单片机两个独立按键编程

合集下载

单片机独立按钮实训报告

单片机独立按钮实训报告

一、实训目的通过本次单片机独立按钮实训,掌握单片机的基本原理,了解独立按钮的工作原理及其在单片机中的应用,提高动手实践能力,为后续单片机相关课程的学习打下坚实基础。

二、实训内容1. 独立按钮介绍2. 独立按钮在单片机中的应用3. 独立按钮驱动程序编写4. 实验电路搭建与调试三、实训过程1. 独立按钮介绍独立按钮是一种常用的电子开关,由一个开关和两个引脚组成。

当按钮未按下时,两个引脚处于断开状态;当按钮按下时,两个引脚导通,从而实现信号的传递。

2. 独立按钮在单片机中的应用在单片机中,独立按钮常用于实现简单的输入控制,如按键控制LED灯的亮灭、按键控制继电器开关等。

3. 独立按钮驱动程序编写以51单片机为例,编写独立按钮驱动程序如下:```c#include <reg51.h>#define BUTTON P1 // 定义按钮连接的端口void delay(unsigned int ms) // 延时函数{unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 120; j++);}void main(){while (1){if (BUTTON == 0x00) // 检测按钮是否被按下{delay(10); // 消抖处理if (BUTTON == 0x00) // 再次检测按钮是否被按下{// 执行按钮按下后的操作// ...}}}}```4. 实验电路搭建与调试根据上述程序,搭建如下实验电路:(1)连接按钮:将按钮的两个引脚分别连接到单片机的P1.0引脚和地(GND)。

(2)连接LED灯:将LED灯的正极连接到单片机的P1.1引脚,负极连接到地(GND)。

(3)连接电源:将单片机的VCC引脚连接到5V电源,GND引脚连接到地(GND)。

(4)调试程序:将编译好的程序烧录到单片机中,观察LED灯是否在按钮按下时亮起。

独立式键盘程序

独立式键盘程序

51单片机:键盘控制程序2009-11-14 16:12键盘控制1.功能说明:用八位指拨开关(DIP)作单片机的输入,控制输出端口连接的八只LED发光二极管。

如若DIP1开关为 ON(向右拨动)则LED1亮,其它开关作用同。

程序:LOOP: MOV A, P3 ; 从P3读入DIP开关值MOV P1, A ; 从P1输出03: JMP LOOP ; 无穷循环04: END ;程序结束2.功能说明:用DIP开关中的低4位作二进制的输入,控制输出端数码管显示器的输出。

程序:01: MOV DPTR,#TABLE ; 存表02: MOV P0, #0FFH ; LED全灭03: LOOP: MOV A, P3 ; 从P3口读入DIP开关值04: ANL A, #0FH ; 高4位清0,取低四位05: ACALL CHANG ; 转成七段显示码06: MOV P0, A ; 从P0输出07: JMP LOOP ; 转移LOOP处,循环08: CHANG: MOVC A,@A+DPTR ; 取码09: RET ; 返回转换显示码子程序10: TABLE: DB 0C0H, 0F9H, 0A4H, 0B0H ;11: DB 99H, 92H, 82H, 0F8H ;12: DB 80H, 90H, 88H, 83H ;13: DB 0C6H, 0A1H, 86H, 8EH ; 显示码表14: END ;程序结束3.功能说明:用两个按键开关K1和K2作输入,K1为电源指示灯开关,K2为工作指示灯开关。

分别控制电源指示灯(P1.0接的LED)和工作指示灯(P1.7接的LED)的接通和关闭。

接通电源时,电源指示灯是在亮的状态。

当按K2时,工作指示灯亮,电源指示灯灭。

按K1时,电源指示灯亮,工作指示灯灭。

程序:01: START: MOV P1, #11111110B ; P1.0所接LED亮02: JB P2.5 , $ ; 判断P2.5(K2键)是否为103: ON: MOV P1, #01111111B ; P1.7所接LED亮04: JNB P2.4, START ; 判断P2.4(K1键)是是否为005: JMP ON ; 未按K1键,则跳至ON06: END ;程序结束4.功能说明:由四个按键开关组成独立式键盘,控制灯左移、右移和闪烁。

单片机独立按键控制led灯实验原理

单片机独立按键控制led灯实验原理

主题:单片机独立按键控制LED灯实验原理目录1. 概述2. 单片机独立按键控制LED灯实验原理3. 实验步骤4. 结语1. 概述单片机在现代电子设备中起着至关重要的作用,它可以通过编程实现各种功能。

其中,控制LED灯是单片机实验中常见的任务之一。

本文将介绍单片机独立按键控制LED灯的实验原理及实验步骤,希望对初学者有所帮助。

2. 单片机独立按键控制LED灯实验原理单片机独立按键控制LED灯的实验原理主要涉及到单片机的输入输出端口及按键和LED的连接方式。

在单片机实验中,按键与单片机的输入端口相连,LED与单片机的输出端口相连。

通过按键的按下和松开来改变单片机输出端口电平,从而控制LED的亮灭。

3. 实验步骤为了完成单片机独立按键控制LED灯的实验,需要按照以下步骤进行操作:步骤一:准备材料- 单片机板- 按键- LED灯- 连线- 电源步骤二:搭建电路- 将按键与单片机的输入端口相连- 将LED与单片机的输出端口相连- 连接电源步骤三:编写程序- 使用相应的单片机开发软件编写程序- 程序中需要包括按键状态检测和LED控制的部分步骤四:烧录程序- 将编写好的程序烧录到单片机中步骤五:运行实验- 按下按键,观察LED的亮灭情况- 确保按键可以正确控制LED的亮灭4. 结语通过上述实验步骤,我们可以实现单片机独立按键控制LED灯的功能。

这个实验不仅可以帮助学习者了解单片机的输入输出端口控制,还可以培养动手能力和程序设计能力。

希望本文对单片机实验初学者有所帮助,谢谢阅读!实验步骤在进行单片机独立按键控制LED灯实验时,需要按照一定的步骤进行操作,以确保实验能够顺利进行并取得预期的效果。

下面将详细介绍实验步骤,帮助读者更好地理解和掌握这一实验过程。

1. 准备材料在进行单片机独立按键控制LED灯实验前,首先需要准备相应的材料。

这些材料包括单片机板、按键、LED灯、连线和电源。

在选择单片机板时,需要根据具体的实验需求来确定,常见的有51单片机、Arduino等,不同的单片机板具有不同的特性和使用方法,因此需要根据实验要求来选择适合的单片机板。

实验程序

实验程序

单片机实验程序软件实验一1.分别编程实现两个16位无符号数相加,结果存放在40H41H中;两个16位的无符号数相减,结果存放在30H31H中。

两个16位无符号数相加,结果存放在30H31H中ORG 0000HLJMP MAINORG 0030HMAIN :MOV R3,#01H ;输入加数高八位MOV R4,#23H ;输入加数低八位MOV R5,#45H ;输入被加数高八位MOV R6,#67H ;输入被加数低八位MOV A,R4 ;将R4存入寄存器AADD A,R6 ;A与R6相加,结果存入AMOV 31H,A ;将低八位的和数存入31HMOV A,R3 ;将R3存入寄存器AADDC A,R5 ;A与R5相加,结果存入AMOV 30H,A ;将高八位的和数存入30HSJMP $END; 两个16位的无符号数相减,结果存放在30H31H中。

ORG 0000HLJMP MAINORG 0030HMAIN :MOV R3,#12H ;输入减数高八位MOV R4,#34H ;输入减数低八位MOV R5,#56H ;输入被减数高八位MOV R6,#78H ;输入被减数低八位MOV A,R4 ;将R4存入寄存器ACLR C ;C位清"0"SUBB A,R6 ;A与R6相减,结果存入AMOV 31H,A ;将低八位的差数存入31HMOV A,R3 ;将R3存入寄存器ASUBB A,R5 ;A与R5相减,结果存入AMOV 30H,A ;将高八位的差数存入30HSJMP $END2、编程实现X (X ≥40)Y= 2X (20<X<40)0(X≤20);实现X>=40时,Y=X;20<X<40时,Y=2X;X<20时,Y=0 X的值存放于R2中,Y的值存放于R3中ORG 0000HLJMP MAINORG 0030HMAIN:CMP40: CJNE R2,#40,NEXT0 ;X与40比较,结果由CY读出NEXT0: JNC BIGGER40 ;判断C的值,C为0时则X大于或者等于40,跳到BIGGER40JC CMP20 ;判断C的值,C不为0时则X小于40,跳到CMP20 CMP20: CJNE R2,#21,NEXT1 ;X与21比较,结果由CY读出NEXT1: JNC BIGGER20 ;判断C的值,C为0时则X大于或者等于21(即X大于20),跳到BIGGER20JC SMALLER20 ;判断C的值,C不为0时则X小于20,跳到SMALLER20BIGGER40: MOV A,R2 ;X>=40时,将X的值赋给存放Y的值的R3MOV R3,ASJMP $BIGGER20: MOV A,R2 ;20<X<40时,将X的值乘以2再赋给存放Y的R3MOV B,#02MUL ABMOV R3,ASJMP $SMALLER20:CLR A ;X<20时,将0赋给YMOV R3,ASJMP $软件实验二1、找出内RAM中从30H到50H中在最小值。

单片机实践-独立按键电路原理及代码实现

单片机实践-独立按键电路原理及代码实现
一定要去掉“前沿抖动”和 “后沿抖动”的脉冲,两者 统称为按键去抖动。
11 原理分析
那怎么样对键盘去抖动呢?
一般可以采用硬件电路和软件程序两种方法消除键盘抖动。但在现代电 子产品开发过程中,一般都采用软件去抖动。
11 原理分析
软件程序消除键盘抖动措:
① 检测判断是否有键按下; ② 若有则执行5~10ms的延时程序; ③ 再重新检测判断该键是否仍然按下。 同理,在检测到该键释放时,也采用先 延时再判断的方法消除抖动的影响。一 般释放键时,不需要检测和去抖动操作 。
//按键处理,开灯、关灯等 } else if(P11==0)//判断是否为P11的按键按下 {
//按键处理,开灯、关灯等 } while(P10==0||P11==0);//等待两个按键都松开 } //返回
}
THANK YOU
独立按键工作原理 及代码实现
CONTENTS
原理分析
代码实现
11 原理分析
按键电路的工作原理: 按下:A为低电平,0v 松开:A为高电平,5v
独立按键电路
11 原理分析
机械式按键的开、关分别是通过机械触点的合、断来实现,由于机械触 点的弹性作用,在闭合或者断开的瞬间均有抖动现象,会出现一系列电脉冲 ,抖动时间长短,与开关的机械特性、按键动作等因素有关。抖动时间一般 有5~10ms。在抖动期间检测按键的开或者关,可能导致键盘识别出错。
}
N
判断键按下?
Y 延时去抖动
N 再判断键按下? Y 按键处理
N 等待按键松开 Y
21 代码实现
两个按键的 判断方法:
void KeyScan( )
{
if(P10==0||P11==0) //判断是否有按键按下 {

单片机课设60秒计时器

单片机课设60秒计时器

单片机课程设计说明书题目:00—60秒表设计学院:机电工程学院专业:机械设计制造及其自动化学生姓名:xxx学号:xxx指导教师单位:xxx姓名:xxx2013年12月13日摘要60秒计时器以单片机为核心,由计时器,控制器等组成。

系统采用模块化设计,主要分为计时器显示模块和按键控制模块。

每个模块的程序结构简单,任务明确,易于编写、调试和修改。

编程后利用Kcil软件来进行编译,在生成HEX文件装入芯片中,在通过调试实现60s计时功能。

本设计中系统硬件电路主要是由以下几个部分组成:单片机AT89C51、振荡电路、显示电路和按键开关。

该系统具有60s内准确计时和计时清零的功能。

关键字:单片机,计时,显示,60s计时,复位清零目录前言 (1)一、概述 (1)1.1、课程设计任务与目的 (1)1.2、总体方案设计 (2)1.2.1、设计方案框图 (2)1.2.2、硬件方案 (2)1.2.3、软件方案 (2)二、系统硬件设计 (3)2.1、电路总体设计方案 (3)2.2、电路原理图 (3)2.3、各硬件模块设计与制作 (3)2.3.1、AT89C51单片机设计 (3)2.3.2、晶振输入电路设计 (6)2.3.3、复位电路设计 (7)2.3.5、数码管显示部分电路 (8)2.3.6、绘制原理图. (10)2.3.7、生成PCB图 (11)2.3.8、制作PCB板 (11)2.3.9、钻孔,并焊接芯片 (12)2.4、遇到的问题与解决办法 (13)三、系统软件设计 (14)3.1、软件总体设计方案 (14)3.2、程序流程图 (16)3.3、部分重要模块汇编程序: (16)四、系统调试 (17)4.1、软件调试 (17)4.2、硬件调试 (18)五、系统功能 (19)六、总结 (19)七、附录 (19)八、参考文献 (21)前言我们的任务是设计60s秒表计时器,用AT89S51单片机的定时/计数器T0产生一秒的定时时间,作为秒计数时间,当一秒产生时,秒计数加1,秒计数到60时,自动从0开始,实现0到60秒的循环显示的功能。

单片机按键程序的编写

单片机按键程序的编写
下面我们来看看多个按键的情况 吧
一般情况下,如果多个按键每个都直接接在单片机的 I/O 上的话会占用很多的 I/O 资源。比 较合理的一种做法是,按照行列接成矩阵的形式。按键接在每一个的行列的相交处。这样对 于 m 行 n 列的矩阵,可以接的按键总数是 m*n。这里我们以常见的 4*4 矩阵键盘来讲解矩阵 键盘的编程。
/******************************************
* 此模块所需相关支持库
*
******************************************/
#include"regx52.h"
#define uint8 unsigned char
#define uint16 unsigned int
bit bdata StartScan = 0 ;//此变量需放在定时中断中置位
else
{
//SHOW_ICON
}
}
}
每次执行读键盘函数时,只是对一些标志进行判断,然后退出。因此能够充分的利用 CPU 的资源。同时可以处理连发按键。此按键扫描按键函数可以直接放在主函数中。如果感觉按 键太过灵敏或者迟钝则改一下相关消抖动的宏定义即可。此函数也可以通过中断标志位进行 定时的扫描。此时,需要添加一个定时标志位,并将相关消抖动的和连击时间的宏定义改小 即可。然后在主程序类似下面这样写即可
这个流程是好多教科书上的做法。可惜,误导了好多人。为什么呢。因为它根本就没有考虑 实际情况。我们根据这幅流程图来写它的代码看看。
unsigned char v_ReadKey_f( void )
{
unsigned char KeyPress ;

51单片机学习笔记:独立按键s2按下数码管加一(缺陷版)

51单片机学习笔记:独立按键s2按下数码管加一(缺陷版)

51单⽚机学习笔记:独⽴按键s2按下数码管加⼀(缺陷版)在学习了独⽴按键后,就产⽣了这个想法。

所以今天就把他实现了出来:#include<reg52.h>sbit KEY_s2 = P3^0; //定义按键s2sbit WE = P2^7; //定义位选sbit DU = P2^6; //定义段选unsigned int code table[10] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F};unsigned int code duan[10] = {0,0xFE,0xFD,0xFB,0xF7,0xEF,0xDF,0xBF,0x7F};void delay() //20ms延时函数(⽤于键盘消抖){unsigned char a,b,c;for(c=1;c>0;c--)for(b=222;b>0;b--)for(a=40;a>0;a--);}void softwaredelay() //⽤于动态显⽰数码管{unsigned char a,b;for(b=102;b>0;b--)for(a=3;a>0;a--);}void digitaltube(unsigned int du,unsigned int num){if(num == 0){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[0];DU = 0;}if(num == 1){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[1];DU = 0;}if(num == 2){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[2];DU = 0;}if(num == 3){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[3];DU = 0;}if(num == 4){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[4];DU = 0;}if(num == 5){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[5];DU = 0;}if(num ==6){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[6];DU = 0;}if(num == 7){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[7];DU = 0;}if(num == 8){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[8];DU = 0;}if(num == 9){P0 = 0xFF;WE = 1;P0 = duan[du];WE = 0;DU = 1;P0 = table[9];DU = 0;}}void main(){unsigned int sec = 0;unsigned int dt4;unsigned int dt3;unsigned int dt2;unsigned int dt1;while(1){if(KEY_s2 == 0){delay(); //键盘消抖if(KEY_s2 == 0) {sec ++;while(!KEY_s2); }}//松键盘后数码管显⽰加1dt4 = sec % 10;dt3 = (sec / 10) % 10;dt2 = (sec / 100) % 10;dt1 = (sec/ 1000) % 10;digitaltube(1 , dt1);softwaredelay();digitaltube(2 , dt2);softwaredelay();digitaltube(3 , dt3);softwaredelay();digitaltube(4 , dt4);softwaredelay();}}但是在烧录到单⽚机⾥执⾏的时候会发现在按键按下时,数码管是熄灭的......这就涉及到了中断的问题。

实验报告二 独立按键识别

实验报告二 独立按键识别

桂林电子科技大学信息科技学院
单片机原理与接口技术实验报告
-----------------------------------------------------------------------------------------------------------------------------------------------------
1、理解机械式按键产生抖动的原因; 2、掌握软件延时消除按键抖动的原理; 3、熟练掌握延时程序的具体设计调试。
二、实验任务
1、 复习按键消抖的软硬件方法;理解掌握软件延时消除按键抖动的原理及编程方法。
2、 参考下面所示电路,编写单片机程序,要求实现如下功能:
判别按键是否按下,每按下一次,按键次数加一,4 个发光二极管按照一位十六进制 数的形式点亮。
-----------------------------------------------------------------------------------------------------------
桂林电子科技大学信息科技学院
单片机原理与接口技术实验报告
-----------------------------------------------------------------------------------------------------------------------------------------------------
3、独立按键识别原理及过程
否 按键是否按下
是 软件延时 10ms
否 按键是否按下
是 按键处理程序
否 按键是否释放

三、实验步骤
1、根据参考电路,利用 Proteus 软件设计绘制完整的应用电路。 2、绘制程序设计流程图

单片机课程实验二: 独立按键电路设计

单片机课程实验二: 独立按键电路设计

单片机课程实验二:独立按键电路设计专业:通信工程学号:1610111183 姓名:石万里一、实验步骤:在实验一STC89C52单片机控制8个流水灯的实验的基础上进行此实验。

本次实验目标:通过两个独立按键控制流水灯的变化,使得8个流水灯代表的8进制数,在按下K1键后自动加一,按下K2键后,自动减一,采用下降沿外部中断触发。

电路图在实验一的基础上进行改装,让P32与P33各自通过一个独立按键接地,手绘电路图如图1.1所示:图1.1独立按键电路图1.2独立按键电路焊接成果实验程序编写烧录后,在keil软件中生产hex文件,再烧录到单片机芯片中,再给电路板上电即可。

之后是实验程序的编写,流水灯程序编写好并在学习板上测试成功后,即可把芯片放到自己焊接的电路板上上电测试电路板,如果成功即可找老师验收,不成功需要用万用表对电路板进行测试,测试时先把万用表档位调到欧姆档,测试本实验焊接的独立按键电路是否存在开路,并检查是否存在有未焊接的部分,是否有虚焊漏焊的情况,是否上电测试时晶振未安装,电路板检查后继续进行测试,然后再检查、测试,直到自己焊接的电路板功能正常。

若是在学习板上程序未成功,则需要对程序进行修改,重新编译、烧录,不断测试。

二、流水灯程序:org 0000Hljmp mainorg 0003hljmp jiayiorg 0013hljmp jianyiorg 100h main:setb ex0setb IT0setb ex1setb IT1setb eamov r4,#07hmov r3,#07hmov r2,#02hmov a,#0fehmov p1,aloop2:acall delay next: rl aacall delaymov p1,adjnz r4,next here: acall delay//mov a,p1rr amov p1,adjnz r3,heremov r4,#07hmov r3,#07hdjnz r2,loop2acall delay loop1:mov a,#07chmov p1,asjmp loop1 delay:mov r5,#19h delay1:mov r6,#19h delay2:mov r7,#0ffhdjnz r7,$djnz r6,delay2djnz r5,delay1 retjiayi:mov a,p1dec aacall delaymov p1,asjmp jiayiretijianyi:mov a,p1inc aacall delaymov p1,asjmp jianyiretiend三、实验总结:实验结果如下图所示:前五张图片是加一结果,最后两张图片是减一结果因为拍照速度太慢,故加一减一在图中看起来可能不连续,但程序完全正确,已经过实验验证,本人建议最好录视频作为作业上交此实验是建立在实验一的基础上进行的,故相对较为简单,只需要P32与P33各自加独立按键接地即可。

单片机学习(四)蜂鸣器和独立按键的使用

单片机学习(四)蜂鸣器和独立按键的使用

单⽚机学习(四)蜂鸣器和独⽴按键的使⽤⽬录蜂鸣器两种蜂鸣器的介绍有源蜂鸣器⼀般是输⼊⼀个电流或电压即可直接驱动⼯作,⽽⽆源蜂鸣器则需要输⼊脉冲信号才可以进⾏⼯作。

在51单⽚机开发板上的即为⽆源蜂鸣器。

蜂鸣器相关电路图可以看出,信号是通过P15传递到ULN2003D芯⽚后进⽽传递到芯⽚的OUT5(即BEEP端⼝)再传递到蜂鸣器中的,其中ULN2003D芯⽚起着电流放⼤的作⽤。

控制代码⾸先我们先获得控制蜂鸣器的引脚,从电路图可以看出是P15,所以:sbit BEEP= P1^5;因为这是⽆源蜂鸣器,所以我们需要给它提供脉冲信号输⼊才能使它⼯作。

⽽当BEEP为0时有电流,BEEP为1时⽆电流,所以我们需要循环改变BEEP的值,主函数代码如下所⽰:int main() {while (1){BEEP = ~BEEP;deley(10);}}如果我们希望改变蜂鸣器的⾳调,只需要改变脉冲信号的频率即可,也就是while循环中deley()的参数。

我们也可以不断改变deley()中填⼊的参数来使蜂鸣器发出奇怪的声⾳ :int main() {u16 time = 10;u8 cnts = 50;u8 i;for(time=10;time<200;time++) {for(i=0;i<cnts;i++) {BEEP = ~BEEP;deley(time);}}}独⽴按键独⽴按键电路图可以看到,这4个独⽴按键都是⼀端和单⽚机的引脚(P3[0..3])相连,⽽另⼀端直接接地的。

这些按键的效果是,当按键没有按下时,它们对应的端⼝的输出是⾼电平,⽽当按键按下之后,这些端⼝的输出则变为低电平了。

因此我们可以使⽤轮询的⽅式查看这些端⼝的电平情况来检测按钮是否被按下,如果按下,则我们可以进⾏计数等控制其他元件的操作。

按键控制⼀个LED的点亮和熄灭我们希望当点击按键时,第⼀个LED点亮,⽽在此单击时则熄灭。

按照之前的思路,我们很容易就能写出对应的控制代码:sbit OneLED = P2^0; // 使⽤OneLED来控制对应的引脚的输出sbit k1 = P3^1;void keypros() {if (k1 == 0) {deley(1000); // 消抖if (k1 == 0) {OneLED = ~OneLED;}while (!k1);}}int main() {while (1) {keypros();}}重要的是keypros()函数中的内容,当我们点击第⼀个按钮时,k1的值会变为0,因此我们进⾏轮询的时候就会进⼊到keypros()函数的第⼀个if中。

单片机按键处理技巧及C语言编程方式

单片机按键处理技巧及C语言编程方式

单片机按键处理技巧及编程方式在基于单片机为核心构成的应用系统中,用户输入是必不可少的一部分。

输入可以分很多种情况,譬如有的系统支持PS2键盘的接口,有的系统输入是基于编码器,有的系统输入是基于串口或者USB或者其它输入通道等等。

在各种输入途径中,更常见的是,基于单个按键或者由单个键盘按照一定排列构成的矩阵键盘(行列键盘)。

我们这一篇章主要讨论的对象就是基于单个按键的程序设计,以及矩阵键盘的程序编写。

按键检测的原理: 它们和我们的单片机系统的I/O口连接一般如下:对于单片机I/O内部有上拉电阻的微控制器而言,还可以省掉外部的那个上拉电阻。

简单分析一下按键检测的原理。

当按键没有按下的时候,单片机I/O通过上拉电阻R接到VCC,我们在程序中读取该I/O的电平的时候,其值为1(高电平); 当按键S按下的时候,该I/O被短接到GND,在程序中读取该I/O的电平的时候,其值为0(低电平) 。

这样,按键的按下与否,就和与该按键相连的I/O的电平的变化相对应起来。

结论:我们在程序中通过检测到该I/O 口电平的变化与否,即可以知道按键是否被按下,从而做出相应的响应。

一切看起来很美好,是这样的吗?在我们通过上面的按键检测原理得出上述的结论的时候,那就是现实中按键按下时候的电平变化状态。

我们的结论是基于理想的情况得出来的,而实际中,由于按键的弹片接触的时候,并不是一接触就紧紧的闭合,它还存在一定的抖动,尽管这个时间非常的短暂,但是对于我们执行时间以us为计算单位的微控制器来说,它太漫长了。

因而,实际的波形图应该如下面这幅示意图一样。

这样便存在这样一个问题。

假设我们的系统有这样功能需求:在检测到按键按下的时候,将某个I/O的状态取反。

由于这种抖动的存在,使得我们的微控制器误以为是多次按键的按下,从而将某个I/O的状态不断取反,这并不是我们想要的效果,假如该I/O控制着系统中某个重要的执行的部件,那结果更不是我们所期待的。

51单片机-独立按键

51单片机-独立按键
单片机对按键动作的识别有两种方式:
查询方式
单片机不断的扫描键盘判断按键是否动作 特点:硬件简单,但需要单片出中断请求,单片机响应中断请求后转按键 识别程序
特点:硬件复杂,需要中断电路,但不占用CPU资源
单片机处理按键的流程
单片机处理按键动作需要以下步骤:
按键识别
单片机在识别按键时,IO口工作在输入状态:
按键弹起,IO口电平5V
Vcc
按键按下,IO口电平0V
单片机读取IO口的状态
即可知按键的状态
单片机
按键抖动
实际的按键在被按下或抬起时,由于机械 触点的弹性作用,在闭合或断开的瞬间均伴随有 一连串的抖动现象。
理想波形
实际波形
按下抖动
稳定闭合
释放抖动
完整的按键过程包括: 1. 释放状态 2. 按下抖动阶段 3. 完全按下状态 4. 释放抖动阶段 5. 释放状态
按键防抖
防抖措施:
硬件防抖
在按键输出端加RS或施密特触发器 去抖效果好、电路复杂、成本高
软件防抖
利用软件进行延时(10ms) 电路简单、成本低、但占用CPU时间
键盘的工作方式
判断按键是否按下 按键按下时的防抖 识别哪个按键按下,判断键值 判断按键是否放开 送出键值,处理按键动作
练习:单片机按键查询操作,8个按键对应8个LED灯, K1对应D1,K2对应D2,K3对应D3,……,查询按键, 按下某一个按键后对应的LED亮起,再按一次关闭。

韦东山单片机独立按键程序

韦东山单片机独立按键程序

韦东山单片机独立按键程序
按键分类与输入原理按键按照结构原理科分为两类,一类是触
点式开关按键,如机械式开关、导电橡胶式开关灯;另一类是无触点式开关按键,如电气式按键,磁感应按键等。

前者造价低,后者寿命长。

目前,微机系统中最常见的是触点式开关按键。

在单片机应用系统中,除了复位按键有专门的复位电路及专一的复位功能外,其他按键都是以开关状态来设置控制功能或输入数据的。

当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能,键信息输入时与软件结构密切相关的过程。

对于一组
键或一个键盘,总有一个接口电路与CPU相连。

CPU可以采用查询或中断方式了解有无将按键输入,并检查是哪一个按键按下,将该键号送人累加器,然后通过跳转指令转入执行该键的功能程序,执行完成后再返回主程序。

按键结构与特点微机键盘通常使用机械触点式按键开关,其主
要功能式把机械上的通断转换为电气上的逻辑关系。

也就是说,它能提供标准的TTL逻辑电平,以便于通用数字系统的逻辑电平相容。

机械式按键再按下或释放时,由于机械弹性作用的影响,通常伴随有一定的时间触点机械抖动,然后其触点才稳定下来。

抖动时间的长短与开关的机械特性有关,一般为5-10ms。

在触点抖动期间检测按键的
通与断,可能导致判断出错,即按键一次按下或释放错误的被认为是多次操作,这种情况是不允许出现的。

为了克服你、按键触点机械抖动所致的检测误判,必须采取消抖措施。

按键较少时,可采用硬件消
抖;按键较多式,采用软件消抖。

单片机键盘输入编程(C语言)

单片机键盘输入编程(C语言)

学习过单片机技术的人都知道,单片机的按键输入一般可分为简单的独立式按键输入及行列式键盘输入两种。

图1为简单的独立式键盘输入示意图,独立式键盘输入适合于按键输入不多的情况(<5个按键),具有占用口线较少、软件编写简单容易等特点。

图2为行列式键盘输入示意图,列线接P1.0~P1.3,行线接P1.4~P1.7。

行列式键盘输入适合于按键输入多的情况,如有16个按键输入,用简单按键输入用要占用2个输入口(共16位),而使用行列式键盘输入只需占用一个输入口(8位)。

但行列式键盘输入软件编写较复杂,对初学者而言有一定的难度。

以上略谈了一下按键输入的情况。

在很多状态下,按键输入的值要同时要在LED数码管上显示出来。

如一个按键设计为输入递增(加法)键,可以设计成每点按一下,数值递增加1,同时在LED数码管上显示出来;也可设计成持续按下时,数值以一定时间间隔(如0.3秒)累加。

但是当欲输入值较大时(如三位LED数码管作输入显示时的输入值最大为999),则可能按下键的时间太长(最长达300秒),看来这种方式只适用于一位或至多两位数值(最大99)的输入。

当然你也可多设几个键,每个键只负责一位数值的输入,但这样会占用较多的口线,浪费宝贵的硬件资源。

大家可能见到过,一些进口的温度控制器(如日本RKC INSTRUMENT INC. 生产的REX_C700温控器)的面板设计为:温度测量值用4位LED数码管显示,输入设定值显示也用4位LED数码管,输入按键只有4个,一个为“模式设定键”,一个为“左移键”,另两个为“加法键”、“减法键”。

欲输入设定值(温控值)时,按一下“模式设定键”,程序进入设定状态,此时输入设定值显示的4位LED数码管中,个位显示最亮(稳定显示),而十、百、千位显示较暗(有闪烁感),说明可对个位进行输入。

按下“加法键”或“减法键”,即可输入个位数的值;点按一下“左移键”,变为十位显示最亮,而个、百、千位显示较暗,说明可对十位进行输入。

51单片机独立按键去抖动程序

51单片机独立按键去抖动程序
delay(1000);
if(!key4)
{
P0=0x66;//数码管显示"4"
}
}
}
}
{
P2=0x00;
while(1)
{
if(!key1)
{ //按下相应的按键,数码管显示相应的码值
delay(1000);
if(!key1)
{
P0=0x06;//数码管显示"1"
}
}
if(!key2)
{ //按下相应的按键,数码管显示相应的码值
delay(1000);//去抖动
if(!key2) //检测按键确实按下,进行按键处理
{
P0=0x5B;//数码管显示"2"
//这里可以添加按键按下所需要的操作,如数据加减乘除,蜂鸣器等设备开关
}
}
if(!key3)
{ //按下相应的按键,数码管显示相应的码值
delay(1000);
if(!key3)
{
P0=0x4F;//数码管显示"3"
}
}
if(!key4)
{ //按下相应的按键,数码管显示相应的码值
内容:切换到独立按键模式,通过按键在数码管显示对应的数字
------------------------------------------------*/
#include<reg52.h> //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义
sbit key1=P3^0; //定义按键位置
sbit key2=P3^1;
sbit key3=P3^2;
sbit key4=P3^3;

51单片机:独立按键与矩阵按键控制数码管

51单片机:独立按键与矩阵按键控制数码管

51单⽚机:独⽴按键与矩阵按键控制数码管⼀,独⽴按键注意⼀下⼏点>按下的时候,电压被拉低,所以IO⼝要传低电平( 0x0 )>按下的时候要消除抖动 ( 延时10ms ),在判断,是否还是低电平,再做业务处理下⾯这段程序,就是通过⼀个独⽴按键连接到p1⼝,控制静态数码管的⼀段进⾏亮和灭的切换。

#include <reg52.h>sbit key_control = P1^0;sbit led = P0^0;typedef unsigned char u8;typedef unsigned int u16;void delay( u16 i ){while( i-- );}void key_press(){if( key_control == 0x0 ) {delay( 1110 );if( key_control == 0x0 ){led = ~led;}while( !key_control );}}void main (){/*while( 1 ){if( key_control == 0x0 ) {delay( 1110 ); //⼤概10msif ( key_control == 0x0 ) {led = 1;}}else if( key_control == 0x1 ) {delay( 1110 );if ( key_control == 0x1 ) {led = 0;}}}*/led = 0;while( 1 ) {key_press();}}⼆,当按键⽐较多的时候,⽤矩阵按钮,因为如果不⽤矩阵按钮,⼀个独⽴按键需要⼀个IO⼝,浪费资源。

如: 16个独⽴按键需要16个io⼝,⽽16个矩阵按键(4x4,⼀共8个管脚)需要8个IO⼝下⾯的程序,通过16个矩阵按钮,控制静态数码管,显⽰0~F#include <reg52.h>#define GPIO_DIG P0 //段选数码管#define GPIO_KEY P1 //矩阵按键typedef unsigned char u8;typedef unsigned int u16;void delay( u16 i ){while( i-- );}u8 key_value;//静态数码管段码u8 character [16] = { 0xC0, 0xF9 , 0xA4 , 0xB0 , 0x99 , 0x92,0x82 , 0xF8 , 0x80 , 0x90 , 0x88 , 0x83,0xC6 , 0xA1 , 0x86 , 0x8E};void key_down(){u8 count = 0;//⾏列扫描判断哪个键被按下GPIO_KEY = 0x0F; //⾼四位全部输出低电平,低四位输出⾼电平-->判断被按下的按钮所在的列if( GPIO_KEY != 0x0F ) { //有按键按下delay( 1110 ); //消除抖动if( GPIO_KEY != 0x0F ){switch( GPIO_KEY ){case0x07:key_value = 0; //矩阵第1列的按钮被按下break;case0x0B:key_value = 1; //矩阵第2列的按钮被按下break;case0x0D:key_value = 2; //矩阵第3列的按钮被按下break;case0x0E:key_value = 3; //矩阵第4列的按钮被按下break;}GPIO_KEY = 0xF0; //⾼四位输出⾼电平,低四位输出低电平-->判断被按下的按钮所在的⾏switch( GPIO_KEY ){case0x70:key_value = key_value; //矩阵第1⾏的按钮被按下break;case0xB0:key_value = key_value + 4; //矩阵第2⾏的按钮被按下break;case0xD0:key_value = key_value + 8; //矩阵第3⾏的按钮被按下break;case0xE0:key_value = key_value + 12; //矩阵第4⾏的按钮被按下break;}GPIO_DIG = character[key_value];//如果⼀直按下按键,等待500ms,强制退出while( ( count < 50 ) && ( GPIO_KEY != 0xF0 ) ) {count++;}}}}void main (){while( 1 ) {key_down();}}。

51单片机独立按键控制八路LED亮灭程序代码

51单片机独立按键控制八路LED亮灭程序代码

//51单片机独立按键控制八路LED灯亮灭程序代码//#include <reg51.h> //调用头文件unsigned int count,count1; //定义两个int类型的变量sbit key=P3^5; //定义按键接入串口sbit key1=P3^4; //定义按键接入串口//以下是一个延时函数,便于后面程序按键的消抖,除了这个用途外,延时函数还有很多用途......//void delay(unsigned int ms){while(ms--);}//以下是一个声明的按键检测函数,在这个函数中通过count及count1两个变量的值来确定按键按下LED的亮灭,我这用了两个按键,不同按键控制LED从不同方向一次点亮,函数中采用了if语句与switch语句相结合,这是关键所在。

//void keysan(){if(key==0){delay(10);if(key==0){count++;switch(count){case 0:P1=0xff;break;case 1:P1=0xfe;break;case 2:P1=0xfd;break;case 3:P1=0xfb;break;case 4:P1=0xf7;break;case 5:P1=0xef;break;case 6:P1=0xdf;break;case 7:P1=0xbf;break;case 8:P1=0x7f;break;case 9:P1=0xff;break;}if(count>=9){count=0;}while(!key);}}delay(10);if(key1==0){delay(10);if(key1==0){count1++;switch(count1){case 0:P1=0xff;break; case 1:P1=0x7f;break; case 2:P1=0xbf;break; case 3:P1=0xdf;break; case 4:P1=0xef;break; case 5:P1=0xf7;break; case 6:P1=0xfb;break; case 7:P1=0xfd;break; case 8:P1=0xfe;break; case 9:P1=0xff;break; }if(count1>=9){count1=0;}while(!key1);}}}void main(){while(1){keysan();}}。

实验二独立按键试验实验报告

实验二独立按键试验实验报告

实验二独立按键试验实验报告
一、实验目的
独立按键试验是为了验证按键与单片机的连接是否正常,并测试按键
功能是否正常,通过实验掌握按键接口的使用和按键的原理。

二、实验原理
在实际应用中,常常需要使用按键来实现硬件的控制。

按键的原理是:当按键关闭时,两个按键引脚之间短接,按键关闭。

当按键打开时,两个
按键引脚之间断开,按键打开。

三、实验仪器
1.单片机开发板
2.按键
3.面包板和杜邦线
4.电源线
四、实验步骤
1.将按键连接到单片机开发板上的按键接口,并接通电源。

2.编写程序,监测按键是否被按下,并通过串口输出按键的状态。

3.烧录程序到单片机,运行程序。

4.进行按键试验。

五、实验结果与分析
按下按键后,通过监测按键引脚的电平变化,可以判断按键是否被按下。

根据不同的按键连接方式,可能需要使用上拉电阻或下拉电阻来连接按键。

六、实验结论
通过独立按键试验,我们验证了按键与单片机的连接是否正确,并测试了按键的功能。

在实际应用中,可以根据需要使用按键来实现硬件的控制。

七、实验心得
通过本次实验,我掌握了按键接口的使用方法和按键的原理。

在实际应用中,按键是一个常用的控制元件,有了这次实验的经验,以后在使用按键时会更加得心应手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按键1八个灯闪烁,按键2蜂鸣器响
ORG 0000H
KEY: CLR P1.0
CLR P1.1
CLR P0.4 ;蜂鸣器不响
CLR P1.2
ORL P3, #0FH ;置P3.0~P3.3为输入状态
MOV A,P3 ; 读键值,键闭合相应位为0
CPL A ;取反,键闭合相应位为1
ANL A, #00001111B ;屏蔽高4位,保留有键值信息的低4位
JZ KEY ;全0,无键闭合,返回
LCALL DEL10S ;非全0,有键闭合,延时10 ms,软件去抖动
MOV A, P3 ;重读键值,键闭合相应位为0
CPL A ;取反,键闭合相应位为1
ANL A, #00001111B ;屏蔽高5位,保留有键值信息的低3位
JZ KEY ;全0,无键闭合,返回;非全0,确认有键闭合
JB Acc.0, KA0 ; 转0#键功能程序
JB Acc.1, KA1 ;转1#键功能程序
SJMP KEY
KA0: SETB P1.0
MOV A,#0FCH;
K0: MOV P0, A
RL A
LCALL DEL20S
SJMP K0
KA1: SETB P1.2
K1: SETB P0.4
LCALL DEL20S
CLR P0.4
SJMP K1
DEL10S: MOV R7 ,#40H
DEL21: MOV R6, #0FFH
DJNZ R6 ,$
DJNZ R7,DEL21
RET
DEL20S: MOV R5,#100; 100×40×250=1s
D10: MOV R6,#40
D20: MOV R7,#250
DJNZ R7,$
DJNZ R6,D20
DJNZ R5,D10
RET
END
ORG 0000H
KEY: CLR P1.0
CLR P1.1
CLR P0.4 ;蜂鸣器不响
CLR P1.2
ORL P3, #03H ;置P3.0~P3.3为输入状态MOV A,P3 ; 读键值,键闭合相应位为0 JNB Acc.0, KA0 ; 转0#键功能程序JNB Acc.1, KA1 ;转1#键功能程序SJMP KEY
KA0: SETB P1.0
MOV A,#0FCH;
K0: MOV P0, A
RL A
LCALL DEL20S
SJMP K0
KA1: SETB P1.2
K1: SETB P0.4
LCALL DEL20S
CLR P0.4
LCALL DEL20S
LCALL DEL20S
SJMP K1
DEL10S: MOV R7 ,#40H
DEL21: MOV R6, #0FFH
DJNZ R6 ,$
DJNZ R7,DEL21
RET
DEL20S: MOV R5,#60; 100×40×250=1s
D10: MOV R6,#40
D20: MOV R7,#250
DJNZ R7,$
DJNZ R6,D20
DJNZ R5,D10
RET
END。

相关文档
最新文档