邓肯-张E-B模型参数敏感性分析研究
角、初始弹性模量基数对坝体竖向位移的敏感性相对较大;初始内摩擦角、初始弹性模量基数、破坏比对坝体向
上游水平位移的敏感性相对较大;初始体积模量基数、初始内摩擦角、初始弹性模量基数对坝体向下游水平位移
的敏感性相对较大;模型参数取值对向上游水平位移的影响最为显著;体积模量指数、摩擦角中的减少值、弹性
模量指数对坝体变形计算结果的影响相对较小。本文的研究方法及成果可以为面板堆石坝邓肯-张 E-B 模型参数
材料在卸荷状态下的弹性模量为:
( ) Eur = Kur pa σ3
p nur a
(4)
式中:Kur、nur 分别为卸荷再加荷时的弹性模量基数和弹性模量指数。 此外,根据粗粒料的摩尔包线具有明显的非线性,内摩擦角φ随围压σ3 大小而变,故内摩擦角
采用下式计算:
( ) φ = φ0 - Δφ lg σ3 pa
展 专 项 资 金 特 色 重 点 学 科 项 目 资 助(1 0 6- 5 X 1 2 0 5); 陕 西 省 重 点 学 科 建 设 专 项 资 金 资 助 项 目(1 0 6- 0 0X 9 0 3 0) 作 者 简 介 : 李 炎 隆(1980-), 男 , 山 东 莱 州 人 , 博 士 , 讲 师 , 主 要 从 事 水 工 结 构 数 值 仿 真 研 究 。 E - m ail: lylong2356@
(2)确定试验因素和因素水平。堆石料是散粒体材料,其黏聚力按 0 考虑,并且在坝体填筑和蓄
水过程中堆石料均处于加荷状态,其模型参数中的卸荷模量基数和卸荷模量指数均不参与计算,因 此,选择模型中的φ0、Δφ、Rf、K、n、Kb、m 总共 7 个参数进行敏感性分析。本文以 3BⅠ区堆石料作 为敏感性分析的研究对象,以室内试验参数为基础,在敏感性分析中每个计算参数按正负 20%的增
上海第四纪土层邓肯_张模型的参数研究_张云
康纳(Kondner)等人指 出常规三轴排水剪切试验
的偏应力和轴向应变之间的关系曲线可以用双曲线拟
合 。邓肯和张根据增量胡克定律 , 利用这种双曲线关
系 , 并考虑到土体的 Mohr-Coulomb 破坏准则 , 得出了土 体的弹性模量公式[ 4] :
E=
1
-Rf
(1 -sin φ)(σ1 -σ3) 2 2c ·cos φ+2σ3 ·sin φ
水文地质工程地质
2008 年第 1 期
根据上海土样的三轴排水剪切试验的结果 , 进行 统计分析 , 对同一土层土样各参数取其平均值 , 得到上 海主要土层的邓肯 —张模型参数如表 1 所示 。
表 1 上海主要土层的邓肯 — 张模型参数 Table 1 Paramaters of Duncan-Chang model for
· 2 0 ·
水文地质工程地质
2008 年第 1 期
性 。 第一 、二硬土层为褐黄色 、暗绿色粘土 , 厚度小 , 处 于可塑 、硬塑状态 , 具有中 、低压缩性 。 第三硬土层为 灰绿 、褐黄色粘土夹少量粉土 , 第四至第六硬土层为杂 色粘土 、粉质粘土 , 处于硬塑状态 , 压缩性低 , 强度大 。 第一硬土层的分布范围很小 , 仅限于西部的青浦 、松江 境内 。第六砂层和第六硬土层主要分布于区域的北部 和东部地区 。
邓肯张模型
以土的常三轴实验学习Duncan-Chang本构关系模型一、实验过程1、试样制备试验土样取自于南水北调焦作段一处工程,取回后,人工制成含水量15%的土体。
在实验制样过程中,由于含水量较高,所以在通过制样器后,土柱未能成型,于是在原来土样基础上,添加了较干的土,再在制样器侧壁涂抹凡士林。
最后制成高度7厘米,直径3.5厘米的土柱实验样品2、不固结不排水(UU)剪切试验试验是在土木工程学院深部矿井重点实验室进行的,试验装置如图1所示。
图1 常三轴实验仪主要试验步骤为(1)记录体变管的初始读数;(2)对试样加周围压力,并在周围压力下固结。
当孔隙水压力的读数接近零时,说明固结完成,记下排水管的读数;(3)开动马达,合上离合器,按0.0065%/min的剪切应变速率对试样加载。
按百分表读数为0,30,60,90,120,150,180,210,240,300,360,420,480,540,600,660,⋯,的间隙记读排水管读数和量力环量表读数,直到试样破坏为止。
二、邓肯张双曲线模型到目前为止,国内外学者提出的土体本构模型不计其数,但是真正广泛用于工程实际的模型却为数不多,邓肯-张模型为其中之一。
该模型是一种建立在增量广义虎克定律基础上的非线性弹性模型,可经反映应力~应变关系的非线性,模型参数只有8个,且物理意义明确,易于掌握,并可通过静三轴试验全部确定,便于在数值计算中运用,因而,得到了广泛地应用。
1、邓肯-张双曲线模型的本质邓肯-张双曲线模型的本质在于假定土的应力应变之间的关系具有双曲线性质,见图2(a)。
图2(a ) 12()~a σσε- 双曲线图2(b) 1131/()~εσσε-关系图2 三轴试验的应力应变典型关系理论图1963年,康纳(Kondner )根据大量土的三轴试验的应力应变关系曲线,提出可以用双曲线拟合出一般土的三轴试验13()~a σσε-曲线,即aab a εεσσ+=-31 (1)其中,,a b 为试验常数。
邓肯-张模型参数反演的两种不适定问题
关键词: 邓肯一 张模 型 ;参数 反 演 ;不适 定 问题 ;莫 尔一 库 仑 准则
中图分类号 : T U4 1 文献标志码 : A 文章 编 号 : 1 0 0 0 —0 8 4 4 ( 2 0 1 5 ) 增刊 1 —0 0 0 1 -0 6
DOI : 1 0 . 3 9 6 9 / J . i s s n . 1 0 0 0 —0 8 4 4 . 2 0 1 5 . 0 2 . 0 5 6 3
( 1 . S t a t e E n g i n e e r i n g L a b o r a t o r y o f Hi g h wa y Ma i n t e n a n c e T e c h n o l o g y, C h a n g s h a U n i v e r s i t y o f S c i e n c e& T e c h n o l o g y。 C h a n g s h a,Hu n a n 4 1 0 0 0 4 , C h i n a;2 . S c h o o l o f T r a f f i c a n d Tr a n s p o r t a t i o n E n g i n e e r i n g。C h a n g s h a U n i v e r s i t y o f S c i e n c e& T e c h n o l o g y, C h a n g s h a,Hu n a n 4 1 0 0 0 4 , C h i n a;3 . C o — I n n o v a t i o n C e n t e r f o r Ad v a n c e d C o n s t r u c t i o a n d Ma i n t e n a n c e T e c h n o l o g y o f Mo d e r n Tr a n s p o r t a t i o n I n f r a s t r u c t u r a l F a c i l i t y,C h a n g s h a,Hu n a n 4 1 0 0 0 4 。C h i n a)