初中数学实数全章综合练习题
【3套打包】吉安市初中数学七年级下册第六章《实数》单元综合练习题及答案
人教版七年级数学下册第六章实数复习检测试题一、选择题1 、若x 是9 的算术平方根,则x 是()A 、3B 、-3C 、9D 、812 、下列说法不正确的是()A 、的平方根是B 、-9 是81 的一个平方根C 、0.2 的算术平方根是0.04D 、-27 的立方根是-33 、若的算术平方根有意义,则a 的取值范围是()A 、一切数B 、正数C 、非负数D 、非零数4 、在下列各式中正确的是()A 、=-2B 、=3C 、=8D 、=25 、估计的值在哪两个整数之间()A 、75 和77B 、6 和7C 、7 和8D 、8 和96 、下列各组数中,互为相反数的组是()A 、-2 与B 、-2 和C 、-与2D 、︱-2 ︱和27 、在-2 ,,,3.14 ,,,这6 个数中,无理数共有( )A 、4 个B 、3 个C 、2 个D 、1 个8 、下列说法正确的是()A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应9 、以下不能构成三角形边长的数组是()A 、1 ,,2B 、,,C 、3 ,4 ,5D 、3 2 ,4 2 ,5 210 、若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则-︱a -b ︱等于()A 、aB 、-aC 、2 b +aD 、2 b -a二、填空题1 、81 的平方根是__________ ,1.44 的算术平方根是__________ 。
2 、一个数的算术平方根等于它本身,则这个数应是__________ 。
3 、的绝对值是__________ 。
4 、比较大小:2 ____4 。
5 、若=5.036 ,=15.906 ,则=__________ 。
6 、若的整数部分为a ,小数部分为b ,则a =________ ,b =_______ 。
三、解答题1 、+-2 、3 、4 x 2-16 =04 、27 (x -3 )3=-645 、若5 a +1 和a -19 是数m 的平方根,求m 的值。
最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)
人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。
【3套打包】郑州市人教版初中数学七年级下册第六章《实数》单元综合练习题(解析版)
人教版七年级数学下册第六章实数单元测试题(含分析)一、 (共 10 小,每小 3 分,共 30分 )1.(-2) 2的算平方根是 ()A.-2B.±2 C . 2 D.2.察一数据,找律:0、、、、、⋯,那么第10 个数据是 ()A .B .C . 7 D.3.以下法正确的选项是 ()A . 0.25 是 0.5 的一个平方根B.正数有两个平方根,且两个平方根之和等于0C. 72的平方根是7D.数有一个平方根4.假如一个正数的平方根2a+1 和3a- 11,a= ()A .±1B .1C .2 D.95.以下法正确的选项是()A .-1 的倒数是1B.-1 的相反数是- 1C. 1 的立方根是±1D. 1 的算平方根是16.的平方根 ()A.±8B.±4C.±2 D. 47.在以下数:、、、、- 1.010 010 001 ⋯中,无理数有 ()2A.1个B.2个C.3个D. 4个8.介于以下哪两个整数之()A.0与1B.1与2C.2与3 D. 3 与 49.数-1的相反数是()A.-1-B.+1C. 1-D.-110.计算 |2-|+ | - 3|的结果为 ()A . 1B.-1C. 5-2 D.2 -5二、填空题 (共 8 小题,每题 3 分,共 24 分)11.当 m≤ ________时,存心义.12.当的值为最小值时,a=________.13.若a2= 9,则 a 3= ________.14.若 x2- 49= 0,则 x=________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为 6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,则第二个纸盒的棱长是________ cm.17.的整数部分是 ________.18.数轴上点A,点 B 分别表示实数,- 2,则A、 B 两点间的距离为________.三、解答题(共8 小题,共66 分)19.( 8 分)计算:(1)|-|+ |-1|-|3-|;(2)-++.20. ( 8 分)求知足以下等式的x 的值:(1)25 x2= 36;(2)( x- 1)2= 4.21. (6 分)我们知道:是一个无理数,它是无穷不循环小数,且1<< 2,则我们把1叫做的整数部分,-1叫做的小数部分.假如的整数部分为a,小数部分为b,求代数式a+b 的值.22. ( 6 分)已知一个正数的平方根分别是3x+2 和 4x- 9,求这个数.23.(8分)已知:|2|(c-5)2= 0,求:+-的值.a-++24. ( 8 分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求 M-N 的值.25.( 10 分)请依据如下图的对话内容回答以下问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26.( 12分)我们来看下边的两个例子: () 2= 9×4, (× )2=()2×( )2= 9×4,和×都是 9×4 的算术平方根,而9×4 的算术平方根只有一个,因此=× .()2= 5×7, ( × )2= ( )2×(7)2= 5×7,和×都是 5×7 的算术平方根,而 5×7 的算术平方根只有一个,因此__________. (填空 )(1)猜想:一般地,当 a≥0,b≥0时,与× 之间的大小关系是如何的?(2)运用以上结论,计算:的值.答案分析1.【答案】 C【分析】 (- 2)2= 4.4 的算平方根是 2.2.【答案】B【分析】0=,=,=,=,=通数据找律可知,第,=n 个数,⋯,那么第10 个数据:=.3.【答案】B【分析】 A.0.5 是 0.25 的一个平方根,故 A ;C. 72= 49,49 的平方根是±7,故 C ;D.数没有平方根,故 D .4.【答案】 C【分析】依据意得:2a+ 1+ 3a-11= 0,移归并得: 5a= 10,解得: a= 2.5.【答案】 D【分析】 A. - 1 的倒数是- 1,故;B.- 1 的相反数是1,故;C. 1 的立方根是1,故;D. 1 的算平方根是1,正确6.【答案】 C【分析】因= 4,又因 ( ±2)2= 4,因此的平方根是±2.7.【答案】 C【分析】、、-1.010 010 001⋯是无理数.28.【答案】 C【分析】因4< 5< 9,因此 2<<3.9.【答案】 C【分析】数- 1 的相反数是- (-1)=1-.10.【答案】 C【分析】原式=2-+3-=5-2.11.【答案】 3【分析】要使根式存心义,则3- m≥0,解得 m≤3.12.【答案】2【分析】由于≥0,因此的最小值为0,3a -6= 0,解得:a= 2.13.【答案】±27【分析】由于a2= 9,因此 a =±3,因此a3=±27.14.【答案】±7【分析】∵ x2- 49= 0,∴ x2= 49,∴ x=±7.15.【答案】【分析】建立方体的棱长为a,则 a3=9,因此 a =.16.【答案】 7【分析】依据题意得:=7,则第二个纸盒的棱长是7 cm.17.【答案】 4【分析】由于16< 17< 25,因此 4<<5,因此的整数部分是 4.18.【答案】 2【分析】-(-2)=2.19.【答案】解: (1)原式=-+-1-3+=2-4;(2)原式=- (- 2)+ 5+ 2= 2+ 5+2= 9.【分析】(1) 依据绝对值的意义去绝对值获得原式=-+-1-3+,而后归并即可;(2)先进行开方运算获得原式=- (- 2)+ 5+2,而后进行加法运算.20.【答案】解: (1)把系数化为1,得 x2=,开平方得,x=±6;5(2)开平方得, x-1=±2,x=±2+ 1,即 x= 3 或- 1. 【分析】 (1)先把系数化为1,再利用平方根定义解答;(2)把 x-1 看作整体,再利用平方根定义解答.21.【答案】解:由于27< 50< 64,因此3<< 4,因此的整数部分a= 3,小数部分 b=- 3.因此 a+ b= 3+- 3=.【分析】先依照立方根的性质估量出的大小,而后可求得a, b 的值,最后辈入计算即可.22.【答案】解:一个正数的平方根分别是3x+ 2 和 4x- 9,则 3x+ 2+ 4x- 9= 0,解得: x= 1,故 3x+ 2= 5,即该数为 25.【分析】利用平方根的定义直接得出x 的值,从而求出这个数.23.【答案】解:由于|a- 2|++ (c- 5)2= 0,因此a= 2, b=- 8, c= 5.因此原式=+-=- 2+ 4-5=- 3.【分析】第一依照非负数的性质求得a、 b、c 的值,而后辈入求解即可.24.【答案】解:由于M=是 m+ 3 的算术平方根,N=是 n- 2 的立方根,因此可得:m- 4= 2,2m- 4n+3= 3,解得: m= 6, n= 3,把 m= 6, n= 3 代入 m+ 3= 9, n- 2=1,因此可得M= 3,N= 1,把 M=3, N=1 代入 M-N=3- 1=2.【分析】依据算术平方根及立方根的定义,求出M、 N 的值,代入可得出M- N 的值.325.【答案】解: (1)设魔方的棱长为xcm,可得: x = 216,解得: x= 6.答:该魔方的棱长 6 cm.(2)设该长方体纸盒的长为 ycm,6y2= 600, y2= 100, y=10.答:该长方体纸盒的长为10 cm.【分析】 (1)依据立方根,即可解答;(2)依据平方根,即可解答.26.【答案】解:依据题人教版七年级数学下册第六章实数能力检测卷一.选择题(共10 小题)1.16 的平方根是()A.4B. -4C. 16 或 -16D.4 或 -42.以下各等式上当算正确的选项是()A.16 =±4B.327 =-9C.( 3)2 =-3D.9=3243.若方程(x4)2=19的两根a和b,且a>b,以下中正确的选项是()A. a 是 19 的算平方根B. b 是 19 的平方根C. a-4 是 19 的算平方根D. b+4 是 19 的平方根4.出以下法:① -2 是 4 的平方根;②9 的算平方根是9;③327 =-3;④2的平方根是2.此中正确的法有()A.0 个B.1 个C.2 个D.3 个5.假如 -b 是 a 的立方根,以下正确的选项是()A.b3 =a B. -b= a3C. b= a3D.b3 =a6.已知一个正数的两个平方根分3a-1 和 -5-a,个正数的立方根是()A. -2B. 2C. 3D.47.若一个正方形的面7,它的周介于两个相整数之,两个相整数是()A.9,10B. 10,11C. 11,12D.12,138.如,在数上表示无理数8 的点落在()A.段 AB 上B.段 BC上C.段 CD上D.段 DE 上9.已知 a、 b 均正整数,且a>, b>, a+b 的最小 ()A. 6B. 7C. 8D. 910.在数2,,,,, 0.1010010001⋯(相两个 1, 3.1415926 ,π中一次多 1 个0)中,无理数有 ()A.2 个B.3 个C.4 个D.5 个二.填空(共 6 小)11. 4 的平方根是;16的立方根是.12.非零整数x、 y 足x3y =0,写出一切合条件的x、 y 的:.13.一个正方体,它的体积是棱长为2cm 的正方体的体积的8 倍,则这个正方体的棱长是cm.14. 5x+9 的立方根是4,则15.写出一个比7 大且比2x+3 的平方根是11 小的无理数..16.数轴上从左到右挨次有A、B、C 三点表示的数分别为a、b、10,此中 b 为整数,且满足|a+3|+|b-2|=b-2,则b-a=.三.解答题(共7 小题)17.求出以下x 的值.(1)16x2-49=0;3(2)24(x-1) +3=0.18.计算3( 1)3327( 2)2|13|19.已知 |a|=5,b 2=4,c3=-8.(1)若 a<b,求 a+b 的值;(2)若 abc>0,求 a-3b-2c 的值.20.已知 a+1 的算术平方根是1,-27 的立方根是b-12,c-3 的平方根是± 2,求 a+b+c 的平方根.21.阅读资料:我们定义:假如两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对” .即:假如 a-b=a÷b,那么 a 与 b 就叫做“差商等数对”,记为 (a,b).比如:4-2=4 ÷ 2;9 3 =9÷3;221( 1)=1÷( 1);22则称数对 (4,2),9,3,11 是“差商等数对”.依据上述资料,解决以下问题:2,2(1)以下数对中,“差商等数对”是______(填序号);① (-8.1,-9),②1,1, ③(222,2)22(2)假如 (x,4)是“差商等数对”,恳求出x 的值;22.关于实数 a,我们规定:用符号[a ]表示不大于a的最大整数,称[a]为 a 的根整数,比如:[ 9]=3,[ 10]=3.(1)模仿以上方法计算:[ 4]=;[37]= .(2)若[x]=1,写出知足题意的x 的整数值人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1a C、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量28 7 的值在A. 7 和8之间B. 6 和 7 之间C. 3 和4之间D. 2 和 3 之间5、以下各组数中,不可以作为一个三角形的三边长的是()A 、 1、 1000、 1000B 、 2、 3、5C 、 32,42 ,52D 、 3 8 , 3 27 , 3 646、以下说法中,正确的个数是( )(1)- 64 的立方根是- 4;( 2)49 的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。
中考数学总复习《实数综合》专项测试卷(带参考答案)
中考数学总复习《实数综合》专项测试卷(带参考答案)(考试时间:90分钟试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题每小题3分共30分)。
1.﹣83的相反数是()A.83B.﹣38C.D.【答案】A【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解析】解:﹣83的相反数是83.故选:A.2.﹣11的相反数是()A.11B.﹣11C.D.﹣【答案】A【分析】依据相反数的定义求解即可.【解析】解:﹣11的相反数是11.故选:A.3.下列实数:﹣0.1010010001(每相邻两个1之间依次增加一个0) 3.14 中无理数的个数是()A.1个B.2个C.3个D.4个【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称.即有限小数和无限循环小数是有理数而无限不循环小数是无理数.由此即可判定选择项.【解析】解:是分数属于有理数;3.14是有限小数属于有理数;无理数有:﹣0.1010010001...(每相邻两个1之间依次增加一个0)共4个.故选:D.4.下列各组数中互为倒数的是()A.1与﹣1B.与3C.﹣5与D.﹣3与|﹣3|【答案】C【分析】根据互为倒数的定义逐项进行判断即可.【解析】解:A.因为1×(﹣1)=﹣1≠1 所以1与﹣1不是互为倒数因此选项A不符合题意;B.因为=﹣1≠1 所以与3不是互为倒数因此选项B不符合题意;C.因为所以﹣5与是互为倒数因此选项C符合题意;D.因为(﹣3)×|﹣3|=﹣9≠1 所以﹣3与|﹣3|不是互为倒数因此选项D不符合题意.故选:C.5.在数轴上与﹣3的距离等于4的点表示的数是()A.1B.﹣7C.﹣1或7D.1或﹣7【答案】D【分析】此题注意考虑两种情况:该点在﹣3的左侧该点在﹣3的右侧.【解析】解:根据数轴的意义可知在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:D.6.﹣64的立方根是()A.﹣4B.±4C.﹣8D.±8【答案】A【分析】根据立方根的定义求解即可.【解析】解:∵(﹣4)3=﹣64∴﹣64的立方根是﹣4.故选:A.7.如图是加工零件的尺寸要求现有下列直径尺寸的产品(单位:mm)其中不合格的是()A.Φ44.9B.Φ45.02C.Φ44.98D.Φ45.01【答案】A【分析】依据正负数的意义求得零件直径的合格范围然后找出不符要求的选项即可.【解析】解:∵45+0.03=45.03 45﹣0.04=44.96∴零件的直径的合格范围是:44.96≤零件的直径≤45.03∵44.9不在该范围之内∴不合格的是A故选:A.8.2023年1月22日电影《流浪地球2》上映截止北京时间2023年2月10日总票房已达38.6亿元38.6亿用科学记数法表示为()A.3.86×108B.3.86×109C.38.6×1010D.0.386×1010【答案】B【分析】把38.6亿表示为:a×10n的形式其中1≤|a|<10 n为整数即可.【解析】解:∵38.6亿=3860000000=3.86×109故选:B.9.如图所示A B C D四点在数轴上分别表示有理数a b c d则大小顺序正确的是()A.a<b<c<d B.b<a<d<c C.a<b<d<c D.d<c<b<a【答案】B【分析】根据数轴的特征:一般来说当数轴方向朝右时右边的数总比左边的数大判断出有理数a b c d的大小关系即可.【解析】解:如图∵当数轴方向朝右时右边的数总比左边的数大∴b<a<d<c.故选:B.10.形如a1a2…a n﹣1a n a n﹣1…a2a1的自然数(其中n为正整数a1≤a2≤…a n﹣1≤a n a1>0 a1a2…a n 为0 1 … 9中的数字)称为“单峰回文数” 例如123454321 不超过5位的“单峰回文数”共有()个.A.273B.219C.429D.129【答案】B【分析】根据“单峰回文数”的定义确定一位的“单峰回文数”有9个;三位的“单峰回文数”有45个;五位的“单峰回文数”有165个即可确定不超过5位的“单峰回文数”共有9+45+165=219.【解析】解:∵一位的“单峰回文数”有9个:1 2 3…9;两位的“单峰回文数”有9个:11 22 33…99;三位的“单峰回文数”有45个:111 …191共9个222…292共8个依次减少1个总共为9+8+7+…+1=45;四位的“单峰回文数”有45个:9+8+7+…+1=45;五位的“单峰回文数”有165个:1+3+6+10+15+21+28+36+45=165;根据定义不可能出现两位和四位的数只能出现奇位数.∴不超过5位的“单峰回文数”共有9+45+165=219.故选:B.二、填空题(本题共6题每小题2分共12分)11.9的算术平方根是3.【答案】3.【分析】根据算术平方根的定义计算即可.【解析】解:∵32=9∴9的算术平方根是3故答案为:3.12.名句“运筹帷幄之中决胜千里之外”中的“筹”原意是指“算筹” 在我国古代的数学名著《九章算术》和《孙子算经》中都有记载.“算筹”是古代用来进行计算的工具之一它是将几寸长的小竹棍摆在平面上进行运算“算筹”的摆放有纵横两种形式(如图1).则图2中“算筹”表示的减法算式的运算结果为﹣6023.【答案】﹣6023.【分析】依题意得图2中“算筹”所表示的算式是:951﹣6974 然后计算即可得出结果.【解析】解:951﹣6974=﹣6023.故答案为:﹣6023.13.若|x|=4 |y|=5 则x﹣y的值为±1或±9.【答案】±1或±9.【分析】求出xy的值分为四种情况代入求出即可.【解析】解:∵|x|=4∴x=±4∵|y|=5∴y=±5当x=4 y=5时x﹣y=﹣1当x=4 y=﹣5时x﹣y=9当x=﹣4 y=5时x﹣y=﹣9当x=﹣4 y=﹣5时x﹣y=1.故答案为:±1或±9.14.比较大小:>4.【答案】见试题解答内容【分析】求出3=4=再进行比较即可.【解析】解:3==4=∵>∴3>4.故答案为:>.15.已知:[x]表示不超过x的最大整数.例:[4.8]=4 [﹣0.8]=﹣1.现定义:{x}=x﹣[x] 例:{1.5}=1.5﹣[1.5]=0.5 则{3.9}+{﹣1.8}﹣{1}= 1.1.【答案】1.1.【分析】根据题意列出计算式解答即可.【解析】解:根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2﹣0=1.1;故答案为:1.1.16.若3+的小数部分是a3﹣的小数部分是b则a+b=1.【答案】见试题解答内容【分析】先判断3+33﹣的在哪两个整数之间再用3+减去整数部分求出a3﹣减去整数部分求出b再相加求出结果.【解析】解:∵5<3+<6 0<3﹣<1∴3+的小数部分为:3+﹣5=﹣2 3﹣的小数部分为:3﹣∴a+b=﹣2+3﹣=1故答案为:1.三解答题(本题共7题共52分)。
人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
初中数学实数综合运算综合题目含答案word版
初中数学实数综合运算综合题一、单选题(共9道,每道11分)
1.的结果是()
A.176
B.88
C.368
D.294
答案:A
试题难度:三颗星知识点:化成最简二次根式
2.的结果是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:无理数乘法
3.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:根号下含有分母
4.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:分母有理化
5.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:无理数去绝对值
6.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:二次根式的非负性
7.的结果是()
A. B.
C. D.
答案:D
试题难度:三颗星知识点:化简求值综合
8.解方程的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:含无理数系数的方程
9.如图,在等腰△ABC中,AC=BC,∠C=120°,AC=1,则AB的长为
()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:含特殊角(15°的倍数)的三角形
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。
精品解析2022年最新人教版初中数学七年级下册 第六章实数综合练习试题(无超纲)
初中数学七年级下册 第六章实数综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在﹣3,0,2, )A .B .﹣3C .0D .22、下列各数中,是无理数的是( )A B .3.141592 C .135 D 3、下列四个实数中,为无理数的是( )A .0B .πC .34 D 4、下列各数中,最小的数是( )A .0BC .π-D .﹣35、下列判断:①10的算术平方根是0.01;④3=a a 2.其中正确的有( )A .1个B .2个C .3个D .4个6 )A 是无理数B .面积为8C 的立方根是2D7、在 0,0.2,3π,227,6.1010010001…,13111 )个 A .1个 B .2个 C .3个 D .4个8、下列各数是无理数的是( )A .0B .πC .3.14 D90.2、﹣π、2270.101001中有理数的个数是( ) A .1B .2C .3D .410、在下列各数23,3.1415926,0.213,-2π2之间依次多1个0)中无理数的个数有( )A .1个B .2个C .3个D .4个二、填空题(5小题,每小题4分,共计20分)1、比较大小:213-_____.2、若一个正数的两个不同的平方根为2a +1和3a ﹣11,则a =___.3、若一个正数的平方根是2a -+和21a +,则a =_____.4、在实数12、2-_______.5、若22a -和3a --是一个正数的平方根;则这个正数是______.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)(1)---(22、解方程,求x 的值.(1)2232x =(2)()381-27x -=3、计算(1)2(2)1)(3)(4) 4、求下列各式中的x 的值:(1)2x 2-18=0;(2)33(129)x -=-. 5、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)---------参考答案-----------一、单选题1、B【分析】先确定3的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,,∴-3<,∴-3<<0<2,故选:B.【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.2、A【分析】根据无理数定义与有理数定义即可求解.【详解】A符合题意;3.141592是有限小数是有理数,故选项B不符合题意;13分数是有理数,故选项C不符合题意;54D不符合题意.故选:A.【点睛】本题考查无理数,与实数分类,正确无理数定义是解题关键.3、B【分析】根据无理数的定义:“无限不循环的小数是无理数”,逐项分析判断即可【详解】A. 0是有理数,故该选项不符合题意;B. π是无理数,故该选项符合题意;C. 34是有理数,故该选项不符合题意;2=是有理数,故该选项不符合题意;故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:30π-<-< ∴所给的各数中,最小的数是π-.故选:C .【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【详解】解:①10,正确;③0.13=a,正确;=a2,故错误;正确的是①②④,有3个.故选:C.【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.6、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:AB、∵28=,所以面积为8C、8的立方根是2,该说法错误,故本选项符合题意;D项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.7、C【分析】根据无理数的定义“无理数就是无限不循环小数”找出题干中的无理数,即可选择.【详解】在这些实数中,无理数为3π,6.1010010001⋯,共有3个,故选:C.【点睛】本题考查了无理数,理解无理数的定义是解答本题的关键.8、B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【详解】解:A.0是有理数,故本选项错误;B.π是无理数,故本选项正确;C .3.14是有理数,故本选项错误;D 12=是有理数,故本选项错误. 故选:B .【点睛】此题考查了无理数的定义,熟练掌握无理数的三种形式是解答本题的关键.9、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】=3=,0.2、-π、2270.101001中,有理数有0.2、2270.101001,共有4个. 故选:D .【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.10、C【分析】根据无理数的概念求解即可.【详解】解:-2π2之间依次多1个0)是无理数,其它是有理数, 故无理数一共有3个,故选:C .【点睛】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.二、填空题1、>【解析】【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】 解:2211 1.67,33 1.73,33 而1.67 1.73, 21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键. 2、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可.【详解】解:∵一个正数的两个不同的平方根分别是2a +1和3a ﹣11,∴213110a a ++-=,解得2a =.故答案为: 2.【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程.3、3-【解析】【分析】根据一个正数的平方根有两个,且互为相反数可得2a -++21a +=0,解出a 即可.【详解】由题意得,2a -++21a +=0,解得:a =3-.故答案为:3-.【点睛】本题考查了正数的平方根的定义,互为相反数的两个数和为0的性质,理解平方根的定义是解题的关键.4【解析】【分析】根据比较实数大小的方法求解即可.【详解】解:∵4<5<9,,,【点睛】此题考查了比较实数大小,解题的关键是根据算数平方根的性质得到.5、64【解析】【分析】根据非负数的平方根的性质得到方程,解之得到a值,从而解决此题.【详解】解:由题意得:2a-2+(-a-3)=0.∴a=5,∴2a-2=8,∴这个数为64,故答案为:64.【点睛】本题主要考查非负数的平方根的性质,熟练掌握非负数的平方根的性质是解决本题的关键.三、解答题1、(1)3;(2)5【解析】【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:(1)原式=24(3)(1)+--⨯-=633-=;(255=【点睛】本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.2、(1)4x =或4x =- ;(2)x =−12【解析】【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x −1可做一个整体求出其立方根,进而求出x 的值.【详解】解:(1)2232x =,216x = ,4x =或4x =- ; (2)8(x −1)3=−27,(x −1)3=−278, x −1=−32,x =−12.【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.3、 (1)3; (2)-1;; (4) 6-【解析】【分析】(1)先化简各二次根式,再计算即可;(2)先利用平方差公式化简原式,再计算即可;(3)将除法变成乘法再计算即可;(4)先利用乘法分配律化简原式,再计算即可;【详解】(1)2=322-+=3(2)1)=212--=-1(3)=3⨯2=(4)==6-=6-【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方根、立方根等知识点的运算.4、(1)x =3±;(2)x =5【解析】【分析】(1)根据求平方根的方法求解方程即可;(2)根据求立方根的方法求解方程即可.【详解】解:(1)∵22180x -=,∴2218x =,∴29x =,∴3x =±;(2)∵()31293x -=-, ∴()3227x -=-,∴23x -=-,∴5x =.【点睛】本题主要考查了根据求平方根和立方根的方法解方程,解题的关键在于能够熟练掌握求平方根和立方根的方法.5、第二种,理由见解析【解析】【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元∵10485.75>3650∴第二种方法得到的钱多.【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.。
精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)
人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章 实数 能力检测卷一.选择题(共10小题) 1.16的平方根是( ) A .4B .-4C .16或-16D .4或-42.下列各等式中计算正确的是( )A ±4B C =-3 D = 323.若方程2(4)x -=19的两根为a 和b ,且a>b,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a-4是19的算术平方根D .b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个5.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是( ) A .-2B .2C .3D .47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10B .10,11C .11,12D .12,138 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是( ) A.33 B .-33 C. 3 D.132.下列实数中无理数是( )A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±206.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a 23 <b ,且a 、b 是两个连续的整数,则|a+b|= . 5.若的值在两个整数a 与a +1之间,则a= .6.如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm 2和2cm 2,那么两个长方形的面积和为 cm 2. 7.请写出一个大于8而小于10的无理数: .8.数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2).4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:。
人教版七年级数学下册15.实数全章复习与巩固(提高)巩固练习及答案.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】【巩固练习】 一.选择题1.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b 2.下列式子表示算术平方根的是 ( ). ①()233-= ②()()2515--= ③93104-=- ④ 255-= ⑤ 0.010.1±=± ⑥ ()20a a a =≥A .①②④B .①④⑥C .①⑤⑥D .①②⑥ 3. 下列说法正确的有( )①无限小数不一定是无理数; ②无理数一定是无限小数; ③带根号的数不一定是无理数; ④不带根号的数一定是有理数. A ①②③ B ②③④ C ①③④ D ①②④4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是2(7)-的算术平方根,即.7)7(2=-其中正确的是( )A. ①③B. ②③C. ②④D. ①④ 5. (2015•南京)估计介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间6.下列运算中正确的是( )4913=12622-82==)(C. 24±=D. ∣32-∣=23- 7. 已知:a a 则,且,68.2868.82.62333=-==( ) A.2360 B.-2360 C.23600 D.-23600 8. -2781 ) A .0 B .6C .6或-12D .0或6 二.填空题9. 下列命题中正确的有 (填序号)(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;(3)若,b a >那么22b a >; (4)若,b a > c b >则c a >;(5))()(c b a c b a ++=++ (6)一个数越大,这个数的倒数越小; (7)有理数加有理数一定是有理数; (8)无理数加无理数一定是无理数; (9)无理数乘无理数一定是无理数; 10.(2015•庆阳)若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,则m ﹣3n 的立方根是 .11. 若22)3(-=a ,则a = ,若23)3(-=a ,则a = .12. 已知 :===00236.0,536.136.2,858.46.23则 . 13. 若x x -+有意义,则=+1x ________.14. 阅读下列材料:设0.30.333x ==…①,则10 3.333x =…②,则由②-①得:93x =,即13x =.所以0.30.333= (1)=3.根据上述提供的方法把下列两个数化成分数. 0.7= 1.3= ;15. 方程 361(12)164x +-=的解x = _________ . 16. 若,19961995a a a =-+-则21995-a 的值等于_________.三.解答题17. (2015春•和平区期末)已知一个正数的两个平方根分别为a 和2a ﹣9 (1)求a 的值,并求这个正数; (2)求17﹣9a 2的立方根.18. 如图所示,已知A 、B 两点的坐标分别为(5,0)A -,(2,1)B -.(1)求△OAB 的面积和△ACB 的面积(结果保留一位小数); (2)比较点A 所表示的数与-2.4的大小.19. 把下列无限循环小数化成分数:(1)0.6•(2)0.23••(3)0.107••20.细心观察右图,认真分析各式,然后解答问题:()()212211122===+,S ; ()()223312222===+,S; ()()234413322===+,S; ……,……; (1)请用含n(n 为正整数)的等式表示上述变化规律;(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为: ; (3)利用上面的结论及规律,请作出等于7的长度;(4)你能计算出210232221S S S S ++++ 的值吗?【答案与解析】 一.选择题1. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 2. 【答案】D ;【解析】算术平方根的专用记号是“a ”根号前没有“-”或“±”号. 3. 【答案】A ; 4. 【答案】C ;【解析】算术平方根是平方根中符号为正的那个. 5.【答案】C . 【解析】∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间.6. 【答案】D ;7. 【答案】D ;O.....S 5S 4S 3S 2S 1111111A 6A 5A 4A 3A 2A 1【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,a =-23600. 8. 【答案】A ;【解析】819=,9的算术平方根是3,故选A. 二.填空题 9. 【答案】(1),(4),(5),(7); 10.【答案】2. 【解析】若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,∴,解方程得:.∴m ﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为:2. 11.【答案】3±39【解析】正数的平方根有2个,实数有一个与它符号相同的立方根. 12.【答案】0.04858【解析】23.6向左移动4位,4.858向左移动2位得0.04858. 13.【答案】1;【解析】x ≥0,-x ≥0,得x =0,所以=+1x 1. 14.【答案】74;93; 【解析】设x =0.777……,10x =7.777……,9x =7, x =79.设y =1.333……,10y =13.333……,9y =12, y =43. 15.【答案】18; 【解析】()31255112,12,6448x x x +=+==. 16.【答案】1996;1996a -a ≥1996,原式=a -19951996a -a 1996a -1995,两边平方得21995-a =1996. 三.解答题17.【解析】 解:(1)由平方根的性质得,a+2a ﹣9=0, 解得a=3,∴这个正数为32=9;(2)当a=3时,17﹣9a 2=﹣64, ∵﹣64的立方根﹣4, ∴17﹣9a 2的立方根为﹣4. 18.【解析】解:(1)∵ (5,0)A ,(2,1)B -,∴ ||5OA =BC =1,AC =OA -OC 52.∴ 115||||51 1.122OAB S OA BC ∆===≈. 115||||(52)110.1222ACB S AC BC ∆==⨯⨯=-≈. (2)点A 表示的实数为5-5 2.24-≈-. ∵ 2.24<2.4,∴ -2.24>-2.4, 即 5 2.4>- 19.【解析】解:(1) 设0.6x •= ① 则10x =6.6•② ②-①得 9x =6∴6293x ==,即20.63•=(2) 设0.23x ••= ① 则10023.23x ••= ② ②-①,得 99x =23∴2399x =,即230.2399••=. (3) 设0.107x ••= ① 则1000107.107x ••= ② ②-①,得 999x =107,∴107999x =,即1070.107999••=. 20.【解析】 解:(1)()2,112nS n n n =+=+. (2)直角三角形中,两条直角边的平方和等于斜边的平方. (3)略.22222222123101231055(4)22224S S S S ⎛⎫⎛⎫⎛⎫⎛⎫++++=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
【3套打包】承德市人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)
人教版七年级下册单元检测卷:第六章 实数一.选择题(共10小题) 1.2的平方根是( )A B .C .D .42.若a 2=4,b 2=9,且ab<0,则a-b 的值为( ) A .-2B .±5C .5D .-53的平方根是则a 的值为( ) A .2B .-2C .5D .-54.下列说法正确的是( ) A .-3是-9的平方根 B .1的立方根是±1 C .a 是2a 的算术平方根 D .4的负的平方根是-25.下列各式中正确的是( )A 3B =xC 3D =-x6.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a7.小明在作业本上做了4;②=4=9=-6,他做对的题有( ) A .1道B .2道C .3道D .4道8.下列实数是无理数的是( )A .227B .C .πD .09.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .b>-2B .-b<0C .-a>bD .a>-b10.如图,数轴上的点A,B,C,D,E 对应的数分别为-1,0,1,2,3,那么与实数112-对应的点在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上二.填空题(共6小题)11.有一个数值转换器,原理如图:当输入的x=4时,输出的y 等于 .12.如果某数的一个平方根是-5,那么这个数是 . 13.若3a =-8,则a= .14.已知=2,ab<0,的值为 .15.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .16.实数a 、b 在数轴上的位置如图所示,则化简|a+2b|-|a-b|的结果为 .三.解答题(共7小题)17.将-2,12-在数轴上表示,并将原数用“<”连接.1819.已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b 的平方根.20.解下列方程: (1)(x-2)2-25=0(2)x3-1=21521.已知一个正方体的体积是1000cm3,现要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积是488cm3.(1)截去的每个小正方体的棱长是多少?(2)截完余下部分的表面积是多少?22.阅读完成问题:数轴上,已知点A、B、C.其中,C为线段AB的中点:(1)如图,点A表示的数为-1,点B表示的数为3,则线段AB的长为,C点表示的数为;(2)若点A表示的数为-1,C点表示的数为2,则点B表示的数为;(3)若点A表示的数为t,点B表示的为t+2,则线段AB的长为,若C点表示的数为2,则t=,(4)点A表示的数为1,x点B表示的为2x人教版七年级下册数学第6章实数培优试题一.选择题(共10小题)1.289的平方根是±17的数学表达式是()A=17 B=±17 C.=±17 D.=172则这个数的立方是()A.8 B.64 C.8或-8 D.64或-64 3.一个数的算术平方根是0.01,则这个数是()A.0.1 B.0.01 C.0.001 D.0.0001 4.下列各式中正确的是()A±4 B=-9 C D=3 25.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a 6.已知正方体的体积为64,则这个正方体的棱长为()A.4 B.8 C.D.7.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.48.在这四个数中,最小的数是()A.-2 B.0 C.1 D9)A.线段AB上B.线段BC上C.线段CD上D.线段DE上10.下列说法正确的是()A,则a>0B.若a与b也互为相反数C2,则a=bD.若a>b>0,b>二.填空题(共6小题)11.已知2x-1的平方根是±3,则5x+2的立方根是.12.若一个数的算术平方根与它的立方根相等,那么这个数是13.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1):将荧幕显示的数变成它的算术平方根,例如:荧幕显示的数为49时,按下后会变成7.(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.(3):将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第2018下后荧幕显示的数是25x=4,则x的值为.14.对于正实数a,b作新定义:a⊙若215.已知实数a、b都是比2小的数,其中a是整数,b是无理数,请根据要求,分别写出一个a、b的值:a= ,b= .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为.三.解答题(共8小题)17.求x的值:(1)(x+1)2=64(2)8x3+27=0.1819.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.20.如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π取3)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)21.对于实数a、b定义运算"#"a#b=ab-a-1.(1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系;(3)若x#(-4)=9,求x的值.22.已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a-b|+|a+b|.23.右图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况;(4)当输出的y 时,判断输入的x 值是否人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式; ⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2- 31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13,∴这个正数是169.44-x=44-169=-125,-125的立方根是-5.21. 解:(1△2)△4=(12-22)△4=(-3)。
(完整版)初中数学实数全章综合练习题(可编辑修改word版)
165 355 1实数练习题一、填空题1.一个正数有个平方根,0 有个平方根,负数平方根.92.的算术平方根是,它的平方根是.163.一个数的平方等于49,则这个数是.4.的算术平方根是,平方根是.5.一个负数的平方等于81,则这个负数是.6如果一个数的算术平方根是,则这个数是,它的平方根是7- 2 的相反数地,绝对值是.8写出两个无理数,使它们的和为有理数;写出两个无理数,使它们的积为有理数.9在数轴上,到原点距离为个单位的点表示的数是.10.在3.14, ,2,- 8,3•81,-0.4,- 9,4.262262226 . (两个6之间依次多1个2)中:属于有理数的有属于无理数的有属于正实数的有属于负实数的有11.-的相反数是,绝对值是,没有倒数的实数是.12. 3 , 1.52二、选择题13.下列说法正确的个数是( )①∵ (-0.6)2=0.36 ∴-0.6 是0.36 的一个平方根②∵0.8 2=0.64 ∴0.64 的平方根是0.8③∵(-3)2=9 ∴ 9=-3④∵(± 5)2=25 ∴± 25=± 54 16 16 4A 1 个B 2 个C 3 个D 4 个14.下列说法中,正确的是()A.64 的平方根是8B.4 的平方根是2 或-2 C(. -3)2没有平方根 D.16 的平方根是4 和-4 15.7 的平方根是()57 (-3)20 79 A.49B. ± 49C. ±D.16. 下列各式中,正确的是()A .(-2)2=-2C .(-9)2=± 3D .(-13)2=1317. 用数学式子表示“的平方根是± 163”应是 ( )4 A . 9=± 3B . ± 9 =± 3D . - 9 =-3 16 416 418. 下列说法中,正确的个数是( )① ± 5 是 25 的平方根②49 的平方根是-7③8 是 16 的算术平方根 ④-3 是 9 的平方根A 、1 B 、2 C 、3 D 、4 19. 下列各式计算正确的是( )16 4A 、 9= ± 3B 、 -4=-2C 、 =-3D 、 ± 81= ± 9 20. 数 a 在数轴上的位置如图所示,下列各数中,有平方根的是( )A 、aB 、-aC 、-a 2D 、a 3a121. 前 10 个正整数的算术平方根中,是有理数的共有() A 、1 个 B 、2 个 C 、3 个 D 、4 个22.下列各式没有意义的是( ) A 、- B 、(-3)2C 、D 、 A. 2, 3,都是无理数B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数两类D.绝对值最小的实数是 0125. 在 4,- ,0, 23,3.1415,这 6 个数中,无理数共有()A.1 个B.2 个C.3 个D.4 个26.和数轴上的点一一对应的是( ) A.整数 B.有理数 C.无理数 D.实数27.下列各数中,不是无理数的是 ( ) A. B.0.5C.228. 下列说法中,正确的是()D.0.151151115… (两个5之间依次多1个1)A. 数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的29. 下列结论中,正确的是()7B .(-3)2=9C . 9 =316 45-44 23.下列说法正确是( ) A.不存在最小的实数 B.有理数是有限小数C.无限小数都是无理数D.带根号的数都是无理数 24.下列说法中,正确的是 ()121100 16952+1223 7A. 正数、负数统称为有理数B.无限小数都是无理数C.有理数、无理数统称为实数D.两个无理数的和一定是无理数30.两个实数在数轴上的对应点和原点的距离相等,则这两个数( )A 、一定相等B 、一定不相等C 、相等或互为相反数D 、以上都不对31.满足大于-而小于的整数有( ) A 、3 个 B 、4 个 C 、6 个 D 、7 个32.下列说法中正确的是( ) A 、实数- a 是负数 B 、实数- a 的相反数是 a C 、 - a 一定是正数D 、实数- a 的绝对值是 a三、解答题33. 下列各数有没有平方根?如果有,求出它的算术平方根,如果没有,请说明理由。
新初中数学七年级下册第六章《实数》单元综合练习题(解析版)(1)
人教版七年级下册第六章实数单元能力提高训练一、选择题1.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±12. 已知实数x,y满足-+|y+3|=0,则x+y的值为( A )A. -2B. 2C. 4D. -43.比较,,的大小,正确的是(A)A. B. C. D.4.如果是实数,则下列一定有意义的是( D )A.B.C.D.5.下列各数是无理数的是( C )A.0B.﹣1C.D.人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x 2=2,有x =±当x 3=3时,有x 想一想,从下列各式中,能得出x =±的是( )A .2x =±20B .20x =2C .±20x =20D .3x =±20 6.下列选项中正确的是( )A .27的立方根是±3B 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是( )A .B .3CD .-1.481-的相反数是( )A .1-B 1-C .1-D 1+9a ,小数部分为b ,则a-b 的值为( )A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( )A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,人教版七年级数学下册第六章实数单元测试题(含解析)一、选择题(共10小题,每小题3分,共30分)1.(-2)2的算术平方根是()A.-2 B.±2 C. 2 D.2.观察一组数据,寻找规律:0、、、、、…,那么第10个数据是()A.B.C.7 D.3.下列说法正确的是()A.0.25是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根4.如果一个正数的平方根为2a+1和3a-11,则a=()A . ±1B . 1C . 2D . 95.下列说法正确的是( )A . -1的倒数是1B . -1的相反数是-1C . 1的立方根是±1D . 1的算术平方根是1 6.的平方根为( )A . ±8B . ±4C . ±2D . 47.在下列实数:2、、、、-1.010 010 001…中,无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 8.介于下列哪两个整数之间( )A . 0与1B . 1与2C . 2与3D . 3与49.实数-1的相反数是( )A . -1-B .+1C . 1-D .-110.计算|2-|+|-3|的结果为( )A . 1B . -1C . 5-2D . 2-5 二、填空题(共8小题,每小题3分,共24分) 11.当m ≤________时,有意义. 12.当的值为最小值时,a =________.13.若a 2=9,则a 3=________.14.若x 2-49=0,则x =________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,则第二个纸盒的棱长是________ cm. 17.的整数部分是________.18.数轴上点A,点B分别表示实数,-2,则A、B两点间的距离为________.三、解答题(共8小题,共66分)19.(8分)计算:(1)|-|+|-1|-|3-|;(2)-++.20. (8分)求满足下列等式的x的值:(1)25x2=36;(2)(x-1)2=4.21. (6分)我们知道:是一个无理数,它是无限不循环小数,且1<<2,则我们把1叫做的整数部分,-1叫做的小数部分.如果的整数部分为a,小数部分为b,求代数式a+b的值.22. (6分)已知一个正数的平方根分别是3x+2和4x-9,求这个数.23. (8分)已知:|a-2|++(c-5)2=0,求:+-的值.24. (8分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求M-N的值.25. (10分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26. (12分)我们来看下面的两个例子:()2=9×4,(×)2=()2×()2=9×4,和×都是9×4的算术平方根,而9×4的算术平方根只有一个,所以=×.()2=5×7,(×)2=()2×(7)2=5×7,和×都是5×7的算术平方根,而5×7的算术平方根只有一个,所以__________.(填空)(1)猜想:一般地,当a≥0,b≥0时,与×之间的大小关系是怎样的?(2)运用以上结论,计算:的值.答案解析1.【答案】C【解析】(-2)2=4.4的算术平方根是2.2.【答案】B【解析】0=,=,=,=,=,=,…通过数据找规律可知,第n 个数为,那么第10个数据为:=. 3.【答案】B【解析】A.0.5是0.25的一个平方根,故A 错误;C .72=49,49的平方根是±7,故C 错误;D .负数没有平方根,故D 错误.4.【答案】C【解析】根据题意得:2a +1+3a -11=0,移项合并得:5a =10,解得:a =2.5.【答案】D【解析】A.-1的倒数是-1,故错误;B .-1的相反数是1,故错误;C .1的立方根是1,故错误;D .1的算术平方根是1,正确6.【答案】C 【解析】因为=4,又因为(±2)2=4,所以的平方根是±2. 7.【答案】C 【解析】2、、-1.010 010 001…是无理数. 8.【答案】C 【解析】因为4<5<9,所以2<<3. 9.【答案】C 【解析】实数-1的相反数是-(-1)=1-.10.【答案】C【解析】原式=2-+3-=5-2. 11.【答案】3【解析】要使根式有意义,则3-m ≥0,解得m ≤3.12.【答案】2 【解析】因为≥0,所以的最小值为0,3a -6=0,解得:a =2.13.【答案】±27 【解析】因为a 2=9,所以a =±3,所以a 3=±27. 14.【答案】±7 【解析】∵x 2-49=0,∴x 2=49,∴x =±7. 15.【答案】【解析】设立方体的棱长为a ,则a 3=9,所以a =. 16.【答案】7 【解析】根据题意得:=7,则第二个纸盒的棱长是7 cm. 17.【答案】4【解析】因为16<17<25,所以4<<5,所以的整数部分是4. 18.【答案】2 【解析】-(-2)=2.19.【答案】解:(1)原式=-+-1-3+=2-4;(2)原式=-(-2)+5+2=2+5+2=9.【解析】(1)根据绝对值的意义去绝对值得到原式=-+-1-3+,然后合并即可;(2)先进行开方运算得到原式=-(-2)+5+2,然后进行加法运算.20.【答案】解:(1)把系数化为1,得x 2=,开平方得,x =±56; (2)开平方得,x -1=±2,x =±2+1,即x =3或-1.【解析】(1)先把系数化为1,再利用平方根定义解答;(2)把x -1看作整体,再利用平方根定义解答.21.【答案】解:因为27<50<64,所以3<<4, 所以的整数部分a =3,小数部分b =-3. 所以a +b =3+-3=.【解析】先依据立方根的性质估算出的大小,然后可求得a,b的值,最后代入计算即可.22.【答案】解:一个正数的平方根分别是3x+2和4x-9,则3x+2+4x-9=0,解得:x=1,故3x+2=5,即该数为25.【解析】利用平方根的定义直接得出x的值,进而求出这个数.23.【答案】解:因为|a-2|++(c-5)2=0,所以a=2,b=-8,c=5.所以原式=+-=-2+4-5=-3.【解析】首先依据非负数的性质求得a、b、c的值,然后代入求解即可.24.【答案】解:因为M=是m+3的算术平方根,N=是n-2的立方根,所以可得:m-4=2,2m-4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n-2=1,所以可得M=3,N=1,把M=3,N=1代入M-N=3-1=2.【解析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M-N的值.25.【答案】解:(1)设魔方的棱长为x cm,可得:x3=216,解得:x=6.答:该魔方的棱长6 cm.(2)设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.【解析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.26.【答案】解:根据题。
【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)
人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
*翹・常青藤
实数练习题
一、填空题
1•一个正数有 _____ 个平方根,0有 ______ 个平方根,负数 ______ 平方根•
9
2.—的算术平方根是 ,它的平方根是
16 3•—个数的平方等于 49,则这个数是 _______ .
4. 16的算术平方根是 ________ ,平方根是 ______ .
5•—个负数的平方等于 81,则这个负数是 __________ .
6如果一个数的算术平方根是 ,5,则这个数是 ________ ,它的平方根是 _______ 7、3 2的相反数地 _______ ,绝对值是 _____ .
8写出两个无理数,使它们的和为有理数 _____________ ;写出两个无理数,使它们的积为有理 数 _______________ .
9在数轴上,到原点距离为 .5个单位的点表示的数是 ________ .
10.在 3.14,丄,2,6、81, 0.4, 一 9,4.262262226 .(两个6之间依次多 1 个2)中:
3
属于有理数的有 ____________________________________
属于无理数的有 ____________________________________
属于正实数的有 ____________________________________
属于负实数的有 ____________________________________
11•—、5的相反数是 _____________ ,绝对值是 ______________ ,没有倒数的实数是 _______ .
12.比较大小:■■ 5 ______ . 3 , 1.5 2
二、选择题
13.下列说法正确的个数是 ()
①••• (-0.6)2 0.36 .•• — 0.6 是 0.36 的一个平方根
②••• 0.82 = 0.64 ••• 0.64 的平方根是 0.8
③(— — )2= 9 ;—=—— ④T ( 5)2=25 寸'25=
5
15. 7的平方根是 ( )4 16 , 16 4
A 1个
B 2个
C 3个
D 4个 14.下列说法中, 正确的是 ( ) A.64
的平方根是8 B.4的平方根是2或一2 C. (— 3)2没有平方根 D.16的平方根是4和一4
融・常青藤£1黑
16. 下列各式中,正确的是
A.49
B. 49
C. 7
D.7
B. ( — 3)=9
C. ( — 9)2= 3
D.-.( — 13)2=13 17.用数学式子表示 —的平方根是 16 3”
应是
A <196= 4 B.鳥=
18.下列说法中,正确的个数是( ① 5是25的平方根 ③8是16的算术平方根 )
②49的平方根是一7
④一3是9的平方根
A 、1
B 、2 19.下列各式计算正确的是(
C 、
B 、——4=— 2 —32 =— 3 ..81=
9
20.数a 在数轴上的位置如图所示,下列各数中, 有平方根的是(
B 、-a D 、a 3
21. 前10个正整数的算术平方根中,是有理数的共有(
A 、1个
B 、2个 22.下列各式没有意义的是(
C 、3个
—32 C 、0
23.下列说法正确是 ()
A.不存在最小的实数 C.无限小数都是无理数 24.下列说法中,正确的是
B.有理数是有限小数
D.带根号的数都是无理数
)
A. '-2, .3,都是无理数
B.无理数包括正无理数、 负无理数和零
C.实数分为正实数和负实数两类 25.在.4, 1,0, . 3,3.1415, 2
D.绝对值最小的实数是
这6个数中,无理数共有(
A.1个
B.2个 26. 和数轴上的点 --- 对应的是( A.整数 B.有理数 27.下列各数中,不是无理数的是
C.3个
D.4
)
C.无理数 (
D.实数
)
A. 、7
B.0.5
C.2
D.0.151151115…(两个5之间依次多1个1)
28.下列说法中,正确的是(
A .数轴上的点表示的都是有理数 C.无理数没有倒数及相反数 29. 下列结论中,正确的是(
B.无理数不能比较大小
D.实数与数轴上的点是- 对应的
C.有理数、无理数统称为实数
D.两个无理数的和一定是无理数
30•两个实数在数轴上的对应点和原点的距离相等,则这两个数(
)
A 、一定相等
B 、一定不相等
C 、相等或互为相反数
D 、以上都不对 31.满足大于 而小于 的整数有( ) A 、3个 B 、4个 C 、6个 D 、 7个
32.卜列说法中止确的是( )
A 、实数 a 是负数
B 、实数 a 的相反数是 a
C 、 a - -定是正数
D 、实数 a 的绝对值是 a
三、解答题
33•下列各数有没有平方根?如果有,求出它的算术平方根,如果没有,请说明理由。
(1)16 ( 2)0.0081
(4)— 0.49
34.计算:
35.分别求下列各数的绝对值与相反数。
(1) — . 3 (2) . 7
*常青藤
家教网 ji 啣斜gccm A.正数、负数统称为有理数 B.无限小数都是无理数
(3) (-5)2 (1) .121 (2) 256 (3) —、• Z169 ①一 100
■- 169
37
361
③ \52 + 122 ④一:4—132
(3)— 2 (4) 3 — ■. 2 ②
36若一个正方形的面积为 64 cm 2,则这个正方形周长为多少米?
37方形的面积变为原来的 25倍,那么它的周长变为原来的 __________ 倍
38、五块同样大小的正方形木板,总面积是 11.25平方米,求木板每边的长。
39、依次连接4X 4方格各条边中点,得到一个正方形,如图阴影部分,求这个正方形的面 积和边长。
40•在数轴表示下列各数,并把它们按从小到大的顺序排列,用“〉”连接:
—0.3 , — . 2 , — , 0, 3.14
2
•劇•常青藤養驀黑。