01导数与导函数的概念
导数性质知识点总结
导数性质知识点总结导数性质知识点总结「篇一」导数的定义:当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
一般地,我们得出用函数的导数来判断函数的增减性(单调性)的.法则:设y=f(x )在(a,b)内可导。
如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。
如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。
所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值求导数的步骤:求函数y=f(x)在x0处导数的步骤:① 求函数的增量Δy=f(x0+Δx)—f(x0)② 求平均变化率③ 取极限,得导数。
导数公式:① C'=0(C为常数函数);② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数③ (sinx)' = cosx; (cosx)' = — sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2)④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|<1) (arcothx)'=1/(x^2—1) (|x|>1)(arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2)导数的应用:1.函数的单调性(1)利用导数的符号判断函数的增减性利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。
导数
当t1无限趋近于t0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t0时刻的瞬时速度,因而就把 此时的极限作为汽车在时刻t0的瞬时速度,即,这就是通常所说的速度。这实际上是由平均速度类比到瞬时速度 的过程(如我们驾驶时的限“速”指瞬时速度)。
历史沿革
起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求 最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f’ (A)。
发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨 等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化 率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方 程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量 的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
需要指出的是:
两者在数学上是等价的。
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内 的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的 导函数,记作y’、f’(x)、dy/dx或df(x)/dx,简称导数。
性质
单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。 需代入驻点左右两边的数值求导数正负判断单调性。
第01讲 导数的概念及其意义、导数的运算(十二大题型)2025年高考数学一轮复习讲练测
(0 +ℎ)−(0 −ℎ)
(, ),则 lim
ℎ
ℎ→0
)
A.′ 0
B.2′ 0
C.−2 ′ 0
D.0
【答案】B
0 +ℎ − 0 −ℎ
【解析】由题意知, lim
ℎ
ℎ→0
0 +ℎ − 0 −ℎ
ℎ→0 0 +ℎ − 0 −ℎ
= 2lim
故选:B
= 2′ 0 .
变化率为( )
3
A.
300
cm/s
6π
3
B.
3
300
cm/s
5π
C.
150
cm/s
3π
3
D.
150
cm/s
2π
【答案】C
2
1
1
【解析】设注入溶液的时间为(单位:s)时,溶液的高为ℎcm,则 π ⋅ ℎ
3
5
因为ℎ′ =
1 3 150
,所以当
3 π 2
= π时,ℎ′ =
1 3 150
3
π3
即圆锥容器内的液体高度的瞬时变化率为
1
【解析】() = ′(1) −1 − (0) + 2 2 ⇒ ′() = ′(1) −1 − (0) +
令 = 1得: (0) = 1
() =
′(1) −1
−+
1 2
2
⇒ (0) = ′(1) −1 = 1 ⇔ ′(1) =
1
得:() = − + 2 2
则 ′ (0) = 1且(0) = 0,即切线的斜率为 = 1,切点坐标为(0,0),
所以切线方程为 = .
导数的概念-课件-导数的概念
导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。
导数的概念及运算讲课文档
【思维升华】 导数的几何意义是切点处切线的斜率,应 用时主要体现在以下几个方面:
(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值: k=f′(x0).
(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k.
现在三十三页,总共三十六页。
(3)若求过点 P(x0,y0)的切线方程,可设切点为(x1,y1),由
现在十六页,总共三十六页。
5 . 曲 线 y = - 5ex + 3 在 点 (0 , - 2) 处 的 切 线 方 程 是 ________.
【解析】 因为y′|x=0=-5e0=-5, 所以曲线在点(0,-2)处的切线方程为 y-(-2)=-5(x-0),即5x+y+2=0. 【答案】 5x+y+2=0
现在七页,总共三十六页。
5.复合函数的导数 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导 数间的关系为yx′=_y_u_′__·__u_x_′_,即y对x的导数等于_y_对__u_ 的导数与_u__对__x的导数的乘积.
现在八页,总共三十六页。
【知识拓展】 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函 数的导数还是周期函数. 2.f(1x)′=-f[′f((x)x)]2(f(x)≠0). 3.[af(x)+bg(x)]′=af′(x)+bg′(x). 4.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势, 其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢, |f′(x)|越大,曲线在这点处的切线越“陡”.
2.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0,f(x0))处的切线的斜率k,即k=__f_′_(x_0_)_.
求导数的定义和性质
定义法:根据导数的定义, 通过求极限来确定函数的导 数。
链式法则:对于复合函数, 使用链式法则计算导数。
乘积法则:对于两个函数的 乘积,使用乘积法则计算导
数。
公式法
定义:根据导数的定义和性质,通过公式计算导数的值
适用范围:适用于已知函数表达式的情况
计算步骤:求导公式,确定自变量和因变量的关系,代入公式进行计算
乘积法则
定义:两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数 乘以第二个函数的导数。
公式:(uv)' = u'v + uv'
应用:用于计算复合函数的导数,简化计算过程。
注意事项:在使用乘积法则时,需要注意每个函数的导数和乘积的符号。
04 导数的应用
导数在几何中的应用
导数可以用来研究函数的单调性, 从而解决一些几何问题。
导数在经济中的应用
边际分析:导数可以用来分析经济函数的边际变化,帮助企业做出更好的决策。
最优问题:导数可以帮助解决最优问题,例如在生产、运输和分配等方面找到最优解。
弹性分析:导数可以用来分析经济函数的弹性,帮助企业了解市场需求和价格变化对销 售的影响。
经济增长和预测:导数可以用来分析经济增长的规律和趋势,帮助预测未来的经济走势。
导数在工程中的应用
优化设计:导数可 以用于优化工程设 计,例如最小化材 料使用或最大化结 构稳定性。
控制理论:导数在 控制系统理论中用 于描述系统的动态 行为,例如航空航 天器的姿态控制。
流体动力学:导数 在计算流体动力学 中用于模拟流体流 动,例如计算流体 阻力或升力。
结构分析:导数可 以用于分析结构的 应力分布和位移, 例如桥梁或建筑物 的稳定性评估。
高数课件-导数的概念
导数的四则运算规则
加法规则:导数相加等于导数之和
乘法规则:导数相乘等于导数之积
添加标题
添加标题
添加标题
添加标题
减法规则:导数相减等于导数之差
除法规则:导数相除等于导数之商
复合函数的导数计算
复合函数的定 义:由两个或 多个函数组成
的函数
复合函数的导 数计算方法:
链式法则
链式法则:将 复合函数分解 为多个简单函 数,分别计算 导数,然后将
导数的性质定理
导数的定义:导数是函数在某一点的切线斜率 导数的性质:导数是连续的,可导函数在定义域内处处可导 导数的公式:导数的基本公式包括导数的四则运算、复合函数求导公式、隐函数求导公式等 导数的应用:导数在微积分、函数极限、函数极值、函数凹凸性等方面有广泛应用
感谢观看
汇报人:
导数的定理与公式
导数的定义:导数是函数在某一点 的切线斜率
导数的基本定理
导数的公式:导数公式包括基本导 数公式、复合函数导数公式、隐函 数导数公式等
添加标题
添加标题
添加标题
添加标题
导数的性质:导数是函数在某一点 的极限值
导数的应用:导数在微积分、函数 分析、=lim(h>0)(f(x+h)-f(x))/h
导数的推导公式
导数的定义:函数在某一点的导数是该函数在该
01
点附近曲线的切线斜率 导数的基本公式:f'(x)=lim(h->0) [f(x+h)-
02
f(x)]/h 导数的四则运算法则:f'(x)=f(x)+g'(x),
03
f'(x)=f(x)-g'(x),f'(x)=f(x)*g'(x),f'(x)=f(x)/g'(x) 04 导数的复合函数公式:f'(g(x))=f'(g(x))*g'(x)
第01讲 导数的概念及运算 (精讲+精练)(学生版)
第01讲导数的概念及运算 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:导数的概念高频考点二:导数的运算高频考点三:导数的几何意义①求切线方程(在型)②求切线方程(过型)③已知切线方程(或斜率)求参数④导数与函数图象⑤共切点的公切线问题⑥不同切点的公切线问题⑦与切线有关的转化问题第四部分:高考真题感悟第五部分:第01讲导数的概念及运算(精练)1、平均变化率(1)变化率事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值. (2)平均变化率一般地,函数()f x 在区间[]21,x x 上的平均变化率为:2121()()f x f x x x --.(3)如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=-②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-. 2、导数的概念(1)定义:函数()f x 在0x x =处瞬时变化率是()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0x x y ='()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim =. (2)定义法求导数步骤:① 求函数的增量:00()()y f x x f x ∆=+∆-; ② 求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③ 求极限,得导数:00000()()'()limlim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.3、导数的几何意义函数()y f x =在点0x x =处的导数的几何意义,就是曲线()y f x =在点00(,)P x y 处的切线的斜率k ,即0()k f x '=.4、基本初等函数的导数公式5若()f x ',()g x '存在,则有 (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[]()()f x f xg x f x g x g x g x ''⋅-⋅'= 6、复合函数求导复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为x u x y y u '''=,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.7、曲线的切线问题(1)在型求切线方程已知:函数)(x f 的解析式.计算:函数)(x f 在0x x =或者))(,(00x f x 处的切线方程.步骤:第一步:计算切点的纵坐标)(0x f (方法:把0x x =代入原函数)(x f 中),切点))(,(00x f x . 第二步:计算切线斜率'()k f x =.第三步:计算切线方程.切线过切点))(,(00x f x ,切线斜率)('0x f k =。
《导数的概念及应用》课件
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
导数概念课件
02
导数的性质
函数单调性与导数的关系
总结词
函数单调性与导数正负有关
详细描述
如果函数在某区间的导数大于0,则函数在此区间单调递增;如果导数小于0, 则函数在此区间单调递减。
极值与导数的关系
总结词
极值点导数为0或不存在
详细描述
函数在极值点处的导数为0或不存在,即一阶导数为0或不可导点。
曲线的切线与导数的关系
导数概念ppt课件
• 导数的基本概念 • 导数的性质 • 导数的计算 • 导数的应用 • 导数的历史与发展
01
导数的基本概念
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要工具 斜率,它描述了函数在该点附近的局 部变化趋势。通过求导,可以找到函 数值随自变量变化的速率和方向。
导数的几何意义
总结词
导数的几何意义是切线斜率,它 反映了函数图像在该点的切线状 态。
详细描述
在几何上,导数表示函数图像在 某一点的切线斜率。这个切线与x 轴的夹角即为该点的导数值,表 示函数在该点附近的变化趋势。
导数的物理意义
总结词
导数的物理意义在于描述物理量随时间或空间的变化率。
详细描述
在物理学中,许多物理量都可以表示为函数形式,如速度、加速度、密度等。导 数可以帮助我们理解这些物理量如何随时间或空间变化,从而揭示物理现象的本 质。例如,速度是位移函数的导数,加速度是速度函数的导数等。
对于两个函数的乘积,其导数 为第一个函数的导数乘以第二 个函数加上第一个函数乘以第 二个函数的导数。即,若 $u(x)$ 和 $v(x)$ 可导,则 $(uv)' = u'v + uv'$。
对于两个函数的商,其导数为 被除函数的导数除以除函数的 导数。即,若 $u(x)$ 和 $v(x)$ 可导且 $v(x) neq 0$, 则 $frac{u'}{v'} = frac{u'v}{uv'}$。
旧教材适用2023高考数学一轮总复习第三章导数及其应用第1讲导数的概念及运算课件
1.(2021·江苏沭阳高级中学模拟)2020 年 12 月 1 日 22 时 57 分,嫦娥 五号探测器从距离月球表面 1500 m 处开始实施动力下降,7500 牛变推力发 动机开机,逐步将探测器相对月球纵向速度从约 1500 m/s 降为零.12 分钟后, 探测器成功在月球预选地着陆,记与月球表面距离的平均变化率为 v,相对 月球纵向速度的平均变化率为 a,则( )
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系
为
□18 y′x=y′u·u′x
,即 y 对 x 的导数等于 y 对 u 的导数与 u 对
x 的导数的乘积.
1.f′(x0)与 x0 的值有关,不同的 x0,其导数值一般也不同. 2.f′(x0)不一定为 0,但[f(x0)]′一定为 0. 3.可导奇函数的导数是偶函数,可导偶函数的导数是奇函数,可导周 期函数的导数还是周期函数. 4.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反 映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这 点处的切线越“陡”.
(c 为常数).
(3)gf((xx))′= □16 f′(x)g([xg)(-x)f(]2x)g′(x)
(g(x)≠0).
5.复合函数的导数
一般地,对于两个函数 y=f(u)和 u=g(x),如果通过变量 u,y 可以表示
成 x 的函数,那么称这个函数为函数 y=f(u)和 u=g(x)的复合函数,记 作 □17 y=f(g(x)) .
A.v=2152 m/s,a=2152 m/s2 B.v=-2152 m/s,a=-2152 m/s2 C.v=-2152 m/s,a=2152 m/s2 D.v=2152 m/s,a=-2152 m/s2
第一讲导数、导函数的概念及导数的运算全面版
导数与导函数的观点【基础知识点】1.函数从到的均匀变化率为① ____________,若△x x2x1,△ y f ( x2 ) f ( x1 ) ,则均匀变化率可表示为.2.一般的,定义在区间( a ,b)上的函数 f ( x) ,x o( a, b) ,当x 无穷趋近于0 时,y f (x o x) f (x o )A ,则称f ( x)在x x o处可导,并x x无穷趋近于一个固定的常数称 A 为f ( x)在x x o处的导数,记作 f ' ( x o ) 或f ' ( x ) |x xo3.几何意义: f ( x) 在x x0处的导数就是 f ( x) 在x x0处的切线斜率。
4.导函数的观点: f ( x)的对于区间(a , b)上随意点处都可导,则 f ( x) 在各点的导数也随 x 的变化而变化,因此也是自变量x的函数,该函数被称为 f ( x) 的导函数,记作f ' ( x ) 。
【典例分析】【典例 1】函数f ( x)知足f ' (1)2,则当 x 无穷趋近于 0 时,( 1)f (1x) f (1)2x( 2)f (12x) f (1)x变式 :设f(x)在x=x0处可导,(3)f ( x04x)f ( x)无穷趋近于1,则f(x0 ) =___________ x(4)f ( x04x)f ( x)无穷趋近于1,则f(x0 ) =__________ x( 5)当△ x 无穷趋近于0,f ( x02x) f (x02 x)所对应的常数与 f ( x0 ) 的x关系。
总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。
【基础知识点】1.基本初等函数的求导公式:⑴(kx b)k (k,b为常数 ) ⑵(C ) 0 (C 为常数 )⑶ ( x)1⑷( x 2 ) 2 x⑸( x 3) 3x2⑹ (1)1xx 2⑺(x )1由⑶ ~⑹你能发现什么规律 ?2 x⑻ ( x ) x1( 为常数)⑼ (a x )a x ln a (a0,a 1)⑽(log a x)1log a e1 ( a 0,且 a 1)xxlna⑾(e x )e x⑿(lnx ) 1x⒀(sinx ) cosx⒁(cosx)- sinx2.曲线在某点处的切线和曲线过某点的切线.曲线 y = f (x )在点 P ( x 0, f ( x 0))处的切线方程是 y - f ( x 0)= f ' ( x o ) ( x - x 0);3. 求过某点的切线方程,需先设出切点坐标,再依照已知点在切线上求解. 4.函数的差、积、商的求导法例:( 1) ( 2)( 3)f ( x)g ( x) ' f '( x)g '( x)cf ( x) ' cf (x)'f (x)g ( x) ' f '(x) g(x)f ( x)g '(x)f ( x) '( 4)f '( x)g (x) f (x) g '( x)( g (x) 0)g( x)g( x)2【典例分析】【典例 1】求以下函数的导数( 1)y3x 5( 2)y1( 3)y log 4 x( 4)x 4y sin(x)2( 5)y cos(3( 6)yx x x x)2题型一:点在曲线上【典例 2】已知曲线y1x3上一点 P(2,8),则过 P 点的切线方程为.33分析:过点 P 的切线的斜率为k f ' 2 4 ,那么切线方程为y84x 2 ,即312 x 3y 160 .变式:(南通市2013 届高三第一次调研测试数学试卷)曲线 f ( x)f(1)x12在e f (0) x xe2点 (1, f (1)) 处的切线方程为 ________.题型二:点不在曲线上【典例 3】过点(1,0) 作抛物线y x2x1的切线,则此中一条切线为解析:设切点为 x0 , y0,切线的斜率为 f ' x02x0 1 ,则切线方程为:y y0 f 'x0x x0,由于点 ( 1,0) 在切线上,故y0 f ' x0 1x0,解得x00,或 x02,切点为 0,1或2,3,故切线方程为 x y20或3x y30变式: 1.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)过点1,0. 与函数 f x e x( e 是自然对数的底数)图像相切的直线方程是__________.2.( 2011 年高考(江苏卷))在平面直角坐标系xOy 中,已知点P是函数 f ( x)e x (x0)的图象上的动点 , 该图象在P 处的切线l交y轴于点, 过点P作l的垂线交y轴于点,设M N线段 MN的中点的纵坐标为t ,则 t 的最大值是__题型三:已知切线斜率求切线方程【典例 4】求垂直于直线 2 x6y 1 0且与曲线y x33x2 5 相切的直线方程。
(完整版)高中数学导数知识点归纳总结
§14.导数知识要点1.导数(导函数的简称)的定义:设X 。
是函数y f(x)定义域的一点,如果自变量X 在X 。
处 有增量 x ,则函数值y 也引起相应的增量 y f (x 0 x) f(x 0);比值 丄 止__x) f(xo)称为函数y 仁刈在点%。
到X 。
x 之间的平均变化率;如果极限 x X lim - lim f(X0 -------------- X)_f (Xo)存在,则称函数y f (x)在点x 。
处可导,并把这个极限叫做x 0 x x 0 x y f (x)在 x 0处的导数,记作 f (x 0)或 y |xX Q,即 f (x 。
)= lim y limf -(X° --- X)_.X 。
x x 。
x注:① X 是增量,我们也称为改变量”,因为X 可正,可负,但不为零.②以知函数y f(x)定义域为A , y f '(x)的定义域为B ,则A 与B 关系为A B.注:①可导的奇函数函数其导函数为偶函数 ②可导的偶函数函数其导函数为奇函数2.函数y⑴函数y 可以证明,如果 事实上,令x f (X)在点X o 处连续与点X o 处可导的关系:X o 处连续是y f (x)在点X o 处可导的必要不充分条件 y f (x)点x 0处连续. o.f (x)在点 y xof(x)在点X o 处可导,那么 X ,则XX o 相当于 是 lim f (x)X X 。
lim X 。
f(x 。
x) lim [ f(xX 。
X 。
) f(x 。
) f(x 。
)] 叫⑵如果y f (X 。
X ) f(x 。
) X f(x)点X o 处连续,f(x 。
)] 那么y例: f(x) |x|在点X o 。
处连续,f(X oX) f(X o ) lim lim f(X o )xx o x of(x)在点X o 处可导,是不成立的.y ,当X X0。
f (X 。
)o f(x 。
导数的概念课件
导数的物理性质
速度与加速度
在物理中,导数可以表示速度和加速度。例如,物体运动的瞬时速度是位移函数 的导数;物体运动的瞬时加速度是速度函数的导数。
斜率与加速度
在工程学中,斜率可以表示物体的加速度。例如,在电路中,电流的变化率可以 表示为电压函数的导数;在机械系统中,速度的变化率可以表示为力函数的导数 。
利用导数研究函数的曲率
总结词
描述函数曲线的弯曲程度
详细描述
导数的二阶导数可以用来描述函数的曲率。二阶导数越大, 表示函数曲线在该点越弯曲;二阶导数越小,表示函数曲线 在该点越平坦。通过计算二阶导数,可以了解函数曲线的弯 曲程度。
04
导数在实际生活中的应用
导数在经济学中的应用
总结词
导数在经济学中有着广泛的应用,它可以帮助我们理解经济现象的变化率和优化经济决 策。
链式法则
商的导数公式
若$u(x)$和$v(x)$在某点可导,且 $v(x) neq 0$,则$frac{u'(x)}{v'(x)}$ 存在。
若$u(x)$在某点可导,$f$是常数,则 复合函数$f(u(x))$在同一点也可导, 且$(f circ u)' = f' times u'$。
导数的几何性质
导数在数学分析、函数研究、优化问题、经济学等领域中 有着广泛的应用,是解决许多问题的重要工具。
导数的发展趋势与未来展望
发展趋势
随着科学技术的发展,导数在各个领域的应 用越来越广泛,如物理学、工程学、经济学 等。同时,对导数本身的研究也在不断深入 ,如对高阶导数、复合导数、变分法等的研 究。
未来展望
导数的起源与早期发展
起源
导数起源于17世纪,最初是为了解决 物理学和几何学中的问题,如速度和 切线斜率等。
高中数学导数公式及导数的运算法则
高中数学导数公式及导数的运算法则一、导数的定义导数是函数变化速率的一种描述方式,用函数f(x)在点x处的变化率来近似表示。
导数的定义如下:设函数y=f(x)在点x处有定义,如果当自变量x自小于且无限接近于x时,函数值的变化量Δy始终与自变量的变化量Δx之比近似为一个定值,即lim(Δx→0) Δy/Δx = lim(Δx→0) [f(x + Δx) - f(x)]/Δx这个极限值称为函数f(x)在点x处的导数,记作f'(x),也可以写成dy/dx。
二、常见函数的导数公式1.幂函数的导数若y = xⁿ,n为常数,则y' = nxⁿ⁻¹。
2.反函数的导数若y=f⁻¹(x),则y'=1/f'(f⁻¹(x))。
3.指数函数的导数若y = aˣ,a > 0,a ≠ 1,则y' = (lna) * aˣ。
4.对数函数的导数(a) 若y = logₐ(x),a > 0,且a ≠ 1,则y' = 1/(xlna)。
(b) 若y = ln(x),则y' = 1/x。
5.指数对数函数的导数(a) 若y = aˣ(x > 0),则y' = aˣ(lna)。
(b) 若y = logₐx(a > 0,且a ≠ 1),则y' = 1/(xlna)。
(c) 若y = ln,x,则y' = 1/x。
6.三角函数的导数(1) 若y = sinx,则y' = cosx。
(2) 若y = cosx,则y' = -sinx。
(3) 若y = tanx,则y' = sec²x。
1.基本运算法则(a)常数乘积法则:k*f(x)的导数是k*f'(x)。
(b)和差法则:[f(x)±g(x)]的导数是f'(x)±g'(x)。
(c)常数倍数法则:k*f(x)的导数是k*f'(x)。
2022版高考数学一轮复习第4章导数及其应用第1讲导数的概念及运算课件
ex x+a
,得f′(x)=
exx+a-1 x+a2
,所以f′(1)=
ae 1+a2
=4e,解得a=1.
6.曲线y=2ln(x+1)在点(0,0)处的切线方程为________. 【答案】y=2x 【解析】因为y′=x+2 1,所以在点(0,0)处切线的斜率为k=2,则所 求的切线方程为y=2x.
(2)由y=ln x+x+1,得y′=1x+1,令1x+1=2,解得x=1.所以切线 方程为y-2=2(x-1),即y=2x.
导数几何意义的综合应用
已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值; (2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围.
1).因为y′=2ax+(a+2),所以y′|x=x0=2ax0+(a+2).
由2aax20x+0+aa++22x0=+21,=2x0-1,
解得x0=-21, a=8.
【解题技巧】 1.求切线方程的方法 (1)求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程; (2)求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标, 然后列出切点坐标的方程解出切点坐标,进而写出切线方程. 2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三 个关系列出参数的方程并解出参数:(1)切点处的导数是切线的斜率;(2) 切点在切线上;(3)切点在曲线上.
3x0,且切线斜率为k=6x
2 0
-3,所以切线方程为y-y0=(6x
2 0
-3)(x-x0),
因此t-y0=(6x20-3)·(1-x0).整理得4x30-6x20+t+3=0.
设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与导函数的概念
教学目标:
1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义;
理解导函数的概念和意义;
2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,
培养转化问题的能力;最后求切线方程,培养转化问题的能力
3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。
教学重点:
1、导数的求解方法和过程;
2、导数符号的灵活运用
教学难点:
1、导数概念的理解;
2、导函数的理解、认识和运用
教学过程:
一、情境引入
在前面我们解决的问题:
1、求函数2
)(x x f =在点(2,4)处的切线斜率。
x x
x f x f x y ∆+=∆-∆+=∆∆4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是12-=t V ,求o t t =时的瞬时速度。
t t t
t v t t v t V o o o ∆+=∆-∆+=∆∆2)()(,故斜率为4 二、知识点讲解
上述两个函数)(x f 和)(t V 中,当x ∆(t ∆)无限趋近于0时,
t V ∆∆(x V ∆∆)都无限趋近于一个常数。
归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ∆无限趋近于0时,x
x f x x f x y o o ∆-∆+=∆∆)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(', 上述两个问题中:(1)4)2('=f ,(2)o o t t V 2)('=
三、几何意义:
我们上述过程可以看出
)(x f 在0x x =处的导数就是)(x f 在0x x =处的切线斜率。
四、例题选讲
例1、求下列函数在相应位置的导数
(1)1)(2
+=x x f ,2=x (2)12)(-=x x f ,2=x
(3)3)(=x f ,2=x
例2、函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)
=-+x
f x f 2)1()1( (2)=-+x f x f )1()21( 变式:设f(x)在x=x 0处可导,
(3)x
x f x x f ∆-∆+)()4(00无限趋近于1,则)(0x f '=___________ (4)x
x f x x f ∆-∆-)()4(00无限趋近于1,则)(0x f '=________________ (5)当△x 无限趋近于0,
x x x f x x f ∆∆--∆+)2()2(00所对应的常数与)(0x f '的关系。
总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。
例3、若2)1()(-=x x f ,求)2('f 和((2))'f
注意分析两者之间的区别。
例4:已知函数x x f =)(,求)(x f 在2=x 处的切线。
导函数的概念涉及:)(x f 的对于区间(a ,b )上任意点处都可导,则)(x f 在各点的导数也随x 的变化而变化,因而也是自变量x 的函数,该函数被称为)(x f 的导函数,记作)('x f 。
五、小结与作业。