第5章 土的压缩性与固结理论

合集下载

土的压缩性

土的压缩性

压缩系数
土体在侧限条件下孔隙比减少量与竖向压应力增量的比
值e
e0
利用单位压力增量所
e1 △e M1
e2
△p
M2
p1e-p曲线p2
引起得孔隙比改变表 征土的压缩性高低
a de dp
p
在压缩曲线中,实 际采用割线斜率表 示土的压缩性
ae=e1 e2 p p2 p113
《规范》用p1=100kPa、 p2=200kPa
3
饱和土
土的固结(压密)
土的压缩量随时间增长的过程 在 外力作用下,孔隙水排出,土体密实,土 的抗剪强度提高
粘性土固结问题
实质是研究孔隙水压力消散 有效应力增长的全过程理论问题4
室内压缩(固结)试验 土的压缩性指标由
现场测试
5
§ 5.2固结试验及压缩性指标
研究土的压缩性大小及其特征的室内试验方法,亦称 固结试验
体积压缩系数m v 土在侧限条件下体积应变与竖向附加压应力增量的比值
m v=
e1-e2
H
1+e1 p
=
H1 P
m v=
1
a
=
ES
1+e1
m v越大土的压缩性越高
20
5.2.4回弹曲线和再压缩曲线
e
e
e0 a
残余 变形 ep
压缩曲线
c
弹性 变形
ee
再压缩曲线 b
回弹曲线
d
H0 H0/(1+e0)
8
Vv=e0 Vs=1
H1
s
p Vv=e Vs=1
H0 - H1=s
H1/(1+e)
H0 H0/(1+e0)

土力学土的压缩性与固结理论

土力学土的压缩性与固结理论

z
1 E0
[ z
(
y
x)]
Es
z z
z
z
Es
1 E0
[
z
2k0
z
]
z
Es
β
E0
(1 2k0 )Es
(1
2
1 )Es
(1
2
2
1
)Es
E0 Es
三、土的弹性模量
土体地无侧限条件下瞬时压缩的应力应变模量,称为弹性 模量。
一般采用室内三轴压缩试验或单轴压缩无侧限抗压强度试验得到 的应力—应变关系曲线所确定的初始切线模量或相当于现场荷载 条件下的再加荷模量。
力的关系曲线,称为回弹 曲线。
回弹曲线bc并不沿压缩曲线回升,而要平缓得多,这 说明土受压缩发生变形,卸压回弹,但变形不能全部恢复,
其中可恢复的部分称为弹性变形,不能恢复的称为残余变 形。
若再重新逐级加压,则可测得再压缩曲线。土在重复
荷载作用下,在加压与卸压的每一级重复循环中都将走新
的路线,形成新的滞后环。
❖ (2) 压缩指数Cc 土体在侧限条件下孔隙比减小量与竖向有效压应力常用对数值增 量的比值,即e-lgp曲线中某一压力段的斜率。
Cc
lg
e1 p2
e2 lg
p1
Cc<0.2时, 低压缩土; 0.2≤Cc<0.4MPa-1时,中压缩性; Cc≥0.4时, 高压缩性土
❖ (3)压缩模量
是土体在完全侧限条件下,竖向附加应力与竖向应变的比值, 或称侧限模量,用Es表示。
E0
(1
2)
p1b s1
沉降影响系数 地基土的泊松比
b 承压板的边长或直径 s1 与所取定的比例界限p1相对应的沉降

高等土力学课后参考答案

高等土力学课后参考答案

第五章.土的压缩与固结概念与思考题1.比奥(Biot)固结理论与太沙基一伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:主要区别:在太沙基-伦扩散方程推导过程中,假设正应力之和在固结与变形过程中是常数,太-伦扩散方程不满足变形协调条件。

固结计算结果:从固结理论来看,比奥固结理论可解得土体受力后的应力、应变和孔压的生成和消散过程,理论上是完整严密的,计算结果是精确地,太-伦法的应力应变计算结果和孔压计算结果精确。

比奥固结理论能够反映比奥戴尔-克雷效应,而太沙-伦扩散方程不能。

但是,实际上,由于图的参数,本构模型等有在不确定性。

无论采用哪种方法计算都很难说结果是精确的。

2.对于一个宽度为a的条形基础,地基压缩层厚度为H,在什么条件下,用比奥固结理论计算的时间一沉降(t-s)关系与用太沙基一维固结理论计算的结果接近?答案:a/H很大时3.在是砂井预压固结中,什么是砂井的井阻和涂抹?它们对于砂井排水有什么影响?答:在地基中设置砂井时,施工操作将不可避免地扰动井壁周围土体,引起“涂抹”作用,使其渗透性降低;另外砂井中的材料对水的垂直渗流有阻力,是砂井内不同深度的孔不全等于大气压(或等于0),这被称为“井阻”。

涂抹和井阻使地基的固结速率减慢。

4.发生曼德尔一克雷尔效应的机理是什么?为什么拟三维固结理论(扩散方程)不能描述这一效应?答:曼戴尔-克雷尔效应机理:在表面透水的地基面上施加荷重,经过短暂的时间,靠近排水面的土体由于排水发生体积收缩,总应力与有效应力均由增加。

土的泊松比也随之改变。

但是内部土体还来不及排水,为了保持变形协调,表层土的压缩必然挤压土体内部,使那里的应力有所增大。

因此某个区域内的总应力分量将超过他们的起始值,而内部孔隙水由于收缩力的压迫,其压力将上升,水平总应力分量的相对增长(与起始值相比)比垂直分量的相对增长要大。

第5章-1 固结和流变理论

第5章-1 固结和流变理论
▪ 土粒粒度、成分 (粗细,矿物成分) ▪ 有机质 (强度与固结) ▪ 孔隙水(孔隙及孔隙体积大小) ▪ 结构性 (扰动前后土强度的变化)
▪ 应力历史(超固结比OCR )
▪ 温度(引起饱和土孔隙中水体积变化及相应的有效 应力的变化)
☆多次线性加载
路基填筑高度
一次行施加荷载
t
2
t
1
t
t
02
01
m
t
3

u


z x y z
应力应变的本构方程式为:
{} [D]{}
(2-1)
比奥最初假定土骨架是 线弹性体,服从广义虎克 定律,则[D]为弹性矩阵式 (2-1)可写成: (p214式5-
44)

' x

2G( 1 2
V
x)

' y

2G( 1 2
V
y)

第六节 土的流变
土体变形和应力与时间有关现象称为土的流变现象。主要包括以下 几项: (1)蠕变-恒定应力作用下变形时间增长的现象; (2)松驰-变形恒定情况下应力随时间衰变的现象; (3)强度的时间效应-长期强度随受荷历时变化的现象; (4)流动-给定时间的变形速率随应力变化的现象。
第七节 动力固结
缩时,有:
v t

z t
mv
u t
最后可得太沙基单向固结基本微分方程:
u t

Cv
2u z 2
(三)方程式的解:p201
通过p201的式(5-5)、(5-6)、(5-7)、(5-8)、(5-9)、(5-10)、
(5-11),可知,反映孔隙水压力消散程度的固结度U等于变形比,即:

第5章 土的压缩性和固结理论

第5章  土的压缩性和固结理论

5.2.1 土的压缩试验和压缩曲线
室内压缩试验是在图5-1所示的常规单向压缩仪上进行的。
图5-1 常规单向压缩仪及压缩试验示意图
5.2.1 土的压缩试验和压缩曲线
试验时,用金属环刀取高为20mm、直径为50mm(或30mm)的土样, 并置于压缩仪的刚性护环内。土样的上下面均放有透水石。在上透 水石顶面装有金属圆形加压板,供施荷。压力按规定逐级施加,后 一级压力通常为前一级压力的两倍。常用压力为:50,100,200, 400和800kPa。施加下一级压力,需待土样在本级压力下压缩基本 稳定(约为24小时),并测得其稳定压缩变形量后才能进行。(先 进的实验设备可实现连续加荷。)
上述观点还可从图5-6所示的回弹和再压缩曲线得到印证。由于土样在 pb作用下已压缩稳定,故在b点卸压后再压缩的过程中当土样上的压 力小于pb,其压缩量就较小,因而再压缩曲线段cd较压缩曲线平缓, 只有当压力超过pb,土样的压缩量才较大,曲线才变陡。
因此,土的压缩性与其沉积和受荷历史(即应力历史)有密切关系。
压缩曲线是压缩试验的主要成果,表示的是各级压力作用下 土样压缩稳定时的孔隙比与相应压力的关系。
绘制压缩曲线,须先求得对应于各级压力的孔隙比。
孔隙比的计算
由实测稳定压缩量计算孔隙比的方法如下: 设土样在前级压力p1作用下压缩稳定后的高度为H1,孔隙比为e1;
在本级压力p2作用下的稳定压缩量为ΔH(指由本级压力增量Δp= p2- p1引起的压缩量),高度为H2=H1 -ΔH ,孔隙比为e2 。
然而,与连续介质弹性材料不同,土的变形模量与试验条件, 尤其是排水条件密切相关。对于不同的排水条件,E0具有不同的值。 这与弹性力学不同,故取名为变形模量。
从压缩模量Es计算E0

土力学 第5章 土的压缩与固结

土力学 第5章 土的压缩与固结

地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:

5土的压缩性和固结理论

5土的压缩性和固结理论
衡量土的压缩性,即 Es(12) (1e1)/a12 ,式中 e1 为对应于
p1=100kPa 的孔隙比。
关系式(5-5)的求证
由式(5-1)可得:压力增量 Δp=p2-p1作用下的竖向应变
增量 为 z:
z
He1 e2 H1 1e1
故由Es的定义即得:
E s p z(1e e 1 1 ) p (e 22 p 1)1 ae1
e1 、 e2——相应于p1、 p2作用下压缩稳定后的孔隙比。
用压缩系数评价土的压缩性
通常用压力间隔由p1=100kPa增加至 p2=200kPa所得的压缩系数a1-2来评 价土的压缩性:a1-2≥0.5属高压缩性;a1-2=0.1~0.5属中压缩性;a1-2 ≤0.1属低压缩性(表5-1)。
表5-1 土的压缩性评定标准
其中
1122 (1(1)1()2)1
00.5 01,E0Es
5.2.5 土的回弹曲线与再压缩曲线
1. 土的回弹曲线和再压缩曲线(图5-6) 也通过压缩试验得到。
图5-6 土的回弹曲线和再压缩曲线
5.2.5 土的回弹曲线与再压缩曲线
2. 描述:在压缩试验过程中加压至某值 pb (图5-6(a)中b点)后逐级卸压, 土样即回弹。绘制相应的孔隙比与压力的关系曲线,称为回弹曲线, 如图中bc段所示。由于土体不是弹性体,故卸压后土样在压力 pb 作 用下发生的总压缩变形(即与 e0-eb 相当的压缩量)并不能完全恢复, 而只能恢复其一部分。可恢复的这部分变形(即与 ec-eb 相当的压缩 量)是弹性变形,不可恢复的变形(即与 e0-ec 相当的压缩量)则称 为残余变形。如卸压后又重新逐级加压至 pf ,则相应的孔隙比与压 力的关系曲线段称为再压缩曲线,如图中 cdf 所示。试验研究表明, 再压缩曲线段 df 与原压缩曲线 ab 之间的连接一般是光滑的,即 df 段与土样未经卸压和再压而直接逐级加压至 pf 的压缩曲线 abf 是基 本重合的。同样,也可在半对数坐标上绘制土的回弹曲线和再压缩 曲线,如图5-6(b)所示。

土力学第四版习题答案

土力学第四版习题答案

土力学第四版习题答案第一章:土的物理性质和分类1. 土的颗粒大小分布曲线如何绘制?- 通过筛分法或沉降法,测量不同粒径的土颗粒所占的比例,然后绘制颗粒大小分布曲线。

2. 如何确定土的密实度?- 通过土的干密度和最大干密度以及最小干密度,计算土的相对密实度。

3. 土的分类标准是什么?- 根据颗粒大小、塑性指数和液限等指标,按照统一土壤分类系统(USCS)进行分类。

第二章:土的力学性质1. 土的应力-应变关系是怎样的?- 土的应力-应变关系是非线性的,通常通过三轴试验或直剪试验获得。

2. 土的强度参数如何确定?- 通过土的三轴压缩试验,确定土的内摩擦角和凝聚力。

3. 土的压缩性如何影响地基沉降?- 土的压缩性越大,地基沉降量越大,反之亦然。

第三章:土的渗透性1. 什么是达西定律?- 达西定律描述了土中水流的速度与水力梯度成正比的关系。

2. 如何计算土的渗透系数?- 通过渗透试验,测量土样在一定水力梯度下的流速,计算渗透系数。

3. 土的渗透性对边坡稳定性有何影响?- 土的渗透性增加可能导致边坡内部水压力增加,降低边坡的稳定性。

第四章:土的剪切强度1. 什么是摩尔圆?- 摩尔圆是一种图解方法,用于表示土的应力状态和剪切强度。

2. 土的剪切强度如何影响基础设计?- 土的剪切强度决定了基础的承载能力,是基础设计的重要参数。

3. 土的剪切强度与哪些因素有关?- 土的剪切强度与土的类型、密实度、含水量等因素有关。

第五章:土的压缩性与固结1. 固结理论的基本原理是什么?- 固结理论描述了土在荷载作用下,孔隙水逐渐排出,土体体积减小的过程。

2. 如何计算土的固结沉降?- 通过固结理论,结合土的压缩性指标和排水条件,计算土的固结沉降量。

3. 固结过程对土工结构有何影响?- 固结过程可能导致土工结构产生不均匀沉降,影响结构的稳定性和使用寿命。

第六章:土的应力路径和强度准则1. 什么是应力路径?- 应力路径是土体在加载过程中应力状态的变化轨迹。

土的压缩性及固结理论

土的压缩性及固结理论
第4章 土的压缩性
学习指导
学习目标
学习土的压缩性指标确定方法,掌握有效应力 原理、一维固结机理的分析计算方法。
学习基本要求
1.掌握土的压缩性与压缩性指标确定方法 2.掌握有效应力原理 3.掌握太沙基一维固结理论
4.1 概述 4.2 固结试验及压缩性指标 4.3 饱和土中的有效应力 4.4 土的单向固结理论
t
透水石 试样
一、e - p曲线 e
1.0 0.9 0.8 0.7 0.6 0 100 200 300 400
P
p1
p2
p3
p(kPa )
e0
e s
e1 H1 e2 H2 H3 e3
t
ei = e0 − (1 + e0 )H i / H 0
t
孔隙比e与压缩量∆H 的关系
e0 1
孔隙
ΔH
e
H H0
无粘性土 粘性土
透水性好,水易于排出
压缩稳定很快完成
透水性差,水不易排出 压缩稳定需要很长一段时间
3、有效应力:土骨架承担由颗粒之间的接触传递 应力。粘性土固结过程,实质是土中有效增长的过 程。 4、压缩性指标 室内试验 侧限压缩、三轴压缩等 (压缩系数,压缩模量) 室外试验 荷载试验、旁压试验等 (变形模量)
太沙基 – 土力学的奠基人
土体是由固体颗粒骨架、孔隙 流体(水和气)三相构成的碎 散材料,受外力作用后,总应 力由土骨架和孔隙流体共同承 受。 • 对所受总应力,骨架和孔隙 流体如何分担? • 它们如何传递和相互转化? • 它们对土的变形和强度有何 影响?
外荷载 → 总应力 σ
Terzaghi的有效应力原理和固结理论
a c b d
e

土力学_第5章(固结与压缩)

土力学_第5章(固结与压缩)

P0 P H
③计算地基中自重应力σsz分布
不排水
孔隙水压力
孔隙水压力
(五)三轴压缩试验成果—应力--应变关系
1 3
(1 3 ) y
1 3
f
E
1
b c
②-超固结土或密实砂 b ③-正常固结土或松砂
①-理想弹塑性
a O
b点为峰值强度
土 的 本 构 模 型
线弹性-理想塑性 1 3 1 2
1
应变硬化段
应变软化段
C
s
p
lg '
(五)三轴压缩试验
三轴试验测定: 轴向应变 轴向应力 体应变或孔隙水压力
轴向加压杆 顶帽
压力室
试 样
有机玻璃罩 橡皮膜 加压进水
类型 固结排水 施加σ3时 固结
透水石 排水管
量测体应变或 孔隙水压力
阀门
施加σ1-σ3时 排水
量 测 体应变
固结不排水
不固结不排水
固结
不固结
不排水
将地基分成若干层,认为整个地基 的最终沉降量为各层沉降量之和。
n n
o
s si i H i
i 1 i 1
ΔS1 ΔS2 ΔS3 ΔS4 Δ Si ΔSn
i第i层土的
压缩应变
z v
e e1 e2 1 e1 1 e1
z
取基底中心点下的附加应力进行计算,以基底中点的沉降代
400
e-p曲线
p(kPa)
(σ')
Δp
(σ')
p(kPa)
Δ p相等而 ΔeA> ΔeB,所以曲线A的压缩性 >曲线B的压缩性

土力学—选择题

土力学—选择题

第一章:绪论•1、土力学的英语是:(A)Soil Mechanics (B)Solid Mechanics (C)Soil Foundation•2、岩土工程的英语是:(A)Rock and Soil Mechanics(B)Geotechnical Engineering(C)Rock and Soil Engineering•3、下列哪位被誉为土力学之父?(A)库仑(Coulomb) (B)朗肯(Rankine) (C)太沙基(Terzaghi)•4、土力学学科正式形成是哪一年?(A)1890 (B)1925 (C)1960•5、土力学主要研究地基那两方面的问题?(A)变形与渗流(B)变形和稳定(C)渗流与稳定•6、浙江大学曾国熙教授倡导的岩土工程学科治学方法是?(A)理论研究与工程实践相结合(B)试验研究与理论研究相结合(C)基本理论、试验研究和工程实践相结合第二章:土的物理性质与工程分类•1、土颗粒的大小及其级配,通常是用颗粒累积级配曲线来表示的。

级配曲线越平缓表示:(A)土粒大小较不均匀,级配良好(B)土粒大小均匀,级配良好(C)土粒大小不均匀,级配不良•2、土的不均匀系数Cu越大,表示土的级配:(A)土粒大小均匀,级配良好(B)土粒大小不均匀,级配良好(C)土粒大小不均匀,级配不良•3、土的三相指标包括:土粒比重、含水量、重度、孔隙比、孔隙率和饱和度,其中哪些为直接试验指标?(A)孔隙比、含水量、土粒比重(B)土粒比重、含水量、重度(C)含水量、重度、孔隙比•4、测定土的液限的标准是把具有30度锥角、质量76克的平衡锥自由沉入土体,沉入多少深度时的含水量为液限?(A)18mm (B)2mm (C)10mm•5、压实能量越小,则(A)最优含水量越大(B)土越容易压实(C)土的最大干密度越大•6、土的液限和塑限的差值(省去%符号)称为(A)液性系数(B)塑性系数(C)液性指数(D)塑性指数•7、土的含水量一般用什么测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法•8、某土的天然含水量为42%,液限35%,塑性指数17,孔隙比1.58,则该土应定名为:(A)淤泥(B)粉质粘土(C)淤泥质粘土•9、土的密度一般用什么方法测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法•10、关于土中的结合水,下列说法正确的是:(A)强结合水能传递静水压力(B)弱结合水能传递静水压力(C)强结合水和弱结合水能传递静水压力(D)强结合水和弱结合水都不能传递静水压力•11、一般来说,粗大土粒往往是岩石经过什么作用形成?(A)物理和化学风化作用(B)物理风化作用(C)化学风化作用•12、粘性土的塑限一般用什么方法测定?(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法•13、土的液性指数越大,则:(A)土的渗透性越大(B)土的塑性指数越小(C)土质越软•14、土的塑性指数越小,则:(A)土的粘性越差(B)土的渗透性越好(C)土的变形越大•15、土粒比重一般用什么方法测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法第二章:土的物理性质与工程分类•CDBBD CCCAC DB•1、土颗粒的大小及其级配通常是用颗粒累计级配曲线来表示的,级配曲线越平缓表示:(A)土粒大小较均匀,级配良好(B)土粒大小不均匀,级配不良(C)土粒大小不均匀,级配良好(D)粒大小较均匀,级配不良•2、土的三相比例指标中,可以直接通过试验测定的有:(A)含水量、孔隙比、饱和度(B)重度、含水量、孔隙比(C)土粒比重、孔隙率、重度(D)土粒比重、含水量、重度•3、在土的颗粒大小分析试验中,对于粒径大于0.075mm和粒径小于0.075mm的土,采用的颗粒级配试验方法分别为:(A)均为筛分法(B)前者为筛分法,后者为比重计法(C)均为比重计法(D)前者为比重计法,后者为筛分法•4、砂土应为粒径大于()的颗粒含量不超过总重的50%,且粒径大于()的颗粒含量超过全重50%的土。

土力学 第5章土的压缩性

土力学 第5章土的压缩性
E
固结沉降Sc :饱和与接近饱和的粘性土在荷载作用下,随着超静孔隙水 压力的消散,土中孔隙水的排出,土骨架产生变形所造成的沉降(固结压 密)。固结沉降速率取决于孔隙水的排出速率。
次固结沉降Ss:主固结过程(超静孔隙水压力消散过程)结束后,在有效 应力不变的情况下,土的骨架仍随时间继续发生变形。这种变形的速率 已与孔隙水排出的速率无关(土的体积变化速率),而是取决于土骨架 本身的蠕变性质。次固结沉降既包括剪应变,也包括体积变化。
缩性如下:
0.1 低压缩性
a12 / MPa 1 中压缩性
0.5 高压缩性
2.土的压缩指数
Cc

log
e1 e2 p2 log
p1

e / log(
p2
/
p1 )
Cc 是 无 量 纲 系 数 , 同 压
缩系数一样,压缩指数 越大,土的压缩性越高 。虽然压缩系数和压缩 指数都是反映土的压缩 性指标,但两者有所不 同。 前者随所取的初始压力 及压力增量的大小而异 ,而后者在较高的压力 范围内却是常量,不随 压力而变。
② 0.42e0时,土样不受到扰动影响。
e
e0 B
0.42e0
C
推定:
① 确定先期固结压力σp ② 过e0 作水平线与σp作用线交于B。由假定① 知,B点必然位于原状土的初始压缩曲线上;
③ 以0.42e0 在压缩曲线上确定C点,由假定② 知,C点也位于原状土的初始压缩曲线上;
④ 通过B、C两点的直线即为所求的原位压缩曲线 。
第二节 地基的最终沉降量
分层总和法 规范法 考虑不同变形阶段的地基沉降计算方法
可压缩层 不可压缩层
p
t
σz=p

高等土力学土的压缩与固结PPT课件

高等土力学土的压缩与固结PPT课件
z w z
dQ
k
w
2u z2
dzdxdydt
➢ dt时间内微元体的体积变化为:
dV V vd tesV d t 1 edzdxdydt
t
t
1e1t
又由: de a:
d
则可得: e a
t t
--
29
根据有效应力原理:
e a a u a u
t t
t t
所以有:
dV a udzdxdydt 1e1 t
2、分层总和法
n
S mvigpigHi
1
n
S
(
C ei
lgpci C ci
i1 1e0i p1i 1e0i
lgp p2 cii)H i
--
19
5.3.3 考虑三向变形效应的单向压缩沉降计算法
u B 3 A ( 1 3 )
对于饱和土体,B=1.0,式(5-18)可以写为下式:
S c0 H m vg u•d z0 H m vg 1 A (1 A ) 1 3 d z
st s s
--
25
5.4 单向固结理论
单向固结模型:
pu
u p ➢ 当t=0时: 0
u p
➢ 当t>0时: pu 0
u 0

当t>t1时:
p
--
26
1、太沙基一维渗流固结理论
1)基本假定
➢ 土体均质、各向同性、完全饱和; ➢ 土颗粒和水均不可压缩; ➢ 土层压缩和土中水的渗流只沿竖向发生,是一维的; ➢ 土中水的渗流服从达西定律,且渗透系数k保持不变; ➢ 土的压缩系数a在固结过程中保持不变; ➢ 外荷载是一次瞬时施加的。
土的孔隙比变化和饱和度变化组合:

土力学第五章-渗透固结理论

土力学第五章-渗透固结理论

两种情况的固结度用叠加原理计算:
情况3、情况4的固结度
在各种附加应力分布情况下,其固结度都可统一写成:
只要知道情况0和情况1的固结度,其它各种情况的固结度都可计算。
情况0:=1;情况1:=0; 情况2:=
情况3:=0~1;情况4:>1
各种情况固结度比较
作图:由于在各种附加应力分布情况下的固结度只与附加应力分布情况和时间因素有关,因而将固结度、时间因素和附加应力比值之间的关系表示成曲线——渗透固结理论曲线。
时间因素:
最远排水距离H:单面排水就是土层厚度,双面排水就是土层厚度的一半。
单向渗透固结微分方程的求解
固结度:指在某一固结应力作用下,经过一段时间后,土体发生固结或孔隙水压力消散的程度。
01
固结度就是土中孔隙水压力向有效应力转化过程的完成程度。
02
固结度的基本概念
平均固结度:指地基在固结过程中,任一时刻的沉降量与最终沉降量之比。
当土层受无限铅直均布荷载作用产生单向压缩时,饱和土的变形速率主要由渗透固结控制。
03
02
01
渗透固结
01
02
03
太沙基渗透固结模型
主要讨论施加外荷后,随着时间的增加,饱和土中孔隙水压力和有效应力的变化。
01
没有外荷载作用时,容器水位与侧压管水位齐平;
02
加荷瞬时,时间为0,来不及排水,外荷全部由水承担,土骨架不受力,这时有效应力为0;
饱和土中,孔隙全被水充满,在外荷作用下,试样排水,引起孔隙体积减小。随时间增加,压缩量增大。
01
饱和土中水的排出速度,主要取决于土的渗透性和土的厚度。
02
土层越厚、土的渗透性越小,水的排出速度越小,化的时间越长。

第5章土的压缩性

第5章土的压缩性

Cc

e1 logp 2
e2 logp1
e2
压缩模量
Es

1 e1 a
p
p1
p2
体积压缩系数
mv

a 1 e1
总结:压缩性指标间的关系
压缩系数a、压缩指数Cc、压缩模量Es都是室内压 缩试验侧限条件下的压缩特性的反映。
变形模量E0是土在侧向自由膨胀条件下竖向应力 与竖向应变的比值,竖向应变中包含弹性应变和塑性 应变。
h1 h1 s 1 e1 1 e2
e2

Vv2 Vs

Ah v2 Ah s

hv1 s hs
hv1 hse2 s
hs

h1 s 1 e2
h2 h1 s hv1 hs s
e2

e1

s h1
(1 e1 )
e1

ds(1 w) 1 ρ
e
4. 绘制压缩曲线
S
c
式中,ω—刚性承压板系数,圆
形板取0.785; 方板取0.886。
注:1) 变形模量是指无侧限情况下的应力增量与应变增量的比 值,它与压缩模量不同;
2) 深层土的变形模量测定.
5.4.2 变形模量与压缩模量的关系
变形模量 E0 压缩模量Es
二者: 基本意义一样, 但受力状态不同
5.5 土的弹性模量 E: 土体在无侧限条件下瞬时压缩的应力应变模量。
10. 土的压缩性指标包括( A )。
(A) a, Cc, Es, E0 (C) a, Cc, E0, e
(B) a, Cc, Es, e (D) a, Cc, Es, St

土的压缩性及固结理论

土的压缩性及固结理论

土的压缩性5.1概述土体压缩性——土在压力(附加应力或自重应力)作用下体积缩小的特性。

土体压缩包括:(1)土粒本身和孔隙水的压缩; (2)孔隙气体的压缩;(3)孔隙水、气排出,使得孔隙体积减小。

上面(1)的压缩不到压缩量的1/400,忽略;(2)的压缩量也很小,忽略。

地基土的压缩实质土的固结——土体在压力作用下其压缩量随时间增长的过程。

土体的压缩性指标:压缩系数、压缩模量。

压缩性指标测定方法:(1)室内试验测定,如侧限条件的固结试验;(2)原位测试测定,如现场[静]载荷试验。

5.2固结试验及压缩性指标 一、固结试验及压缩性指标 1.压缩试验和压缩曲线减少。

会被压缩,也会被排出部分);)不变;但会被排出(孔隙水体积(不变;土粒体积(v as V V V V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ω)a s E(1)侧限压缩试验(固结试验)侧限——限制土样侧向变形,土样只能发生竖向压缩变形。

通过金属环刀来实现。

试验目的——研究测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的各项压缩指标。

试验设备——固结仪(压缩仪)。

试验方法:逐级加压固结,以便测定各级压力作用下土样压缩稳定后的孔隙比。

(2)e -p 曲线要绘制e -p 曲线,就必须求出各级压力作用下的孔隙比。

如何求?看示意图:设试样截面积为A ,如图:依侧限压缩试验原理可知:土样压缩前后试样截面积A 不变,土粒体积不变,令,有或——分别为土粒比重、土样的初始含水量和初始密度。

利用上式计算各级荷载作用下达到的稳定孔隙比,可绘制如i p i e i p i e i e s V 1=sV iii i i i e H H e H e H e A H e A H +∆-=+=+⇒⎭⎬⎫+=+=1111100000)1(1000000e H H e e e e e H H ii i i +∆-=⇒+-=∆1)1(000-+=ρρωws G e 00ρω、、s G i p i e下图所示的e -p 曲线,该曲线亦被称为压缩曲线。

土的压缩性与固结理论

土的压缩性与固结理论
对于道路和桥梁工程,一般来说,均匀沉降对路桥工程的上部结构危害也较 小,但过量的均匀沉降也会导致路面标高降低、桥下净空的减少而影响正常 使用;不均匀沉降则会造成路堤开裂、路面不平,对超静定结构桥梁产生较 大附加应力等工程问题,甚至影响其正常和安全使用。因此,为了确保路桥 工程的安全和正常使用,既需要确定地基土的最终沉降量,也需要了解和估 计沉降量随时间的发展及其趋于稳定的可能性。
压缩系数a是反映土压缩性的一个重要参数, a值越大,曲线
越陡,土的压缩性越高。延长直线M 1M 2与e坐标轴相交得截距
eA,则直线的 M 1M 2 方程为
eeAa
上式即为土力学中的重要定律之一,即压缩定律,说明了在
一定应力范围内( 12 ),土的孔隙比e与其所受
应力 呈线性变化。
从上图可以看出,压缩系数a与先后作用于土上的有效应力
3.压缩性指标
(1)压缩系数a
对于地基土,在修建建筑物
之前就存在有效自重应力
1 cz 。建筑物修建后,
地基中的应力发生了变化,
由原来的 1 增加到 21z
,相应的孔隙比由原来
的减少到,如右图所示。由
于修建建筑物所引起的应力增加量一般不大,21z
=100~300 kPa,故M1至M2的一小段曲线可以近似用 M 1M 2
在压缩试验过程中。我们可以通过百分表测量出土样的高度
变化S(即土样的压缩量),如下图所示。 土样的初始高度
为h0,横截面面积为A,初始孔隙比为e0。在第i级竖向应力作
用下,变形稳定后的压缩量为si,土样高度变为h0 - si ,土样
的孔隙比从e0减小到ei,此时
由于在试验过
程中土样不能侧向变形,所以压缩前后土样横截面积A保持不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


在压缩试验过程中。我们可以通过百分表测量出土样的高度 变化S(即土样的压缩量),如下图所示。 土样的初始高度 为h0,横截面面积为A,初始孔隙比为e0。在第i级竖向应力作
用下,变形稳定后的压缩量为si,土样高度变为h0 - si ,土样
的孔隙比从e0减小到ei,此时 变; 由于在试验过 程中土样不能侧向变形,所以压缩前后土样横截面积A保持不

使用;不均匀沉降则会造成路堤开裂、路面不平,对超静定结构桥梁产生较
大附加应力等工程问题,甚至影响其正常和安全使用。因此,为了确保路桥 工程的安全和正常使用,既需要确定地基土的最终沉降量,也需要了解和估
计沉降量随时间的发展及其趋于稳定的可能性。

在工程设计和施工中,如能事先预估并妥善考虑地基的变形而 加以控制或利用,是可以防止地基变形所带来的不利影响的。 如某高炉,地基上层是可压缩土层,下层为倾斜岩层,在基础
第五章 土的压缩性与固结理论
§5.1 概 述
一、土的压缩性


在外力作用下土体积缩小的特性称为土的压缩性。
土是三相体,土体受外力作用发生压缩变形包括三部分:(1) 土固体颗粒自身变形;(2)孔隙水的压缩变形;(3)土中 水和气从孔隙中被挤出从而使孔隙体积减小。 一般工程土体所受压力为100~600kPa,颗粒的体积变化不 及全部土体积变化的1/400,可不予考虑;水的压缩变形也很 小,可以忽略。所以,土的压缩变形,主要是由于孔隙体积 减小而引起的。因此,土的压缩过程可看成是孔隙体积减小 和孔隙水或气体被排出的过程。因此,土的压缩性包含了两 方面的内容:
(2)压缩指数Cc

室内侧限压缩试验结果分析中也可以采用
e lg
曲线。用这种形式表示试验结果的优点是在应力达到一定值后,
曲线接近直线,该直线的斜率 Cc称为压缩指数,即 e lg
类似于压缩系数,压缩指数Cc值也可以用来判断土的压缩性 大小。

低压缩性土; Cc 0.2 0.2 Cc 0.4 中压缩性土
性变形。

若接着重新逐级加压,则可测得土样在各级荷载作用下再压
缩稳定后的土样高度,换算成孔隙比后可绘制出再压缩曲线,
如上图中的cdf曲线。可以发现,再压缩曲线的df段是ab段的 延续,但再压缩曲线与回弹曲线不重合,也不通过原卸载点b。

对于半对数直角坐标系的e-lgp曲线,也有类似的过程,如上 图所示。卸载曲线和再压缩曲线的平均斜率(图中虚线的斜 率)称为回弹指数或再压缩指数,用Ce表示。一般情况下, Ce =(0.1~0.2)Cc。
压活塞施加在土样上的,

环刀内径通常有6.18cm和8cm两种,相应的截面积为30cm2 和50cm2,高度为2cm。

做饱和土样的压缩试验时,容器内要放满水,以保证在试验过
程中土样处于饱和状态。

由于土样受到环刀、刚性护环的约束,在压缩过程中只能发生 竖向变形,不能发生侧向变形,所以这种试验方法称为侧限压 缩试验。
试验过程和结果分析: 土样制备和装样; 分级施压,给出竖向变形与时间关系; 给出压缩变形量与荷载关系曲线;

试验仪器示意图如下图所示。

试验时,用金属环刀取天然土样,并放于刚性很大的压缩环 内,来限制土样的侧向变形;在土样的上、下表面垫两块透
水石,以使在压缩过程中土中水能顺利排出。压力是通过加
(4)压缩模量Es和体积压缩系数mv ①定义:土在完全侧限条件下,竖向附加应力增量
z 与相应竖向应变增量 z之比值,用Es表示,

即可绘制出卸载阶段的关系曲线,如图中bc曲线所示,称为 回弹曲线(或膨胀曲线)。可以看到不同于一般的弹性材料 的是,回弹曲线不和初始加载的曲线ab重合,卸载至零时, 土样的孔隙比没有恢复到初始压力为零时的孔隙比e0。这就 表明土在荷载作用下残留了一部分压缩变形,称之为残余变 形(或塑性变形),但也恢复了一部分压缩变形,称之为弹

对于地基土,在修建建筑物 之前就存在有效自重应力 1 cz 。建筑物修建后, 地基中的应力发生了变化, 由原来的 1 增加到 2 1 z ,相应的孔隙比由原来 的减少到,如右图所示。由 2 1 z 于修建建筑物所引起的应力增加量一般不大, =100~300 kPa,故M1至M2的一小段曲线可以近似用 M 1 M 2 直线来代替,其误差是工程允许的。
i
ei——土样在第级竖向应力 作用下变形稳定后的孔隙比。

将二式相除可得



这样,只要测定了土样在各级压力 作用下的稳定变形量后,
i
就可以按上式计算出孔隙比。以竖向有效应力
为横坐标,
孔隙比为纵坐标,绘制出孔隙比与有效应力的关系曲线,即 压缩曲线,又称 坐标绘图,则得到 ,如下图 e 曲线 a所示。如用半对数直角 曲线,如下图 b所示。 e lg
3、饱和土体压缩过程
土的颗粒越粗,孔隙越大,则透水性越大,因而土中水的挤出 和土体的压缩越快,粘土颗粒很细,则需要很长时间。 饱和土体的孔隙中全部充满着水,要使孔隙减小,就必须使土 中的水被挤出。亦即土的压缩与土孔隙中水的挤出,是同时发生的 。由于土的颗粒很细,孔隙更细,土中的水从很细的弯弯曲曲的孔 隙中挤出需要相当长的时间,这个过程称为土的渗流固结过程,也 是土与其它材料压缩性相区别的一大特点。 4、蠕变的影响
试验结果(土的压缩曲线图片)
土的压缩曲线
压缩曲线(e-p曲线)
压缩曲线(e-lgp曲线)
2、压缩曲线:土的孔隙比与所受压力的关系曲线。
在一般工程中,常遇到的压力 =100~600kPa.土粒的 体积变化不及全部土体积变化的1/400因此,土的全部压缩量 可认为是由于土的孔隙体积缩小引起的。因此,可以用孔隙 比与所受压力的关系曲线说明土的压缩过程。


,称为压缩系数

式中:
1
——地基某深度处土中有效竖向自重应力;

2 ——地基某深度处土中有效竖向自重有力与有效竖向附加
应力之和;

e1——作用下压缩稳定后土的孔隙比,即土的天然孔隙比;
e2——作用下压缩稳定后土的孔隙比,即土的最终孔隙比; a ——土的压缩系数,kPa-1。

1、土的压缩性大
2、地基土产生压缩的原因 ⑴外因 ①建筑物荷载作用。这是普遍存在的因素。 ②地下水位大幅度下降。相当于施加大面积荷载σ =(γ γ ’)h ③施工影响,基槽持力层土的结构扰动. ④振动影响,产生震沉。 ⑤温度变化影响,如冬季冰冻,春季融化 ⑥浸水下沉,如黄土湿陷,填土下沉。
2、地基土产生压缩的原因
粘性土长期受荷载作用下,变形随时间而缓慢持续的现象称为 蠕变。这是土的又一特性。次固结过程
三、研究土压缩性的意义

从工程意义上来说,地基沉降有均匀沉降和不均匀沉降之分。当建筑物基础 均匀下沉时,从结构安全的角度来看,不致有什么影响,但过大的沉降将会
严重影响建筑物的使用与美观,

如造成设备管道排水倒流,甚至断裂等;当建筑物基础发生不均匀沉降时, 建筑物可能发生裂缝、扭曲和倾斜,影响使用和安全,严重时甚至使建筑物 倒塌。因此,在不均匀或软弱地基上修建建筑物时,必须考虑土的压缩性和 地基变形等方面的问题。 对于道路和桥梁工程,一般来说,均匀沉降对路桥工程的上部结构危害也较 小,但过量的均匀沉降也会导致路面标高降低、桥下净空的减少而影响正常

从上图可以看出,用半对数坐标绘制的 e lg 曲线,在后半 部出现明显的直线段,这已被大量的实验所证实。

对于不同的土,其压缩曲线的形状不同,压缩曲线越陡,说
明随着压力的增加,土中孔隙比的减小越显著,土的压缩性 也就越高。从上图可以看出,软粘土的压缩性要比密实砂土 的压缩性高得多。
另外,土的压缩曲线一般随压力的增大而逐渐趋于平缓,即 在侧限条件下土的压缩性逐渐减小。 3.压缩性指标 (1)要参数, a值越大,曲线 越陡,土的压缩性越高。延长直线M 1 M 2与e坐标轴相交得截距 eA,则直线的 M 1 M 2 方程为
e e A a

上式即为土力学中的重要定律之一,即压缩定律,说明了在 一定应力范围内( 1 2 应力 ),土的孔隙比e与其所受

从上图可以看出,压缩系数a与先后作用于土上的有效应力 试验方法标准》规定采用 =100kPa, =200kPa所得到 的a1-2作为评定土压缩性高低的指标。
1 2
呈线性变化。
1 和 2有关,即a不是一个常数。为了统一标准,《土工
*
为了便于比较,通常采用压力段由 p1=100kPa 增加到p2=200kPa 时的压缩系 数a1-2来评定土的压缩性如下:
底面积范围内,土层厚薄不均,在修建时有意使高炉向土层薄
的一侧倾斜,建成后由于土层较厚的一侧产生较大的变形,结 果使高炉恰好恢复其竖向位置,保证了安全生产,节约了投资。
§5.2
一、压缩试验及压缩性指标
1.压缩试验

土的压缩特性
在实验室用侧限压缩仪(亦称固结仪)进行压缩试验,是研究土压 缩性的最基本方法。
Cc 0.4
高压缩性土。
但压缩指数Cc与压缩系数a又有所不同,a值随应力的变化而 变化,而Cc在应力超过一定值时为常数,在某些情况下使用 较为方便,如国外广泛采用 e lg 曲线来研究应力历史对土
压缩性的影响。
(3)回弹指数Ce

上面在室内侧限压缩试验中连续递增加压,得到了常规的压
缩曲线。现在如果加压到某一值 (相应于下图曲线上的 b点) i 后不再加压,而是逐级进行卸载直至为零,并且测得各卸载 等级下土样回弹稳定后土样高度,进而换算得到相应的孔隙 比,
0.1
a12 / MPa1
0.5
低压缩性
中压缩性
相关文档
最新文档