热敏电阻
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、温度监测
(一)了解热敏电阻测量和控制温度的工作原理;
(二)测定温度—电流(电压)关系曲线。
二、材料
热敏电阻(NCT100K)(1个);测量线路板(1块);微安表(50)(1个);坐标纸(1张);水银导电计(1支);直流电源(4—6V) (1个);恒温自动控制器 (1套) ;导线 (若干)。
三、原理
(一)热敏电阻
测量温度一般使用的温度计,除了常用的水银或酒精制成的温度计外,还有用其他材料制成的温度计。如热电偶、光测高温计、定容气体温度计等。热敏电阻温度计也是一种常用的测温仪器,它是利用半导体制成感温元件,它的电阻称为热敏电阻。其阻值随温度升高而减小,具有负的温度系数。电阻变化的范围比一般具有正温度系数的金属电阻大。例如,当温度变化1℃时,热敏电阻的阻值变化范围可达3%—6%。而且阻值可以很大,体积可以很小,灵敏度高,热惯性小,价格又低,这些特点使它在生产与科研中有了广泛的应用。
T0-热敏电阻的温度特性可用下式近似表示:
从用途上分,NTC热敏电阻可以分为温度感知型NTC和功率型NTC
RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN)
RT :在温度 T ( K )时的 NTC 热敏电阻阻值。
RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。
T :规定温度( K )。
B : NT
C 热敏电阻的材料常数,又叫热敏指数。
exp:以自然数 e 为底的指数( e = 2.71828 …)。
摄氏温度t(c)和绝对温度T(K):T(K)=t(c)+273.15
RT=10000*exp3700*(1/T-1/298.15)
该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。
第四节温度感知型NTC应用电路
温度测量(惠斯登电桥电路)
温度控制
影响测量温度的参数
NTC具有价格低廉、阻值随温度变化显著的特点,而广泛用于温度测量。通常采用一只精密电阻与NTC串联(见图1),NTC阻值的变化转变为电压变化直接进入比较电路或单片机的A/D的输入接口,不必经过放大处理,电路构成极为简单。运用NTC时除了选择合适的R值和B值之外,还应当考虑到测量速度和精度。
选择合适的τ a :τ a 值直接反映NTC测量温度的响应速度,但不是越小越好,确定τa值需要比较与权衡。因为τa值与它的封装尺寸有关,NTC的封装尺寸小,则τa值小,机械强度低;封装尺寸大,则τa值大,机械强度高。
确定电流范围:可根据厂家提供的非自热最大功率或利用耗散系数来确定工作电流的范围。
然而,需要引起注意的是不少厂家提供的δ值是NTC二次封装之前参数,但采用这个δ参数确定的电流虽然不会产生自热,但是过于保守,影响选择参数的宽松度,因为二次封装之后的非自热最大功率已经提高。利用耗散系数确定电流范围的方法是先确定NTC精度,再确定允许的自热功耗。例如,NTC的精度为0.1℃,则自热温度不超过0.1℃就能够
满足精度要求,也就是说,小于0.1δ的功率为不产生自热的功率。
其它需要注意的因素:①NTC二次封装之后,τa的参数值较封装之前增大了。②同一型号、规格的NTC在不同介质中,其δ、τa等参数值相差很大,需注意参数的介质。③在流动的空气中,NTC略为产生一点自热对精度的影响不大。④NTC感温头不能触碰非探测物体,例如,在家用空调器里,翅片前面测量室温的感温头不能触碰到翅片。
3 自热及耗散系数的特性
测量耗散系数δ时,“国标”要求在静止的空气中进行。通常是在规定容器的玻璃框罩内进行测量。当我们做实验时可以观察到一些现象,在一个空气相对稳定(感觉不到流动的空气)的室内,玻璃框内的温度与室温一致。先测量零功率电阻值,当摘掉玻璃框罩后,电阻值未发生变化;然后测量耗散系数,当自热达到热平衡时,即通过NTC的电流和它的端电压呈稳定状态,当摘掉玻璃框罩后,电流或端电压出现波动,失去稳定状态。说明室内微弱的同温度气流影响了耗散系数,而未影响零功率电阻值。显然,NTC产生自热之后出现对流动空气的敏感反映,这是一个可以利用的特性。
4液位测量原理
气体和液体是明显不同的介质,运用NTC在对它们进行测量时,如果可以分辨出这两种介质,就解决了液位测量的问题。NTC在非自热状态也就是零功率状态下测量温度时,是无法根据测量结果判断被测对象的是什么介质。当NTC处于自热状态时,在介质温度相同的情况下,NTC在不同的介质中耗散系数(δ)是不同的,当NTC被置于不同的介质中时,相同电气条件下会出现不同的电性能反映,这是测量液位的基本依据。
以相同温度的水和空气为例,在同一电气条件下,例如给NTC提供一个恒定电流(见图2),使其在空气中产生自热,热平衡之后NTC两端电压相对稳定,接着,将它放入水中,两端电压上升。因为NTC从空气中进入水中后,温度下降,导致阻值上升,端电压升高。水的热容量是空气的2.5倍, NTC在水中的自热温度要达到与空气一样的自热温度需要2.5倍的功率。
在实际的液位测量中,水和空气的温度往往不一致,当空气温度偏低,而水温偏高时,根据电压值的大小则无法判断NTC是在水中还是在空气中。然而,对于一个温度点而言,NTC 在水中和空气中分别有个两电压值,换言之,当我们知道一个温度点,同时又预先知道这个温度点上水和空气分别的电压值,就可以根据所测量到的电压值判断NTC是在水中还是在空气中。也就是说,测量液位的过程中还必须同时测量温度,而一般情况下,NTC在自热状态下不能测量温度,这就需要增加一个测量温度的NTC。利用两只NTC,一只处于非自热状态,另一只处于自热状态,经过电子电路的处理就可以对水位进行测量了。同理,其它气体和液体介质的液位测量的问题都可以得到解决。
需要指出,设计液位测量电路需要完成一些基础性的工作,原因是不同电路的NTC所处于的自热状态不一定一样,需要通过试验或计算获取测量温度范围内每个温度点上两种介质的电气参数,为两个对应系列。通常,先明定测量方案,再确定电路,然后根据电路要求测量或计算出每个温度条件下两种介质的数据。有时模拟电路需要绘制出NTC在两种介质的温度电压曲线(同一温度参照系中的曲线),而数字及单片机电路需要对两种介质的电气参数列表。