最新金属材料强度与温度的关系
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑材料的高温强度时,除了温度与力学这二个最基 本的因素之外,还必须考虑时间及介质因素的影响。
在高温条件下材料的变形机制增多,易发生塑性 变形,表现为强度降低,形变强化现象减弱,塑 性变形增加。
强度随温度升高而降低,塑性则随温度升高而增加。
3
__________________________________________________
升; 到第三阶段,随着温度的升高,伸长率和断面收缩率明显升高。
伸长率,% 断面收缩率,%
60 50 40 30 20 10
0 0
20钢δ5 20钢δ10
15CrMo钢δ10
15CrMo钢δ5
100
200
300
400 温度50,0℃
600
__________________________________________________
<±1%
ГОСТ9651 前苏联
<±1%
试验温度允差(℃)
波动
梯度
<600:±3
3
600~900:±4
4
>900~1200:±5
5
≤800:±5 >800~1000:±6
≤982:±3
3
>982:±6
6
引伸仪精度
T 0.2
Βιβλιοθήκη Baidu:0.02%
0 T.01:每格 0.00m1m
0.00T1.2 %: 0.01%
50 0 0
ε=85%/min ε=10%/min ε=1.0%/min ε=0.1%/min
25℃
ε=85%/min ε=10%/min
ε=1.0%/min ε=0.1%/min
450℃
10
20
30
40
50
60
70
应变ε%
6
__________________________________________________
峰值温度与材料的蓝脆温度相当。
抗拉强度,MPa 屈服强度,MPa
700
20钢 600
15CrMo钢 500
400
300
18-8不锈钢
200
100
0
0
200
400
600
800
温度,℃
__________________________________________________
400 350 300 250 200 150 100
在高温下即使承受应力小于该温度下的屈服强度,随着承载时间的增加 材料也会产生缓慢而连续的塑性变形,即材料将发生蠕变。
由于应变速率的这种影响,为了使高温短时拉伸试验的结 果能相互比较,其试验时间必须统一规定。
各国在试验标准中都对此作出了严格的要求
项目 标准名称
YB941 中国
ISO R-783 国际
ASTM E21 美国
BS3688 英国
JIS G0567 日本
DIN 50112 DIN 50118
德国
载荷 精度 <±1% <±1% <±1% <±0.5% <±1%
ET 0.002%
≤800:±5 5
300~600:±3 >600~800:±4 >800~1000:±6
≤600:±3 >600~800:±4 >800~1000:±6 >1000~1100:±8
仲裁试验时 ≤600:±3 >600~900:±5 >900~1200:±6 常规试验时,允许再 加2°波动
50 0 0
15CrMo钢 20钢
18-8不锈钢
100 200 300 400 500 600 700 温度,℃
4
碳钢和Cr-Mo钢的伸长率和断面收缩率随温度的变 化也可分为三个阶段:
初始阶段、中间阶段和第三阶段。
在初始阶段,伸长率和断面收缩率随温度升高而逐渐下降; 中间阶段,伸长率和断面收缩率达到一个最低值,然后又开始回
0.01mm
T 0.2
:0.01mm
4
0T.2:每格 0T.2 0:.00.0m 12mmm
T p
:
0.002mm
应变速度(加载速度)
屈服点或屈服强度前: ≤0.03l0/min(一般试验) ≤0.02l0/min(仲裁试验)
屈服强度前: 0.1%~0.3%/min 屈服点前:(0.5±0.2)%/min 屈服点后:(5±1)%/min 屈服强度前: (0.1~0.3)%/min 屈服点或屈服强度附近: (0.1~0.5)%/min 屈服强度后:(0.5~1.0)%/min
100 80 60 40 20 0 0
15CrMo钢
20钢
100
200
300
400
500
600
温度,℃
5
在高温条件下,应变速度对材料的强度也有明显 的影响。
应变速度越高,材料的强度也越高。
尽管室温下应变速度对强度也有影响,但在高温下这种影响要 大得多。
应力,MPa
450 400 350 300 250 200 150 100
晶界强度与晶粒强度随温度增加而下降的趋势不同,在其交点 对应温度TS(称为等强温度)以上,材料由穿晶断裂变为沿晶 断裂。
形变速度愈低则TS愈低
强度
晶界
穿晶断裂
晶粒
沿晶断裂
TTsK
温度
8
__________________________________________________
小结
强度随温度升高而降低,塑性则随温度升高而增加。 力学行为及性能与加载持续时间密切相关
对于大多数碳钢、铬钼钢和奥氏体钢,强度极限 随温度的变化大致上可分为三个阶段:
初始阶段、中间阶段和第三阶段。
在初始阶段温度较低,强度极限随着温度的升高而明显降低。 在中间阶段,强度极限随温度升高而缓慢下降。 在温度较高的第三阶段,强度极限急剧降低。
碳钢和某些低合金钢(如Cr-Mo钢、Cr-Mo-V钢)在中间阶段强 度极限会出现一个升高的峰值,这是时效硬化所造成的。
金属材料的强度预温度的关系
内容
1. 金属材料在高温下的力学行为特点 2. 蠕变 3. 表征材料高温力学性能的强度指标 4. 高温强度的影响因素
2
__________________________________________________
1.金属材料在高温下的力学行为特点
由于高温下原子扩散能力的增大,材料中空位数 量的增多以及晶界滑移系的改变或增加,使得材 料的高温强度与室温强度有很大的不同。
屈服点前:<5MPa/s
(0.04~0.1)l0/min 不大于80MPa/min
7
__________________________________________________
材料在高温条件下,承受不同的载荷,其断裂所需的时间也不同。
不但断裂所需的时间随着承受的应力增加而缩短,而且断裂的形式也会 发生改变。
在高温条件下材料的变形机制增多,易发生塑性 变形,表现为强度降低,形变强化现象减弱,塑 性变形增加。
强度随温度升高而降低,塑性则随温度升高而增加。
3
__________________________________________________
升; 到第三阶段,随着温度的升高,伸长率和断面收缩率明显升高。
伸长率,% 断面收缩率,%
60 50 40 30 20 10
0 0
20钢δ5 20钢δ10
15CrMo钢δ10
15CrMo钢δ5
100
200
300
400 温度50,0℃
600
__________________________________________________
<±1%
ГОСТ9651 前苏联
<±1%
试验温度允差(℃)
波动
梯度
<600:±3
3
600~900:±4
4
>900~1200:±5
5
≤800:±5 >800~1000:±6
≤982:±3
3
>982:±6
6
引伸仪精度
T 0.2
Βιβλιοθήκη Baidu:0.02%
0 T.01:每格 0.00m1m
0.00T1.2 %: 0.01%
50 0 0
ε=85%/min ε=10%/min ε=1.0%/min ε=0.1%/min
25℃
ε=85%/min ε=10%/min
ε=1.0%/min ε=0.1%/min
450℃
10
20
30
40
50
60
70
应变ε%
6
__________________________________________________
峰值温度与材料的蓝脆温度相当。
抗拉强度,MPa 屈服强度,MPa
700
20钢 600
15CrMo钢 500
400
300
18-8不锈钢
200
100
0
0
200
400
600
800
温度,℃
__________________________________________________
400 350 300 250 200 150 100
在高温下即使承受应力小于该温度下的屈服强度,随着承载时间的增加 材料也会产生缓慢而连续的塑性变形,即材料将发生蠕变。
由于应变速率的这种影响,为了使高温短时拉伸试验的结 果能相互比较,其试验时间必须统一规定。
各国在试验标准中都对此作出了严格的要求
项目 标准名称
YB941 中国
ISO R-783 国际
ASTM E21 美国
BS3688 英国
JIS G0567 日本
DIN 50112 DIN 50118
德国
载荷 精度 <±1% <±1% <±1% <±0.5% <±1%
ET 0.002%
≤800:±5 5
300~600:±3 >600~800:±4 >800~1000:±6
≤600:±3 >600~800:±4 >800~1000:±6 >1000~1100:±8
仲裁试验时 ≤600:±3 >600~900:±5 >900~1200:±6 常规试验时,允许再 加2°波动
50 0 0
15CrMo钢 20钢
18-8不锈钢
100 200 300 400 500 600 700 温度,℃
4
碳钢和Cr-Mo钢的伸长率和断面收缩率随温度的变 化也可分为三个阶段:
初始阶段、中间阶段和第三阶段。
在初始阶段,伸长率和断面收缩率随温度升高而逐渐下降; 中间阶段,伸长率和断面收缩率达到一个最低值,然后又开始回
0.01mm
T 0.2
:0.01mm
4
0T.2:每格 0T.2 0:.00.0m 12mmm
T p
:
0.002mm
应变速度(加载速度)
屈服点或屈服强度前: ≤0.03l0/min(一般试验) ≤0.02l0/min(仲裁试验)
屈服强度前: 0.1%~0.3%/min 屈服点前:(0.5±0.2)%/min 屈服点后:(5±1)%/min 屈服强度前: (0.1~0.3)%/min 屈服点或屈服强度附近: (0.1~0.5)%/min 屈服强度后:(0.5~1.0)%/min
100 80 60 40 20 0 0
15CrMo钢
20钢
100
200
300
400
500
600
温度,℃
5
在高温条件下,应变速度对材料的强度也有明显 的影响。
应变速度越高,材料的强度也越高。
尽管室温下应变速度对强度也有影响,但在高温下这种影响要 大得多。
应力,MPa
450 400 350 300 250 200 150 100
晶界强度与晶粒强度随温度增加而下降的趋势不同,在其交点 对应温度TS(称为等强温度)以上,材料由穿晶断裂变为沿晶 断裂。
形变速度愈低则TS愈低
强度
晶界
穿晶断裂
晶粒
沿晶断裂
TTsK
温度
8
__________________________________________________
小结
强度随温度升高而降低,塑性则随温度升高而增加。 力学行为及性能与加载持续时间密切相关
对于大多数碳钢、铬钼钢和奥氏体钢,强度极限 随温度的变化大致上可分为三个阶段:
初始阶段、中间阶段和第三阶段。
在初始阶段温度较低,强度极限随着温度的升高而明显降低。 在中间阶段,强度极限随温度升高而缓慢下降。 在温度较高的第三阶段,强度极限急剧降低。
碳钢和某些低合金钢(如Cr-Mo钢、Cr-Mo-V钢)在中间阶段强 度极限会出现一个升高的峰值,这是时效硬化所造成的。
金属材料的强度预温度的关系
内容
1. 金属材料在高温下的力学行为特点 2. 蠕变 3. 表征材料高温力学性能的强度指标 4. 高温强度的影响因素
2
__________________________________________________
1.金属材料在高温下的力学行为特点
由于高温下原子扩散能力的增大,材料中空位数 量的增多以及晶界滑移系的改变或增加,使得材 料的高温强度与室温强度有很大的不同。
屈服点前:<5MPa/s
(0.04~0.1)l0/min 不大于80MPa/min
7
__________________________________________________
材料在高温条件下,承受不同的载荷,其断裂所需的时间也不同。
不但断裂所需的时间随着承受的应力增加而缩短,而且断裂的形式也会 发生改变。