第12章 一次函数单位测试卷+答案

合集下载

八年级数学下册《一次函数》单元测试卷(附带答案)

八年级数学下册《一次函数》单元测试卷(附带答案)

八年级数学下册《一次函数》单元测试卷(附带答案)一.选择题(每题3分,共30分)1现有变量x和y的四个关系式:y=|x|,|y|=x,y2=2x,y=2x2,其中y是x的函数的有()A.1个B.2个C.3个D.4个2下列各图象不表示函数的是()A.B.C.D.3.下列函数中,是正比例函数的是()A.y=﹣x﹣1B.C.y=﹣x+2D.y=5x24.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.5.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距A地18千米的B地,他们离开A地的距离S(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据题目和图象所提供的信息,下列说法正确的是()A .乙比甲先到达B 地 B .乙在行驶过程中没有追上甲C .乙比甲早出发半小时D .甲的行驶速度比乙的行驶速度快6.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k≤3 C .0≤k<3 D .0<k<3 7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位 C .向上平移53个单位 D .向下平移53个单位 8.经过一、二、四象限的函数是 A.y=7 B.y=-2xC.y=7-2xD.y=-2x -79. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )10. 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是( ) A .⑴B .⑶C .⑴⑶D .⑴⑵⑶二、填空题(每题3分,共30分)11. 直线2(2)y x =-可以由直线2y x =向 平移 个单位得到的.12. 若一次函数2(1)12k y k =-+-的图象不经过第一象限,则k 的取值范围是 .13. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.14.直线y =kx +b 的上有两点A (﹣1,0)、B (2,1),则此直线的解析式为 . 14.一次函数y =(m +2)x +1若y 随x 的增大而增大,则m 的取值范围是___________. 15.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的 不等式0ax b +<的解集是 .16.直线12+-=x y 关于y 轴对称的直线的解析式_________.17.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是 .18某地出租车计费方法如图,x (km )表示行驶里程,y (元)表示车费,请根据图象解答下列问题:(1)该出租车的起步价是 元;(2)当x >2时,写出y 与x 的关系式 .甲 乙 丙60506543201211020时间(小时)时间(小时)时间(小时)出水量(立方米)进水量(立方米)O O O(3)小强有一次乘出租车的里程为18km,则他应付出租车车费为.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.如图,在平面直角坐标系中,一次函数y=﹣2x+1的图象与x轴、y轴分别交于A、B两点.(1)求A、B两点的坐标.(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.20.如图,直线y=kx+b分别交x轴于点A(4,0),交y轴于点B(0,8).(1)求直线AB的函数表达式;(2)若点P(2,m),点Q(n,2)是直线AB上两点,求线段PQ的长.21.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?22.如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?23.在抗击“新冠肺炎”工作中,某医院研制了一种防治“新冠肺炎”的新药,在试验药效时发现,如果成人按规定的剂量服用,那么服药后2小时血液中含药量最高,达每毫升8微克(1微克毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,当成人按剂量服药后. (1)分别求出和时与之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时对治病是有效的,那么这个有效时间是多长?310-=y x 2x ≤2x >yx24.某品牌包子铺出售两种包子:肉馅包子每个卖3元,素馅包子每个卖1元,春节来临之际,为酬谢新老客户,同时也为扩大店面影响,老板制定了两种让利方案. 甲方案:买一个肉馅包子就免费送一个素馅包子; 乙方案:均按八折出售.小马家筹备年货,计划在该店买20个肉馅包子,x (x 20)个素馅包子.(1)分别写出小马家按两种方案购买所需的费用y(元)与x (个)之间的函数关系式; (2)若小马家预计买肉馅包子20个,素馅包子30个,设按甲方案买n 个肉馅包子,余下的按乙方案购买,如何购买才能使老板让利最多?并求出让利的金额。

沪科版八年级数学上《第12章一次函数》单元测试含答案解析

沪科版八年级数学上《第12章一次函数》单元测试含答案解析

《第12章一次函数》一.填空题1.关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx﹣1.12.函数y=2x﹣4,当x ,y<0.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .14.已知函数y=(m﹣1)+1是一次函数,则m= .15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>020.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.321.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>222.下列关系式中,表示y是x的正比例函数的是()A.y= B.y=1 C.y=x+1 D.y=2x23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2) D.(2,0)24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.三、解答题.26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.28.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.29.如图,lA ,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0<x≤4时,y与x的函数关系式是什么?(3)4<x≤12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?《第12章一次函数》参考答案与试题解析一.填空题1.关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【解答】解:∵在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,∴点A关于x轴对称的点的坐标是(﹣3,﹣4),∵关于y轴对称时,横坐标为相反数,纵坐标不变,∴点A关于y轴对称的点的坐标是(3,4),∵关于原点对称时,横纵坐标都为相反数,∴点A关于原点对称的点的坐标是(3,﹣4).故答案为:(﹣3,﹣4),(3,4),(3,﹣4).【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.【考点】勾股定理;点的坐标.【分析】根据坐标的表示方法可得到点A到x轴的距离为2,到y轴的距离为5,然后根据勾股定理计算点A到原点的距离.【解答】解:∵点A坐标为(﹣5,﹣2),∴点A到x轴的距离为2,到y轴的距离为5,到原点的距离==.故答案为2,5,.【点评】本题考查了点的坐标:过一个点分别作x轴和y轴的垂线,垂足在x轴的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标.也考查了勾股定理.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.【考点】直线与圆的位置关系;坐标与图形性质.【分析】根据A的坐标和半径即可求出圆和x轴的交点坐标,根据勾股定理求出OD、OE,即可求出圆和y 轴的交点坐标.【解答】解:∵⊙A的半径为5,A(3,0),∴5﹣3=2,5+3=8,即⊙A和x轴的交点坐标为(﹣2,0)和(8,0);连接AD、AE,由勾股定理得:OD==4,同理OE=4,即⊙A和y轴的交点坐标为(0,4)和(0,﹣4);故答案为:(﹣2,0)或(8,0);(0,4)或(0,﹣4).【点评】本题考查了直线与圆的位置关系,坐标与图形性质,勾股定理的应用,题目比较好,难度不大.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可.【解答】解:∵点P(a﹣3,5﹣a)在第一象限内,∴,解不等式①得,a>3,解不等式②得,a<5,所以,a的取值范围是3<a<5.故答案为:3<a<5.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.【考点】根据实际问题列一次函数关系式.【专题】经济问题.【分析】剩余的钱数=总钱数500﹣x件这种商品的总价格,根据x应是正整数,且商品的总价不能超过500可得x的取值范围.【解答】解:x件这种商品的总价格为3x,∴y=500﹣3x,∵500﹣3x≥0,解得x≤166,∴0≤x≤166,且x为整数.故答案为:y=500﹣3x;0≤x≤166,且x为整数.【点评】本题考查了列一次函数关系式,得到剩余的钱数的等量关系是解决本题的关键;注意商品的件数应为正整数;所买商品的总价钱不能超过所带的总钱数.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.【考点】一次函数的性质.【专题】开放型.【分析】根据题意可知k<0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出.【解答】解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.【考点】一次函数图象与系数的关系.【分析】根据一次函数y=(k﹣1)x+k+1的图象经过第一、二、四象限判断出k的取值范围即可;求得直线y=﹣2x+4与坐标轴的交点坐标即可求得围成的三角形的面积.【解答】解:∵一次函数y=(k﹣1)x+k+1经过一、二、四象限,∴k﹣1<0,k+1>0,解得:﹣1<k<1;∵函数y=﹣2x+4中﹣2<0,4>0,∴函数y=﹣2x+4的图象经过一、二、四象限,∵令y=﹣2x+4=0,解得:x=2,∴与x轴交于(2,0),令x=0,解得:y=4,故与y轴交于(0,4),∴与两坐标轴围成的面积为×2×4=4,故答案为:﹣1<k<1,一、二、四,4.【点评】考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .【考点】待定系数法求一次函数解析式.【分析】将(1,5),(0,3)代入一次函数的解析式,利用待定系数法求该函数的解析式的系数.【解答】解:∵一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),∴,解得.故答案为:2,3.【点评】本题考查了待定系数法求一次函数的解析式.9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .【考点】一次函数图象上点的坐标特征.【分析】直接把点(m,m+3)代入直线y=﹣x+2进行计算即可.【解答】解:∵点(m,m+3)在函数y=﹣x+2的图象上,∴m+3=﹣m+2,解得m=﹣.故答案为:﹣.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】因为y与3x成正比例,所以可设y=k•3x即y=3kx,又因为当x=8时,y=﹣12,则有﹣12=3×8×k.从而可求出k的值,进而解决问题.【解答】解:∵y与3x成正比例∴设y=k•3x即y=3kx又∵当x=8时,y=﹣12∴﹣12=3×8×k∴k=﹣∴y与x的函数解析式为y=﹣x.【点评】此类题目可根据题意,利用待定系数法建立函数关系式,然后利用方程解决问题.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx﹣1.【考点】一次函数的性质.【分析】把x=2代入y=﹣x得到y=﹣2,然后根据一次函数性质确定直线y=﹣x所经过的象限和增减性.【解答】解:函数y=﹣x的图象是一条过原点及(2,﹣2)的直线,这条直线经过第二、四象限,当x增大时,y随之减小.故答案为﹣2;二、四;减小.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.12.函数y=2x﹣4,当x ,y<0.【考点】一次函数与一元一次不等式.【分析】求出一次函数与x轴的交点,然后根据k>0,y随x的增大而增大解答即可.【解答】解:当y=0时,2x﹣4=0,解得x=2,∵k=2>0,∴y随x的增大而增大,∴当x<2时,y<0.故答案为:<2.【点评】本题考查了一次函数的增减性,熟记一次函数y=kx+b,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小是解题的关键.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .【考点】一次函数图象上点的坐标特征.【分析】先令x=0,求出y的值,再令y=0求出x的值即可得出直线与坐标轴的交点,再利用三角形的面积公式求解即可.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣,∴函数y=4x+b与xy轴的交点分别为(﹣,0)(0,b).∵函数y=4x+b的图象与两坐标轴围成的三角形面积为6,∴|b|•|﹣|=6,解得b=±4.故答案为:±4.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.已知函数y=(m﹣1)+1是一次函数,则m= .【考点】一次函数的定义.【专题】计算题.【分析】根据一次函数的定义,令m2=1,m﹣1≠0即可解答.【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.【考点】一次函数的应用.【分析】通话时间小于3分钟时,需付0.7元,故小文打了2分钟,需付费0.7;通过A点和B点坐标分别为(3,0.7)和(4,1)用待定系数法列方程,求函数关系式.再将x=8代入得出y.【解答】解:根据图形可知,当通话时间小于3分钟时,需付电话费话0.7元.故小文打了2分钟,需付费0.7元.设需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=kx+b.因为点A(3,0.7)和点B(4,1)都在y=kx+b上,代入得:0.7=3k+b,1=4k+b.解得:k=0.3,b=﹣0.2.故需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=0.3x﹣0.2 (x≥3).当x=8时,y=0.3×8﹣0.2=2.4﹣0.2=2.2(元).【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.【考点】一次函数的性质.【专题】开放型.【分析】要使一次函数的图象经过第二、三、四象限,又知b<0,故只需k<0即可.【解答】解:因为要使函数图象经过第二、三、四象限,必须k<0,b<0,而y=kx﹣1中,b=﹣1<0,所以只需添加条件k<0即可.故答案为:k<0【点评】能够根据k,b的符号正确判断直线所经过的象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数【考点】一次函数的定义;正比例函数的定义.【专题】常规题型.【分析】根据一次函数和正比例函数的定义条件判断各选项即可.【解答】解:A、正比例函数是一次函数,故本选项正确;B、一次函数不一定是正比例函数,故本选项错误;C、正比例函数是一次函数,故本选项错误;D、不是正比例函数有可能是一次函数,如y=x+1,故本选项错误.故选A.【点评】本题主要考查了一次函数和正比例函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k ≠0,自变量次数为1;正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径【考点】正比例函数的定义.【专题】常规题型.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、正方形的面积=边长的平方,故本选项错误;B、变量x增加,变量y也随之增加,如y=2x,但不是正比例函数,故本选项错误;C、矩形的一组对边的边长固定,则另一组对边的边长也固定,其周长也一定,故本选项错误;D、圆的周长=2π×半径,符合正比例函数的定义,故本选项正确.故选D.【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>0【考点】一次函数图象与系数的关系.【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.20.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.3【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=0,y=2代入所给函数解析式,得到关于m的方程,求解即可,注意x的系数应不为0.【解答】解:∵y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),∴m2﹣m﹣4=2,解得m=﹣2或3,∵m+2≠0,解得m≠﹣2,∴m=3,故选D.【点评】考查一次函数图象上的点的坐标的特点;用到的知识点为:点在函数解析式上,点的横纵坐标适合该函数解析式.注意一次函数中的比例系数应不为0.21.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>2【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的性质横坐标互为相反数,纵坐标相等,进而求出点A(2﹣a,1﹣2a)关于y轴的对称点,再利用第三象限点的性质,即可得出答案.【解答】解:∵点A(2﹣a,1﹣2a)关于y轴的对称点为:(a﹣2,1﹣2a),且此点在第三象限,∴解得:.故选:C.【点评】此题主要考查了关于y轴对称点的性质以及一元一次不等式组的解法,得出关于a的不等式组是解题关键.22.下列关系式中,表示y是x的正比例函数的是()A.y= B.y=1 C.y=x+1 D.y=2x【考点】正比例函数的定义.【分析】根据形如y=kx (k是常数,k≠0)是正比例函数,可得答案.【解答】解:A、是反比例函数,故A错误;B、是常函数,故B错误;C、是一次函数,故C错误;D、是正比例函数,故正确;故选:D.【点评】本题考查了正比例函数,利用了正比例函数的定义.23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2) D.(2,0)【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题,解方程组的解即为两直线的交点坐标.【解答】解:解方程组得,所以直线y=4x﹣2与y=﹣4x﹣2的交点坐标为(0,﹣2).故选B.【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质求解.【解答】解:∵k<0,b>0,∴直线经过第一、二、四象限.故选C.【点评】掌握根据k,b的符号正确判断一次函数图象经过的象限.25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【考点】一次函数的图象.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选A.【点评】本题考查了一次函数的性质,根据图象能正确判断一次项系数以及常数项的符号;根据符号判断判断图经过的象限.三、解答题.26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据一次函数图象过A(﹣1,3)和点B(2,﹣3),然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式;(2)把)把x=﹣2代入y=﹣2x+1,得出y的值,和C的纵坐标进行比较即可判断.【解答】解:(1)设直线AB的函数解析式为y=kx+b(k、b为常数且k≠0)∵一次函数的图象经过点A(﹣1,3)和点(2,﹣3),∴解得.∴直线AB的函数解析式为y=﹣2x+1.(2)把x=﹣2代入y=﹣2x+1,得y=﹣2×(﹣2)+1=5,所以点C(﹣2,5)在该函数图象上.【点评】本题综合考查了待定系数法求一次函数的解析式、一次函数图象上的点的坐标特征.解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.【考点】两条直线相交或平行问题.【分析】(1)根据x轴上点的坐标特征把y=0分别代入y=x+1和y=﹣2x+2,求出对应的自变量的值即可得到A和B点坐标;通过解方程组可确定P点坐标;(2)利用三角形面积公式计算.【解答】解:(1)把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,);=×(1+1)×=.(2)S△PAB【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.28.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】(1)根据正比例函数的定义可设y﹣3=k(3x+1),再把x=2,y=6.5代入可计算出k=,则y=x+,然后根据一次函数的定义进行判断;(2)根据一次函数图形上点的坐标特征,把(a,2)代入(1)中的解析式中即可得到a的值.【解答】解:(1)设y﹣3=k(3x+1),把x=2,y=6.5代入得6.5﹣3=k(6+1),解得k=,所以y﹣3=(3x+1),所以y=x+,y是x的一次函数;(2)把(a,2)代入y=x+得a+=2,解得a=﹣1.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.29.如图,lA ,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)【考点】一次函数的应用.【分析】(1)从图上可看出B出发时与A相距10千米;(2)从图象看出3小时时,两个图象相交,所以3小时时相遇;(3)修理的时间就是路程不变的时间是1.5﹣0.5=1小时;(4)不发生故障时,B的行走的路程和时间是正比例关系,设函数式为y=kx,过(0.5,7.5)点,求出函数式,从而求出相遇的时间,从而求出路程;(5)S和t的函数关系是一次函数,设函数是为S=kx+t,过(0,10)和(3,22.5),从而可求出关系式.【解答】解:(1)B出发时与A相距10千米.(2)3小时时相遇.(3)修理自行车的时间为:1.5﹣05=1小时.(4)设B修车前的关系式为:y=kx,过(0.5,7.5)点.7.5=0.5kk=15.y=15x.相遇时:S=yx+10=15xx=.y=×15=.小时时相遇,此时B走的路程是千米.(5)设函数是为S=kx+t,且过(0,10)和(3,22.5),,解得.∴S=x+10.【点评】本题考查一次函数的应用,关键从图象上获取信息,根据图象的确定函数形式,设出函数式,代入已知点确定函数式,求变量或函数值或交点.30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0<x≤4时,y与x的函数关系式是什么?(3)4<x≤12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?【考点】一次函数的应用.【专题】数形结合.【分析】(1)根据等量关系:水量=单位时间内进水量×时间,可得出每分钟进水多少.(2)设出x、y的关系式,把(4,20)代入求出即可.(3)设出x、y的关系式,把(4,20)(12,30)代入求出即可.(4)根据等量关系:放水量=单位时间放水量×时间,代入求出即可.【解答】解:(1)如图:当x=4时,y=20∴每分钟进水量是:20÷4=5(升)(2)y与x的函数关系式是y=kx,把(4,20)代入得20=4k,解得:k=5,∴y与x的函数关系式是y=5x(0<x≤4)(3)设y与x的函数关系式是y=kx+b,把(4,20)(12,30)代入得∴k=,b=15∴y与x的函数关系式是y=x+15(4<x≤12)精品Word 可修改欢迎下载(4)由图知:当4<x≤12时,进水量是5×8=40(升),放水量是40﹣10=30(升),∴每分钟放水量是:30÷8=3.75(升)【点评】本题重点考查了一次函数图象和实际应用相结合的问题.能够根据题意中的等量关系建立函数关系式,能够根据函数解析式求得对应的x的值,渗透了函数与方程的思想.31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?【考点】一次函数的应用.【专题】图表型.【分析】因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图象可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方.利用图象,三个问题很容易解答.【解答】解:(1)每月行驶的路程小于1500千米时,租国营公司的车合算;(2)每月行驶的路程等于1500千米时,租两家车的费用相同;(3)每月行驶的路程为2300千米时,那么这个单位租私营车主的车合算.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.。

八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册第12章一次函数单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1. 司机王师傅到加油站加油,如图是所用的加油机上的数据显示牌,其中的常量是()(第1题)A.金额B.数量C.单价D.金额和数量2.下列不能表示y是x的函数的是()A. B.C.D.y=2x+13.函数y=x+1x中的自变量x的取值范围是()A.x>0 B.x≥-1C.x>0且x≠-1 D.x≥-1且x≠04.某登山队大本营所在地的气温为5 ℃,海拔每升高1 km气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温为y℃,则y与x的函数关系式为()A.y=5+6x B.y=5-6x C.y=5-x6D.y=5-6 x5.要得到函数y=3x+5的图象,只需将函数y=3x的图象() A.向左平移5个单位B.向右平移5个单位C.向下平移5个单位D.向上平移5个单位6.点A(-2,y1),B(-1,y2)都在直线y=-x+b上,则y1与y2的大小关系为()A.y1=y2B.y1>y2 C.y1<y2D.不能确定7.下列关于一次函数y=-4x-8的说法中,正确的是()A.该函数图象不经过第三象限B.该函数图象经过点(2,0)C.该函数值y随x的增大而增大D.该函数图象与坐标轴围成的三角形面积为88.已知直线y=kx+b不经过第二象限,那么k,b的取值范围分别是() A.k>0,b<0 B.k<0,b<0 C.k>0,b≤0 D.k<0,b≤0 9.若直线y=-x+m与直线y=2x+4的交点在第二象限,则m的取值范围是()A.-2<m<4 B.-2<m<3 C.-1<m<3 D.1<m<4 10.如图,在长方形OABC中,已知B(8,6), 动点P从点A出发,沿A-B -C-O的路线匀速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()(第10题) (第12题) (第13题) 二、填空题(本大题共4小题,每小题5分,满分20分)11.若正比例函数y=(m-1)x的图象从左到右逐渐上升,则m的取值范围是______________.12.如图,一次函数y=kx+b与y=-x+4的图象相交于点P(m,1),则关于x,y的二元一次方程组{x+y=4,kx-y+b=0的解是____________.13.李老师开车从甲地到相距240 km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________L.14.已知一次函数y=ax+8-2a(a为常数,且a≠0).(1)若该一次函数图象经过点(-1,2),则a=________;(2)当-2≤x≤5时,y有最大值11,则a的值为________.三、(本大题共2小题,每小题8分,满分16分)15.小明从家出发骑单车去上学,他骑了一段路时想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校,如图是他本次上学离家距离s(m)与所用的时间t(min)的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________m,本次上学途中,小明一共行驶了________m.(2)小明在书店停留了________min,本次上学,小明一共用了________min.(3)在整个上学的途中哪个时间段小明骑车速度最快?最快的速度是多少?(第15题)16.已知y与3x-2成正比例,且当x=2时,y=8.(1)求y与x的函数关系式;(2)求当x=-2时,y的值.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=2kx+b的图象与直线y=-3x-7平行,且经过点(2,-11).(1)求一次函数y=2kx+b的表达式;(2)判断点A ⎝ ⎛⎭⎪⎫16,-112是否在一次函数y =2kx +b 的图象上.18.水是生命之源,节约用水是每位公民应尽的义务.水龙头关闭不严会造成滴水,为了调查漏水量V (mL)与漏水时间t (min)的关系,某同学在滴水的水龙头下放置了一个能显示水量的容器,每5 min 记录一次容器中的水量,如下表:漏水时间t /min 0 5 10 15 20 … 漏水量V /mL255075100…(1)请在图中描出以表中数据为坐标的各点;(2)根据(1)中各点的分布规律,求出V 关于t 的函数表达式; (3)请估算这种漏水状态下一天的漏水量.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.如图,直线l 2:y =kx +b 与x 轴交于点A ,且经过点B (3,1),直线l 1:y =2x -2与l 2交于点C (m ,2). (1)求m 的值;(2)求直线l2的表达式;(3)根据图象,直接写出关于x的不等式组1<kx+b<2x-2的解集.(第19题)20.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮一年内来此游泳馆游泳的次数为x,选择方式一的总费用为y1元,选择方式二的总费用为y2元.(1)请分别写出y1,y2与x之间的函数表达式;(2)请根据小亮一年内的游泳次数确定选择哪种方式比较划算;(3)若小亮计划拿出1 400元用于一年内在此游泳馆游泳,采用哪种方式比较划算?六、(本题满分12分)21.如图,直线l 1的表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A (4,0),B ⎝ ⎛⎭⎪⎫3,-32,直线l 1,l 2交于点C .(1)点D的坐标为________,直线l 2的表达式为_____________________________________________; (2)求三角形ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得三角形ADP 与三角形ADC 的面积相等,请直接写出点P 的坐标.(第21题)七、(本题满分12分)22.某商店购进A ,B 两种礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该商店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15 000元,求最大利润;(3)在(2)的条件下,该商店对A 种礼盒以每个优惠m (0<m <20)元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且m -n =4,若最大利润为4 900元,请直接..写出m 的值.八、(本题满分14分)23.甲、乙两车分别从相距480 km的A,B两地相向而行,乙车比甲车先出发1 h,并以各自的速度匀速行驶,途经C地,甲车到达C地后停留1 h,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车到各自出发地的距离y(km)与甲车出发后所用的时间x(h)之间的关系如图,结合图象信息解答下列问题.(1)乙车的速度是________km/h,t=________,a=________;(2)求甲车到它出发地的距离y(km)与它出发后所用的时间x(h)之间的函数表达式,并写出自变量x的取值范围;(3)求乙车出发多久后两车相距120 km.(第23题)答案一、1.C 2.A 3.D 4.B 5.D 6.B 7.D 8.C 9.A 10.C二、11.m >1 12.⎩⎨⎧x =3,y =113.2014.(1)2 (2)1或-34 点拨:当a >0时,y 随x 增大而增大,则当x =5时,y有最大值,所以5a +8-2a =11,解得a =1;当a <0时,y 随x 增大而减小,则当x =-2时,y 有最大值,所以-2a +8-2a =11,解得a =-34.综上所述,a 的值为1或-34.三、15.解:(1)1 500;2 700 (2)4;14(3)折回之前的速度为1 200÷6=200(m/min),折回去书店时的速度为(1 200-600)÷(8-6)=300(m/min),买书后从书店到学校的速度为(1 500-600)÷(14-12)=450(m/min),经过比较可知,小明在买书后从书店到学校的时间段速度最快,最快的速度是450 m/min.16.解:(1)由题意知,y 与3x -2成正比例,则设出关系式为y =k (3x -2)(k ≠0),把x =2,y =8代入,得8=k (3×2-2),所以k =2.所以y 与x 之间的函数关系式为y =2(3x -2)=6x -4.(2)把x =-2代入y =6x -4,得y =6×(-2)-4=-16. 四、17.解:(1)由题意可知⎩⎨⎧2k =-3,4k +b =-11,所以⎩⎨⎧2k =-3,b =-5.所以所求一次函数的表达式为y =-3x -5. (2)当x =16时,y =-3x -5=-112.所以点A ⎝ ⎛⎭⎪⎫16,-112在此一次函数的图象上.18.解:(1)如图所示.(第18题)(2)根据(1)中各点的分布规律,可知V 是关于t 的正比例函数,设所求函数表达式为V =kt (k ≠0).因为当t =5时,V =25,所以5k =25,解得k =5.所以V 关于t 的函数表达式为V =5t .(3)由(2)可知,在这种状态下一天的漏水量为5×60×24=7 200(mL). 五、19.解:(1)把C (m ,2)的坐标代入y =2x -2,得2m -2=2,解得m =2.(2)把C (2,2),B (3,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =2,3k +b =1,解得⎩⎨⎧k =-1,b =4,所以直线l 2的表达式为y =-x +4. (3)解集是2<x <3.20.解:(1)y 1=30x +200,y 2=40x .(2)当y 1<y 2,即30x +200<40x 时,解得x >20,所以当小亮一年内的游泳次数大于20时,选择方式一比较划算;当y 1=y 2,即30x +200=40x 时,解得x =20,所以当小亮一年内的游泳次数等于20时,选择两种方式的总费用相同;当y 1>y 2,即30x +200>40x 时,解得x <20,所以当小亮一年内的游泳次数小于20时,选择方式二比较划算.(3)当y 1=1 400时,1 400=30x +200,解得x =40;当y 2=1 400时,1 400=40x ,解得x =35,40>35,故采用方式一比较划算. 六、21.解:(1)(1,0);y =32x -6(2)解⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,得⎩⎨⎧x =2,y =-3,所以C (2,-3).因为AD =4-1=3,所以S 三角形ADC =12×3×|-3|=92. (3)P (6,3).七、22.解:(1)根据题意得,购进A 种礼盒x 个,且x ≥60,则购进B 种礼盒(100-x )个,且100-x >0,故y =(220-160)x +(160-120)(100-x ),整理得,y =20x +4 000.故y 与x 之间的函数关系式为y =20x +4 000(60≤x <100).(2)根据题意得,160x +120(100-x )≤15 000,整理得,x ≤75,故60≤x ≤75,因为y =20x +4 000,且20>0,所以y 随着x 的增大而增大,所以当x =75时,y 取得最大值,此时y =20×75+4 000=5 500.所以最大利润为5 500元. (3)m =10.八、23.解:(1)60;3;7(2)①当0≤x ≤3时,设y =k 1x ,把点(3,360)的坐标代入,可得3k 1=360,解得k 1=120,所以y =120x . ②当3<x ≤4时,y =360.③当4<x ≤7时,设y =k 2x +b ,把点(4,360)和(7,0)的坐标分别代入,可得⎩⎨⎧4k 2+b =360,7k 2+b =0,解得⎩⎨⎧k 2=-120,b =840, 所以y =-120x +840.综上可得,y =⎩⎨⎧120x (0≤x ≤3),360(3<x ≤4),-120x +840(4<x ≤7).(3)①当甲车朝B 地,乙车朝A 地行驶时,(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(h).②当甲车停留在C 地时,(480-360+120)÷60=240÷60=4(h).③两车都朝A 地行驶时,设乙车出发m h 后两车相距120 km ,则60m -{480-[-120(m -1)+840]}=120, 解得m =6.综上可得,乙车出发83h ,4 h ,6 h 后两车相距120 km.。

完整版沪科版八年级上册数学第12章 一次函数含答案

完整版沪科版八年级上册数学第12章 一次函数含答案

沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、将直线y= -3x+5向上平移2个单位后得到的直线表达式是()A.y= -3x+2B.y= -3x-2C.y= -3x+7D.y= -3x-72、同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣23、y=kx+(k-3)的图象不可能是()A. B. C. D.4、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-25、若正比例函数的图象经过点(-1,2),则这个图象必经过点()A. B. C. D.6、已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示:则不等式kx+b<bx+k的解集为()A. x>1B. x<1C. x>0D. x<07、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C. D.8、港口依次在同一条直线上,甲、乙两艘船同时分别从两港出发,匀速驶向港,甲、乙两船与港的距离(海里)与行驶时间(小时)之间的函数关系如图所示,则下列说法正确的有()① 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达港时,乙船还需要一个小时才到达港⑤点的坐标为A.1个B.2个C.3个D.4个9、已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-1B.0C.2D.任意实数10、在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直11、若直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A. B. C. 或 D.12、已知点A(1,y1),B(-3,y2)都在直线上,则()A.y1< y2B.y1=y2C.y1>y2D.不能比较13、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-214、如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A. B. C. D.15、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A. B. C. D.二、填空题(共10题,共计30分)16、已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移________个单位长度得到的.17、直线与两坐标轴围成的三角形的面积为4,则b的值为________.18、已知一次函数y=kx-2的图象上有两个点P(x1, y1),Q(x2, y2)如果x1>x2, y1<y2,则k________0.19、若函数y= 有意义,则自变量x的取值范围是________.20、函数y=中自变量x的取值范围是________ .21、如图图像反映的过程是:小明从家跑到体育馆,在那里锻炼了﹣阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是________分钟.22、如图,直线与轴交于点,以为斜边在轴上方作等腰直角,将沿轴向右平移,当点中点落在直线上时,则平移的距离是________.23、直线与平行,且经过(2,1),则+=________。

沪科版八年级上册数学第12章 一次函数含答案

沪科版八年级上册数学第12章 一次函数含答案

沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、如图,射线l是下列哪个函数的图象A. B. C. D.2、下列函数中,y一定随x的增大而减小的是()A.y=-5x 2(x>1)B.y=-2+3xC.D.3、将直线y=x﹣1向右平移3个单位,所得直线是()A.y=x+2B.y=x﹣4C.y=x﹣D.y=x+4、如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.5、如图,正方形ABCD的边长为5,P为DC上一点,设DP=x,△APD的面积为y,关于y与x的函数关系式为:y=x,则自变量的取值范围为()A.0<x<5B.0<x≤5C.x<5D.x>06、点A(1,m)在函数y=2x的图象上,则m的值是()A.1B.2C.D.07、抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y= 在同一平面直角坐标系内的图象大致为()A. B. C.D.8、函数y=kx+b(k≠0)的图象如图所示,则函数y=kx-b的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限9、一次函数y=kx+b与y=x+2的图象相交于如图点P(m, 4),则关于x,y的二元一次方程组的解是()A. B. C. D.10、下列函数中y既不是x的正比例函数,也不是反比例函数的是()A. B. C. D.11、如图,在平面直角坐标系中,若在直线上存在点满足,则的取值范围是()A. B. C.D.12、已知点 P(x,y)在函数的图象上,那么点 P 应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限13、当前,雾霞严重.治理雾蹬方法之一是将已生产的PM2.5吸纳降解.研究表明:雾霞的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.城市中心立体绿化面积B.PM2.5C.雾霾D.雾霾程度14、一次函数y=﹣x+2图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限15、已知一次函数y=kx+b的图象如图所示,则当0<x<1时,y的取值范围是()A.y>0B.y<0C.-2<y<0D.y<-2二、填空题(共10题,共计30分)16、函数y=-x+4经过的象限是________.17、如图,直线y= x与双曲线y= (x>0)交于点A,将直线y= x向下平移个6单位后,与双曲线y= (x>0)交于点B,与x轴交于点C,则C点的坐标为________;若=2,则k=________.18、如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为________.19、已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=________.20、如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,且,C为线段上一点,,若M为y轴上一点,且,设直线与直线相交于点N,则的长为________.21、若y=是正比例函数,则m=________22、从﹣2,﹣1,0,1,2,3,4这7个数中任选一个数作为a的值,则使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是________.23、点和点在直线上,则m与n的大小关系是________.24、函数的自变量x的取值范围是________.25、已知下列函数:①y=﹣2x;②y=x2+1;③y=﹣0.5x﹣1.其中是一次函数的有________(填序号).三、解答题(共5题,共计25分)26、已知,当时,;当时,. 求出k,b 的值;27、已知一次函数的图象经过点(-3,5) 和(5,9),求这个一次函数的表达式.28、已知二次函y=x2+px+q图象的顶点M为直线y=x+与y=﹣x+m﹣1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=x+的值均随x的增大而增大,求m的取值范围(3)若m=6,当x取值为t﹣1≤x≤t+3时,二次函数y=2,求t的取值范最小值围.29、利用一次函数的图象解二元一次方程组:.30、正方形的边长是 2cm,设它的边长增加 x cm时,正方形的面积增加 y cm2,求y与x之间的函数关系.参考答案一、单选题(共15题,共计45分)1、B3、C4、B5、B6、B7、B8、C9、D10、C11、D12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

一次函数_单元测试含答案

一次函数_单元测试含答案

二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。

4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。

12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。

沪科版八年级上册数学第12章 一次函数 含答案

沪科版八年级上册数学第12章 一次函数 含答案

沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD和正方形EFOG是位似图形,其中点A与点E对应,点A 的坐标为(-4,2)点E的坐标为(-1,1),则这两个正方形位似中心的坐标为()A.(2,0)B.(1,1)C.(-2,0)D.(-1,0)2、如图,直线经过点,则不等式的解集为()A. B. C. D.3、如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,5)两点,则不等式-kx-b<0的解集为()A. x>-3B. x<-3C. x>3D. x<34、骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温5、函数y=中,自变量x的取值范围是()A.x>3B.x<3C.x=3D.x≠36、函数y=中自变量x的取值范围为()A.x≥0B.x≥﹣2C.x≥2D.x≤﹣27、如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元 C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元8、函数y=的自变量x取值范围是()A.x≠2B.x≥2C.x≥2且x≠1D.x≥1且x≠29、正比例函数y=kx(k≠0)的图像经过第二、四象限,则一次函数y=x+k的图像大致是( )A. B. C. D.10、若式子有意义,则一次函数的图象可能是()A. B. C. D.11、在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值是()A. B. C. D.212、数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=1513、一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<014、在平面直角坐标系中,将直线沿坐标轴方向平移后,得到直线与关于坐标原点中心对称,则下列平移作法正确的是()A.将向右平移4个单位长度B.将向左平移6个单位长度C.将向上平移6个单位长度D.将向上平移4个单位长度15、如图,直线与轴交于点,与直线交于点,则关于的不等式组的解为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为________.(写出一个即可)17、一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.18、一条笔直的公路上依次有A,B,C三地,甲,乙两人同时从A地出发,甲先使用共享单车,经过B地到达停车点C地后再步行返回B地,此时直接步行的乙也恰好到达B地.已知两人步行速度相同,两人离起点A的距离y(米)关于时间x(分)的函数关系如图,则________.19、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是________20、若一次函数y=(3a﹣2)x+6随着x的增大而增大,则a的取值范围是________.21、一次函数y=﹣6x+5的图象可由正比例函数________的图象向上平移5个单位长度得到.22、已知直线y=kx+b与直线y= x﹣1平行,且经过点(0,3),那么该直线的表达式是________23、直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(-3,0),且两直线与y轴围成的三角形面积为15,那么b1-b2等于________.24、如图,一次函数的y=kx+b图象经过A(2,4)、B(0,2)两点,与x轴交于点C,则ΔAOC的面积为________.25、已知正比例函数y=2x的图象过点(x1, y1)、(x2, y2).若x2﹣x 1=1,则y2﹣y1=________.三、解答题(共5题,共计25分)26、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.27、某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式.乙种收费的函数关系式.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?28、如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q 的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x (秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.29、已知一次函数的图象过(1,5),(2,−1),求一次函数关系的解析式.30、某公司销售一种进价为20 (元/个)的计算器,其销售量y (万个)与销售价格x (元/个)之间为一次函数关系,其变化如下表:价格x (元/…30 50 …个)… 5 3 …销售量y (万个)同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)参考答案一、单选题(共15题,共计45分)2、D3、A4、A5、D6、C7、C8、D9、B10、A11、B12、A13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、29、。

沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)

沪科版数学八年级上册  第十二章 一次函数 单元测试(含答案)

第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。

沪科版八年级数学上册《第十二章一次函数》单元测试卷(带答案)

沪科版八年级数学上册《第十二章一次函数》单元测试卷(带答案)

沪科版八年级数学上册《第十二章一次函数》单元测试卷(带答案)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列各图中反映了变量y是x的函数是( )A. B. C. D.2.下列变量间的关系,不是函数关系的是( )A. 长方形的宽一定,其长与面积B. 正方形的面积与周长C. 等腰三角形的面积与底边长D. 圆的周长与半径3.若函数y=(m−1)x|m|+2是一次函数,则m的值为( )A. 1B. −1C. ±1D. 2x−2.其中属于一次函数的是( )4.有下列函数: ①y=−2x; ②y=−3x2+1; ③y=13A. ① ②B. ① ③C. ② ③D. ① ② ③5.已知一次函数y=(2+m)x+m2−4的图象过原点,则m的值为( )A. 0B. 2C. −1D. ±26.如果点A(m+1,n−1),B(m−1,n+5)均在一次函数y=kx+b(k≠0)的图像上,那么k的值为( )A. 2B. 3C. −3D. −27.一次函数y=kx+b的图象与直线y=2x+3平行,且与y轴的交点为(0,2),则一次函数的表达式为( )A. y=2x+3B. y=2x+2C. y=−2x+3D. y=−2x+28.已知一次函数y=kx+b的图象与直线y=−5x+1平行,且过点(2,1),那么此一次函数的解析式为( )A. y=−5x−2B. y=−5x−6C. y=−5x+10D. y=−5x+119.如图,一次函数y=kx+b与y=bx+k在同一坐标系中的图像大致是( )A. B. C. D.10.如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,−8),则关于x的不等式3x+1<mx+n 的解集为( )A. x >−3B. x <−3C. x <−8D. x >−811.如图,直线y =kx +b 交x 轴于点A(−2,0),直线y =mx +n 交x 轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组{kx +b <0mx +n >0的解集为( )A. x <5B. x <−2C. −2<x <5D. −2<x <112.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是( ) A. 整个进行过程花了40分钟 B. 整个进行过程共跑了2700米 C. 在途中停下来休息了5分钟D. 返回时休息后的速度比去的时候的速度小60米/分 二、填空题(本大题共8小题,共24.0分) 13.函数y =23x−3自变量x 的取值范围______ . 14.已知变量x 与y 的四种关系: ①y =|x|; ②|y|=x; ③2x 2−y =0; ④x +y 2=1.其中y 是x 的函数的有 个.15.已知点P(3,a),Q(b,1)都在y =x −1的图象上,则a +b = . 16.如图所示的程序图,当输入x =2时,输出的结果y = .(16题) (20题) 17.若一次函数y =(2k −1)x +k 的图象不经过第三象限,则k 的取值范围是________. 18.对于一次函数y =kx +b ,当1≤x ≤4时3≤y ≤6,则一次函数的解析式为______. 19.若直线y =kx −6与坐标轴围成的三角形面积为9,则k = .20.如图,函数y=2x和y=ax+4图象相交于点A(m,3),则关于x,y的方程组的解为______ .三、解答题(本大题共5小题,共60分。

沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案

沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案

沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.直线y =3x -1与y =x+3的交点坐标是 ( ) A .(2,5)B .(1,4)C .(-2,1)D .(-3,0)2.如图,已知函数y =ax -3和y =kx 的图象交于点P(2,-1),则关于x ,y 的方程组3y ax y kx =-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩3.无论实数m 为何值,直线y x m =-与直线23y x =-+的交点都不可能出现在平面直角坐标系中的( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积( ) A .4B .6C .8D .35.一次函数()50y kx k =+≠的图象与正比例函数()0y mx m =≠的图象都经过点(-3,2),则方程组5y kx y mx =+⎧⎨=⎩的解为( ) A .32x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .23x y =⎧⎨=-⎩D .32x y =-⎧⎨=⎩6.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫ ⎪⎝⎭B .1731,33⎛⎫ ⎪⎝⎭C .()2,8D .()4,127.如图,一次函数y kx b =+的图象与x 轴交于点()2,0,与1y x =+的图象交于点()1,2P ,则下列说法正确的是( )A .关于x ,y 的方程组1y x y kx b =+⎧⎨=+⎩的解是1,2x y =⎧⎨=⎩ B .方程0kx b +=的解是2x =- C .方程1kx b x +=+的解是2x = D .不等式1kx b x +<+的解集是1x <8.函数y kx =与1y x =-的图象交点坐标为()2,a ,则关于x ,y 的方程组01kx y x y -=⎧⎨-=⎩的解为( )A .23x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .33x y =⎧⎨=⎩9.《九章算术》中记载了如何用算筹来表示二元一次方程组的解法,可以用图象法来解方程组.如图,一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .32x y =-⎧⎨=-⎩B .2,3x y =⎧⎨=-⎩C .3,2x y =⎧⎨=⎩D .3,2x y =-⎧⎨=⎩10.若用图象法解二元一次方程组y kx by mx n =+⎧⎨=+⎩时所画的图象如图所示,则该方程组的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .22x y =⎧⎨=⎩二、填空题11.若直线y =x +h 与y =2x +3的交点在第二象限,则h 的取值范围是 .12.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c =+⎧⎨=+⎩的解为 .13.直线13y ax =+与2y x b =-+的图象如图所示,则方程组3y ax y x b =+⎧⎨=-+⎩的解是 .14.已知32x y =⎧⎨=-⎩和21x y =⎧⎨=⎩是二元一次方程3ax by +=-的两个解.则一次函数y ax b =+的图象与y 轴交点坐标是 .15.两条直线y=11k x b +和y=22k x b +相交于点A(-2,3),则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是16.在平面直角坐标系内,若两条直线1:2l y x =--和2:2l y x b =-的交点在第三象限的角平分线上,则b 的值为 .17.若直线2y x =-向上平移a 个单位后,与直线1y x =+的交点在第一象限,则符合条件的a 值可以是 .(写出满足题意的一个值)18.已知直线1l :y 3x b =-+与直线2l :y kx 1=+在同一坐标系中的图象交于点()1,2-,那么方程组3x y by kx 1+=⎧-=⎨⎩的解是 .19.如图,函数y ax =和y kx b =+的图象相交于点()21A -,,可知关于x 的不等式ax kx b <+的解集为2x >-,那么关于x 、y 的二元一次方程组00ax y kx y b -=⎧⎨-+=⎩的解为 .20.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 .三、解答题21.已知学校、文具店、图书馆依次在同一条直线上,学校离图书馆2300m ,文具店离图书馆1800m .某天小华步行从学校出发去图书馆,当他匀速走了12min 后,想起要去买彩笔,于是按原路匀速返回,走了8min到达刚经过的文具店,在文具店停留了10min ,买彩笔后,匀速走了18min 到达图书馆.下面图中x 表示时间,y 表示离图书馆的距离.图像反映了这个过程中小华离图书馆的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (1)△填表:小华离开学校的时间/min 6 10 20 26 小华离图书馆的距离/m18501800△填空:学校到文具店的距离为______m ;小华从文具店出发到图书馆的速度为______m /min . △当2048x ≤≤时,请直接写出小华离图书馆的距离y 关于时间x 的函数解析式;(2)有同学小强与小华同时从学校出发去图书馆,小强匀速走了46min 到达图书馆,那么小强去图书馆的途中遇到小华时离图书馆的距离是多少?(直接写出结果即可)22.临汾市某公园翻修后,推出了游船项目,为大众提供了一个可以玩桌游、商业等活动的场合.这个项目有甲、乙两种消费卡,已知甲、乙两种消费卡的费用y (元)与消费次数x (次)的函数关系如图所示.根据图中信息,解答下列问题:(1)分别求出选择甲、乙两种消费卡y关于x的函数解析式;(2)点B的坐标为______,点B表示的实际意义为____________.23.2024年4月18日,西安市教育局召开全市践行“三个课堂”现场推进会.为了加强“三个课堂”建设,使“立德树人”在课堂深耕厚植,某校建成了一处劳动实践基地,计划将其全部用来种植蔬菜.经调查发现,某种蔬菜的种植成本y(元/平方米)与其种植面积x(平方米)之间的函数关系如图所示,请根据图中信息,解答下列问题:(1)请求出图中AB段y与x之间的函数关系式;(2)当这种蔬菜每平方米的种植成本不超过26元时,种植蔬菜的面积最大为多少平方米?24.某校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购买两种篮球共需费用840元. (1)A 、B 两种篮球共需单价各多少元?(2)设购买A 种篮球x 个且A 种篮球不少于8个,所需费用为y 元,试确定y 与x 的关系式.25.一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 和2y 关于x 的函数图像如图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数图像关系式; (2)试计算:何时两车相距300千米?参考答案1.A2.A 3.C 4.A 5.D 6.A 7.A 8.B 9.D 10.A 11.32<h <312.13x y =⎧⎨=⎩13.21x y =-⎧⎨=⎩14.30,7⎛⎫- ⎪⎝⎭15.16.-117.2(答案不唯一) 18.{x 1y 2==- 19.21x y =-⎧⎨=⎩20.321.(1)△1550,1800;△500,100;△()()1800203010048003048x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩(2)1550m22.(1)20y x =甲 10100y x =+乙(2)()10,200;当消费10次时,两种消费卡消费一样,都是200元23.(1)图中AB段y与x之间的函数关系式为1625y x=+(2)种植蔬菜的面积最大为500平方米24.(1)A种篮球每个50元,B种篮球每个30元;(2)y=20x+600(8≤x≤20)25.(1)1100(08)y x x=≤≤2160800y x=-+(05)x≤≤(2)2513h或5513h。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≥2B.x≠2C.x>2D.x≤22、已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个3、已知y=kx+k的图象与y=x的图象平行,则y=kx+k的大致图象为()A. B. C. D.4、在平面直角坐标系中,将直线 y=3x 的图像向左平移 m 个单位,使其与直线 y=-x+6 的交点在第二象限,则 m 的取值范围是()A.m>2B.-6<m<2C.m>6D.m<65、下列图象中,不表示y是x的函数的是()A. B. C. D.6、如图,直线与x轴交于点,与y轴交于点,则关于x的不等式的解集为()A. B. C. D.7、一个长方体木箱的长为4㎝,宽为,高为宽的2倍,则这个长方体的表面积S与的关系及长方体的体积V与的关系分别是()A. ,B. ,C. ,D. ,8、表示皮球从高处d落下时,弹跳高度b与下落高度d的关系如下表所示:则d与b之间的关系式为()下落高度d …80 100 150 …弹跳高度b …40 50 75 …A.d=b 2B.d=2bC.d=b+40D.d= b9、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-310、点在函数的图像上,则代数式的值等于()A.5B.3&nbsp;C.-3D.-111、如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数y= 的图象一定在()。

A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限12、在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限13、已知(-1,y1),(1.8,y2),(- , y3)是直线 y = -3x + m (m 为常数)上的三个点,则 y1, y2, y3的大小关系是( )A.y3>y1>y2B.y1>y3>y2C.y1>y2>y3D.y3>y2>y114、函数y= 中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣315、张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是()A. B. C. D.二、填空题(共10题,共计30分)16、把直线向下平移________个单位得到直线.17、周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18、某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5kgA原料、1.5kgB原料;乙产品每袋含2kgA原料、1kgB原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为________元.19、甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确序号是________.20、函数中,自变量x的取值范围是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期单元检测卷第12章 一次函数(数学考试时间:90分钟 满分:120分)学校: 班级: 姓名:一、选择题 (本大题共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案填涂在答题卡上.) 1、下列各图中,不能表示y 是x 函数是( )2、下列函数,y 是x 的一次函数的是( ) A.6y x=B. y 1007x =-+C. 2y 2x =D. y 3=+ 3、如果217y (4)m m x -=+是正比例函数,那么m 的值是( )A. 4B.-4 C .±4 D.以上都不对 4、直线y 63x =-在y 轴上的截距是( )A. 3B.-6 C .-3 D.6 5、关于x 的一次函数2y (1)m x m =+-的图像可能是( )6、直线y3x =-向上平移a 个单位长度后,与直线y 36x =-+的交点在第二象限,则a 的取值范围是( )A. a>6B.1<a<6C . 2<a<9 D. a>9ABCDA B C D 数学·八年级(上册) 第1页 (共4页)7、关于一次函数y 32x =-+,下列结论正确的是( )A. 图象经过一、三、四象限B. y 随x 的增大而增大C . 图象必经过点(-2,2) D. 当x<0时,y>2 8、如图,直线AB 对应的函数表达式是()A.3y 62x =-+B.3y 62x =+C. 2y 63x =-+D.2y 63x=+9、已知3x =是方程60x m +=的解,则y 6x m =+一定经过点( ) A.(0,3)B.(-3,0)C.(0,-3)D.(3,0) 10、如图,已知函数1y 23x =-+和2y 4x =-的图象相交于一点P ,且P 点横坐标为73,则不等式234x x -+<-的解集为( ) A. 73x > B. 3x < C. 27x > D. 73x <11、小刚给手机卡充值30元话费,若通话时每分钟的话费是0.5元,则手机卡上的余额y(元)与通话时间x (分钟)之间的函数图象是( )12、某农作物种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打6折,设购买种子数量为x 千克,付款金额为y 元,则y 与x 的函数关系的图象大致是( )ニ、填空题(本大题共6小题,每小题3分,共18分.)13、已知2y 2m 3)mx -=-(是正比例函数且图象经过第二、四象限,则m 的值为 .14、将直线y 2x =-向右平移3个单位,并向下平移5个单位,则得到的这条直线的函数表达式为第10题图 第8题图 ACB DABCD数学·八年级(上册) 第2页 (共4页)15、若一次函数22(7)53y k x k=-+-的图象不经过第四象限,则k的取值范围是.16、已知直线y(23)8m x m=-++与直线1y64x=-+都与y轴相交点M,则这条直线的函数表达式为.17、已知点(2m,3)在连接点(0,6)和点(-2,0)的线段上,则m的值为.18、在函数6y(1)(3)x x=-+中,自变量x的取值范围是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19、(本题满分6分)已知正比例函数y k x=的图象经过点(2,6)-.(1)求这个函数的解析式;(2)在图中画出这个函数的图象;(3)判断点A(2,-8),点5(,5)3B-是否在这个函数的图象上.20、(本题满分6分)已知一次函数y(23)5m x m=-+-+,y随x的增大而减小,函数的图象与y轴正半轴相交,求m的取值范围.21、(本题满分6分)已知直线y k x b=+经过点(2,5)-和(6,3)-,求这条直线的函数表达式.22、(本题满分6分)已知:函数y(13)27m x m=-+-.(1)若函数图象过点(2,-3),求此函数的解析式.(2)当x=6时,求y值.(3)若函数图象与直线3y34x=-+平行,求函数的解析式.数学·八年级(上册)第3页(共4页)23、(本题满分8分)已知函数1y 6x =-+和2y 32x =-.(1)请在同一直角坐标系中画出两个函数的图象.(2)求出这两个函数图象的交点坐标. (3)观察图象,当x 取何值时,12y y <?24、(本题满分10分)市自来水公司为鼓励居民节约用水,采取每月用水量分段收费的办法,每户居民应交水费y (元)与用水量x (吨)之间的函数如图所示.(1)分别求出当015x ≤≤和15x >时,y 关于x 的函数解析式;(2)若有一用户在某月的用水量为21吨,则应交水费多少元?25、(本题满分12分)已知某种鞋子的鞋码(码)和鞋子的长度(cm )之间存在一种换算关系如下:(1)通过画图、观察,猜想上表鞋码与鞋长之间的关系符合你学过的哪种函数?简单说明你猜想的过程;(2)设鞋子长为x(cm),鞋子和鞋码为y (码),求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26.5cm ,那么应该购买多大码的该种鞋子? 26、(本题满分12分)市教育局在全市中小学推广某学校“品格教育”科研成果,其中“敬老孝亲”是“品格教育”的亮点之一.重阳节(农历九月初九)快到了,某校八年级(1)班班委发起为老人们献上真挚的节日祝福活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.5元买进鲜花,并按每支4.5元卖出. (1)求同学们卖出鲜花的销售额y (元)与销售量x(支)之间的函数关系式;(2)已知从花店购买鲜花时,还用去了40元购买包装材料,求所筹集慰问金w (元)与销售量x (支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?39.5 27 15 20 第24题图 数学·八年级(上册) 第4页 (共4页)第12章一次函数单元测试答案一、选择题:1、B2、B3、A4、C5、B6、D7、D8、B9、D 10、A 11、A 12、B二、填空题:13、m=-214、21y x=-+15、107 3k≤<16、76y x=-+17、12 m=-18、31x x>-≠且三、解答题:19、解:(1)依题意得,-2k=6,∴k=-3∴这个正比例函数的解析式为y=-3x.(2)图象略(3)点5(,5)3B-在这个函数图象上,但点A(2,-8)不在这个函数的图象上.20、解:依题意,得-2m3050m+<⎧⎨-+>⎩,解得35.2m<<21、解:∵直线y k x b=+经过点(2,5)-和(6,3)-∴有2563k bk b-+=⎧⎨+=-⎩解得13kb=-⎧⎨=⎩所以这条直线的函数表达式为y=-x+3. 22、解:(1)依题意,得-3=(1-3m)×2+2m-7∴得12 m=-所以这个函数的解析式为183y x=-(2)当x=6时,则168 6.3y=⨯-=-(3)依题意,得3134m -=-∴得712m =所以此时函数的解析式为335.46y x =--23.解:(1)如图,过点(0,6),(6,0)作直线得函数1y 6x =-+的图象;过点(0,-2),(23,0)作直线得函数(2)解方程组6032=0x x -+=⎧⎨-⎩解得2.4x y =⎧⎨=⎩所以两图象交点坐标为(2,4)(3)当x>2时,12y y <.24、解:(1)当015x ≤≤时,函数图象过点(0,0),(15,27),则此函数的解析式为9.5y x =当x>15时,设一次函数关系式为y kx b =+,且图象过点(15,27),(20,39.5),有15272039.5k b k b +=⎧⎨+=⎩ 解得 2.510.5k b =⎧⎨=-⎩则此函数的解析式为 2.5-10.5y x =所以y 关于x 的函数解析式为9,015;52.5-10.5,15.y x x y x x ⎧=≤≤⎪⎨⎪=>⎩ (2)依题意得,当x=21时,则 2.52110.542.y =⨯-= 该用户本月应交的水费为42元.25、解:(1)以鞋长数据为自变量x ,鞋码对应数据为函数值y ,作如图,由图可知,这些点大致分布在一条直线附近, 所以鞋码与鞋长之间的关系为一次函数的关系.(2)由(1)可知,y 与x 为一次函数关系,设一次 函数关系式为y kx b =+,将x=15,y=20; x=18,y=26;代入y kx b =+,得15201826k b k b +=⎧⎨+=⎩,解得,2,10.k b =⎧⎨=-⎩所以y 与x 的一次函数解析式为210.y x =- (3)当x=26.5时,226.51043.y =⨯-=所以你需要的鞋长为26.5cm ,那么应该购买43码的该种鞋子.26.解:(1)依题意,得销售额y (元)与销售量x(支)之间的函数关系式为y=4.5x. (2) 筹集慰问金w (元)与销售量x (支)之间的函数关系式为 W=4.5x-1.5-40=3x-40.∵筹集的慰问金不少于500元,即w 500,≥∴3x-40500,≥ 解得x 180.≥答:要筹集不少于500元的慰问金,则至少要卖出鲜花180支.。

相关文档
最新文档