一元一次方程-方案选择类-答案版
人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)
人教版七年级上册 一元一次方程的应用-方案选择问题(含答案)一、单选题1.某汽车队运送一批货物,每辆汽车装4 t ,还剩下8 t 未装,每辆汽车装4.5 t 就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( ) A .4x +8=4.5x B .4x -8=4.5x C .4x =4.5x +8D .4(x +8)=4.5x2.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( ) A .购物高于800元 B .购物低于800元 C .购物高于1 000元 D .购物低于1 000元3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -254.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( ) A.2(30)41x x --= B.(41)302x x +-= C.41302xx -+= D.3041x x -=-5.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式( )A.103040x x=+ B.104030x x =+ C.104030x x += D.104030x x+= 6.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3 m 3或者运土2 m 3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A.2x=3(15-x) B.3x-2x=15C.15-2x=3x D.3x=2(15-x)7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题8.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.9.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?若设买了大椅子x张,填写下表:大椅子小椅子张数(张)x钱数(元)小椅子____张,大椅子的钱数为____,小椅子的钱数为________,本题中的等量关系为________________,列出方程为____________,解得x=_______.因此,买了大椅子_________张.10.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.三、解答题11.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?12.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.班上共有多少名同学?多少本书?(1)设班上共有x名同学,根据题意列方程;(2)设共有y本书,根据题意列方程;(3)选择上面的一种设未知数的方法,解决问题.13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)当该顾客累计购物500元时,在哪个超市购物合算.14.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?15.淘淘到书店帮同学买书,售货员告诉他,如果用20元钱办会员卡,将享受八折优惠,请问在这次买书中,淘淘在什么情况下,办会员卡与不办会员卡费用一样?当淘淘买标价共计200元的书时,怎么做合算?能省多少钱?16.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?17.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?18.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。
一元一次方程(四)(通用版)(含答案)
一元一次方程(四)(通用版)试卷简介:方案设计问题一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米,则每立方米按a元收费;若超过15立方米,则超过部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.该居民在一个月内用水35立方米,应交水费为15×a+(35-15)×2a=55a,答案选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题2.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费;超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33.6元,则小明家六月份实际用水( )A.14立方米B.19立方米C.20立方米D.21立方米答案:B解题思路:小明家六月份交水费33.6元,其中包括15立方米的水费和超过15立方米的水费,设小明家六月份实际用水x立方米,根据题意得:15×1.6+(x-15)×2.4=33.6,解得x=19,答案为B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,则超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.60元B.66元C.75元D.78元答案:B解题思路:4月份的煤气费平均每立方米0.88元,那么煤气一定超过60立方米,等量关系为:60立方米的煤气费+超过60立方米的煤气费=所交煤气费,设4月份用了煤气x立方米,根据题意得60×0.8+(x-60)×1.2=0.88x,解得x=75,4月份应交煤气费为75×0.88=66元,故选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题4.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同,若要使到甲、乙两电脑商处购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:若购买的电脑不多于10台,则在甲电脑商处购买没有优惠,因此到甲、乙两电脑商购买电脑花钱不一样,因此要使花钱一样,必然购买多于10台.设购买电脑x台,在甲处购买需要花钱数目为元,在乙处购买需要花钱数目为元,根据题意可列方程为,解得x=20,即应该买电脑20台.试题难度:三颗星知识点:一元一次方程应用——方案类应用题5.九年级某班师生30人准备在中考后到某地旅游,班主任李老师了解到当地甲、乙两旅行社的服务项目和服务质量相同,且甲旅行社平时收费为每人300元,暑期对教师实行八折优惠,对学生实行五折优惠;乙旅行社平时收费为每人280元,暑期对教师和学生均实行六折优惠.若在甲、乙两家旅行社所需费用相同,则这个班师生中教师为( )A.4人B.5人C.6人D.7人答案:C解题思路:设这个班师生中教师有x人,学生有(30-x)人,由题可知甲旅行社收费为元,乙旅行社收费为元,若两家旅行社所需费用相同,可得,解得x=6,故选C试题难度:三颗星知识点:一元一次方程应用——方案类应用题6.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.你认为获利最多的方案和对应的利润是( )A.方案三,600 000元B.方案二,435 000元C.方案三,562 500元D.方案一,500 000元答案:C解题思路:方案一:全部粗加工所需时间为天,因此10内100吨可全部加工完毕,对应的利润为:5 000×100=500 000元;方案二:10天内(含10天)可以精加工10×5=50吨,剩余100-50=50吨直接销售,因此对应的利润:7 500×5×10+1 200×(100-5×10)=435 000元;方案三,设精加工的有x天,则粗加工的有(10-x)天,根据题意可列方程为,解得x=5,即5天精加工,5天粗加工,也即精加工5×5=25吨,粗加工15×5=75吨,因此方案三对应的利润为:562 500元.综上可知,方案三的利润最高,为562 500元.答案为C.试题难度:三颗星知识点:一元一次方程应用——方案类应用题。
专题28一元一次方程应用之方案选择问题(原卷版)
专题28 一元一次方程应用之方案选择问题1.寒假前,七(1)班准备印制一些宪法宣传小册子,利用假期到公园里开展法制宣传活动,有甲、乙两家印刷店可供选择,两家收费情况如下:(1)请你替班长计算一下,印刷多少册,两家的印刷总费用是相等的?(2)乙店得知同学们用零花钱集资印刷宣传册后,将印刷单价给予打折优惠,这样,七(1)班花费220元即可印刷80册.请你计算一下,乙店是打几折优惠的?(3)精打细算的小明通过计算得出:即使甲店给出与(2)中乙店同样的优惠,也印刷80册,还是要选择乙店.你是否同意小明的说法?请说明理由.2.甲、乙两家商场同时出售同样的暖瓶和水杯,根据图中信息,回答下列问题:(1)求一个暖瓶与一个水杯售价分别是多少元.(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送二个水杯,单独买水杯不优惠.若必须买5个暖瓶,且购买水杯个数大于10个,则当买多少个水杯时到两家商场一样合算.3.春节临近,各商家纷纷开展促销活动,甲、乙两个服装店的促销方式如下:甲:全场按标价的6折销售;乙:每满100元送80元的购物券,再购买时购物券可以冲抵现金,但不再送券.(如,顾客在乙店购买服装花370元,赠券240元,再次购买时,这240元券可以冲抵现金,但不再送券,且再次购买金额不低于240元)小明发现,这两家店同时出售:A型上衣,标价均为340元;B型裤子,标价均为250元.(1)小明要买一件A型上衣和一条B型裤子,选择哪一家店比较省钱?(2)小明又发现,这两家店还同时出售C型裤子,标价也相同,且在240元以上.若分别在两家店购买一件A型上衣和一条C型裤子,最后付款额恰好一样,请问C型裤子的标价是多少元?4.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是500元,实际付款为元;(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?5.2020年新冠疫情来袭,某市有一批医疗物资需要运送到医院,原计划租用载货量30吨的卡车若干辆,恰好可以一次全部运完;若租用载货量20吨的卡车,则需要多租2辆,且最后一辆卡车还差10吨装满,其他卡车满载.(1)请问这批医疗物资有多少吨?(2)若载货量20吨的卡车每辆租金为500元,载货量30吨的卡车每辆租金为800元,要使医疗物资一次性运完,怎样租车更合算?6.疫情后为了复苏经济,龙岗区举办了“春暖龙城,约惠龙岗”的促消费活动,该活动拿出1.1亿元,针对全区零售,餐饮,购车等领域出台优惠政策.为配合区的经济复苏政策,龙岗天虹超市同时推出了如下促销活动:(1)小哲在促销活动时购买了原价为200元商品,他实际应支付多少元?(2)小哲在第一次购物后,在“龙岗发布”微信公众号中参与摇号抢到了一张满300减100的购物券(即微信支付300元以上自动减100元),又到龙岗天虹超市去购物,用微信实际支付了381元,他购买了原价多少元的商品?7.列方程解应用题(1)元旦期间,“茂业“商场对某品牌羽绒服实行七折销售,张阿姨到该商场购买了一件该品牌的羽绒服发现比不打折时可省下240元,那么该品牌的标价是多少元?(2)某公司共有工人40人,已知一个工人每小时可制造10个A种零件或20个B种零件,每个工人能而且只能制造其中的一种零件.①如果这些工人每小时能制造A、B两种零件共550个,请问其中参加制造A种零件的工人有多少人?②如果1个A种零件与3个B种零件组合后能形成一个整件,为使这些工人每小时制造出的零件都能恰好组合成整件,那么应安排多少工人制造A种零件?8.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是a元,当a超过300时,实际付款元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?9.某市水果批发部门欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200 元/ 时.其它主要参考数据如下:运输过程中,火车因多次临时停车,全程在路上耽误 2 小时45 分钟,火车的总支出费用与汽车的总支出费用相同,请问某市与本地的路程是多少千米?10.某商场的一种书法笔每只售价25元,书法练习本每本售价5元.为促销,商场制定了两种优惠方案:买一支书法笔就赠送一本书法练习本;方案二:按够买金额的九折付款,我校书法社团够买10支书法笔,x(x>10)本练习本.(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式.(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?11.某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x 条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款______元;若客户按方案二购买,需付款______元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?12.下表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需元,按套餐2计费需元;若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了MB流量;(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按套餐1和套餐2的计费相等?若存在,请求出t的值;若不存在,请说明理由.13.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款______元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款______元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他查看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?14.列方程解应用题12两个班共105人,要去市科技博物馆进行社会大课堂活动,老师指派小明到网某中学七年级()()上查阅票价信息,小明查得票价如下表:其中七()1班不足50人,经估算,如果两个班都以班为单位购票,一共应付1140元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省300元,请求a的值.15.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?16.某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.(1)某游客中一年进入该公园共有n次,如果不购买年票,则一年的费用为元;如果购买A类年票,则一年的费用为元;如果购买B类年票,则一年的费用为元;(用含n的代数式表示)(2)假如某游客一年中进入该公园共有12次,选择哪种购买方式比较优惠?请通过计算说明理由.(3)某游客一年中进入该公园n次,他选择购买哪一类年票合算?请你帮助他决策,并说明你的理由.。
(完整)一元一次方程解应用题之打折问题与方案选择问题(含答案),推荐文档
一元一次方程解应用题之打折问题与方案选择问题(含答案)一.解答题(共30小题)1.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.2.小陈妈妈做儿童服装生意,在“六一”这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.3.根据以下对话,分别求小红所买的笔和笔记本的价格.4.某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?5.某商店销售一种电器,他们先将成本价提高30%后标价,后来又按照标价的八折优惠卖出,结果每销售一件该电器仍获得80元的利润,那么这种电器的成本价是多少元?6.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.7.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.8.某玩具工厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等?(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?9.某商店买入100个整理箱,进价为每个40元,卖出时每个整理箱的标价为60元.当按标价卖出一部分整理箱后,剩余的部分以标价的九折出售.所有整理箱卖完时,该商店获得的利润一共是1880元,求以九折出售的整理箱有多少个?10.为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?11.列方程解应用题:销售服装的“欣欣”淘宝店今冬重点推出某新款大衣,标价为1000元,平常一律打九折出售.商家抓住商机,提前在淘宝网首页上打出广告“双11当天该款大衣打六五折后再让利30元”.因此双11当天该款大衣销售了30件,最后“双11”当天的利润相当于平时卖10件大衣的利润,求衣服的进价.12.某商场对某型号彩电优惠促销,如果按标价的八折每出售一台彩电,就少赚800元,那么顾客买一台这种型号的彩电需付多少元?13.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预测下一季度这种商品每件销售价会降低4%,销售量将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?14.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格.15.某服装店以每件600元的价格购进了某品牌羽绒服500件,并以每件800元的价格销售了400件,服装店计划对剩余的羽绒服降价促销.请你帮助该服装店计算一下,每件羽绒服降价多少元时,销售完这批羽绒服正好能达到盈利30%的预期目标?16.某电脑公司销售A、B两种品牌电脑,前年共卖出2200台.去年A种电脑卖出的数量比前年减少5%,B种电脑卖出的数量比前年增加6%,两种电脑的总销售量增加了110台.前年A、B两种电脑各卖了多少台?17.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)18.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款 元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?19.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.若商场同时购进其中两种不同型号的电视机共50台,恰好用去9万元.(1)请你设计进货方案.。
人教版七年级上册数学第三章一元一次方程应用题方案选择问题突破训练【含答案】
4.双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过 300 元,其中 300 元按九五折优惠,超过 300 元的部分按八折优惠. (1)设一次性购买的书籍原价是 500 元,实际付款为 元; (2)若小明购书时一次性付款 365 元,则所购书籍的原价是多少元? (3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为 600 元(第一次所购书籍的原价高于第 二次),两次实际共付款 555 元,则小冬两次购物所购书籍的原价分别是多少元?
3.为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共 102 人,其中甲单位人数超过 50 人又不够 100 人,乙单位人数少于 50 人.经了解,该景区门票价格如下表:
数量(张)
1~50
51~100
101 张以上
单价(元/张)
60
50
40
如果两单位分别单独购买门票,那么一共应付 5500 元. (1)甲、乙两单位各有多少名退休职工准备参加游玩? (2)如果甲单位有 12 名退休职工因身体原因不能外出游玩,那么你有几种购买方案?通过比较,你该如何购买 门票才能省钱?
13.某牛奶加工场现有鲜奶 9 吨,若直接在市场上销售,每吨可获利 500 元;制成酸奶销售,每吨获利 1200 元; 制成奶片销售,每吨获利 2000 元.该加工场生产能力是:若制成酸奶,每天可加工 3 吨;制成奶片,每天可加工 1 吨,受人员限制,两种加工方式不能同时进行,且牛奶必须在 4 天内全部销售或加工完毕.有两种方案: 方案一:尽可能多的制成奶片,其余直接销售鲜奶; 方案二:一部分制成奶片,其余制成酸奶销售无论哪种方案,都要在 4 天内完成,选哪一种方案好?为什么?
答案 1.(1)5 个月;(2)方案一 2.(1)1200 套;(2)元 3.(1)甲单位有 62 名退休职工准备参加游玩,乙单位有 40 名退休职工准备参加游玩;(2)甲、乙两单位联合 购票,购买 101 张门票最省钱. 4.(1)445;(2)400 元;(3)第一次所购书籍的原价是 450 元,第二次所购书籍的原价是 150 元. 5.(1)187 元;(2)140 元;(3)第一次购买 10 张,第二次购买 60 张 6.(1)同学看中的 iPad 和手机的单价各是 2100 和 1200 元.(2)选择 A 超市购买更省钱. 7.(1)篮球的单价是 20 元,排球的单价是 15 元;(2)选择方案一更省钱, 8.(1)可以节省 1420 元钱;(2)甲校有 58 名学生准备参加表演,乙校有 42 名学生准备参加表演;(3)应该 甲乙两校联合起来选择按 40 元每套一次购买 100 套服装最省钱 9.(1)(0.2x+60),0.3x;(2)乙种;(3)600 份 10.(1)按活动规定实际付款 270 元;(2)第 2 次购物节约了 60 元;(3)张老师将这两次购得的商品合为一次 购买更省钱. 11.(1)七年级一班 48 人,二班有 52 人;(2)可省 296 元;(3)七一班单独组织去游园,直接购买 51 张票更 省钱 12.第二种方案可以多得 1500 元的利润. 13.选择方案二好 14.(1)8;(2)甲班第一次、第二次分别购买 4 千克、36 千克,或 8 千克、32 千克 15.(1)25 盒;(2)购买 15 盒去乙店,购买 30 盒去甲店
实际问题与一元一次方程--方案选择问题训练2022-2023学年人教版七年级上册数学【有答案】
人教版七年级上册数学3.4实际问题与一元一次方程--方案选择问题训练一、单选题1.七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生( )A .240人B .300人C .360人D .420人2.某单位元旦期间组织员工到正定出游,原计划租用28座客车若干辆,但有4人没有座位,若租用同样数量的33座客车,只有一辆空余了11个座位,其余客车都已坐满,则该单位组织出游的员工有( )A .80人B .84人C .88人D .92人3.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A .6名B .7名C .8名D .9名4.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有教室( )A .18间B .22间C .20间D .21间5.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?( )A .39B .40C .41D .426.今年开学,由于疫情防控的需要,某学校统一购置口罩,其中给七年级(1)班全体学生配备了一定数量的口罩,若给每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?设该班有为x 名学生,可列方程( )A .330550x x +=+B .330550x x +=-C .350530x x -=+D .330550x x -=-7.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元8.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A.190元或213.75元B.213.75元C.200元D.190元或200元二、填空题9.某校初一年级某班40个学生到湖边坐船游览,船家有三人船、二人船和一人船三种船提供出租,三人船每只船租金60元,二人船每只船租金50元,一人船每只船租金30元.40个学生刚好坐满了15只船,求这40个学生坐船的最低费用为_____元.10.东北师大附中校团委组织了职业微体验活动,初一(3)班52名学生分别去科技馆和图书馆参观,去科技馆的人数比去图书馆人数的2倍少5人,设去图书馆的人数为x 人,则可列方程:__________.11.小丽在水果店用18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,设小丽买了苹果x千克,可列方程__________.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.13.几个人共同种一批核桃树,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗,若设参与种树的有x人,则列方程为______________________.14.学校买了大小椅子20张,共花去275元,已知大椅子每张15元,小椅子每张10元,若设大椅子买了x张,则小椅子买了________张,列出方程_________________.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.16.某校初中一年级组织学生春游活动,如果包车6辆会有10个学生没有座位,如果包车7辆则会多出30个空位,则该年级学生人数为______人.三、解答题17.甲超市在中秋节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4kg 以上的苹果,超过4kg 的部分按标价6折售卖,x (单位:kg )表示购买苹果的量.(1)中秋节这天,小明购买3kg 苹果需付款_______元;购买5kg 苹果需付款_______元;(2)中秋节这天,小明需购买苹果x kg ,则小明需付款_______元;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折售卖,小明如果要购买多少kg 苹果时,随便在哪家购买都一样?18.商场的运动服每套标价a 元,运动鞋每双标价b 元,实际购买时都是按标价九折付款;该商场又制定了更优惠的买二送一方式,即按标价购买两套运动服时可赠一双运动鞋光明中学七年级五班50名同学每人需要一套运动服和一双运动鞋.(1)第一种购买方案:按打九折的方式直接购买50套运动服需费用为______.按打九折的方式直接购买50双运动鞋需费用为__________.(2)第二种购买方案(买二送一方式):可以先购买50套运动服获赠25双运动鞋、再购买25双鞋共需费用为___________.(3)当200,100a b ==时,如何购买更省钱?能省多少钱?19.某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等.(1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择: 方案一:买5个篮球赠一个足球.方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为_______元.20.我们用的练习本在甲、乙两个商店的标价都是每本1元,为了促销,在甲商店买10本以上,超出部分按七折出售:在乙商店购买,全部按八折优惠.(1)若小明要买20本,到哪个商店购买商合算?(2)若小亮拿着35.2元钱去买练习本,他怎样购买获得的练习本最多?最多可买多少本练习本?。
一元一次方程的应用高频考题训练(3)---方案选择及配套问题(含解析)
5.4《一元一次方程的应用》高频考题训练(3)---方案选择及配套问题配套问题1.某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x个工人生产螺丝,恰好每天生产的螺母和螺丝按2:1配套.为求x,可列方程()A.1200x=1800(28﹣x)B.2×1200x=1800(28﹣x)C.2×1800=1200(28﹣x)D.1800x=1200(28﹣x)2.某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,根据题意可列方程为()A.800x=2×1000(26﹣x)B.2×800x=1000(26﹣x)C.2×800(26﹣x)=1000x D.800(26﹣x)=2×1000x3.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x4.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x5.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.1506.某工厂有技术工20人,平均每天每人可加工甲种零件12个或乙种零件10个,已知2个甲种零件和5个乙种零件可以配成一套,若每天生产的甲乙零件刚好配套,则安排生产甲种零件的技术人员人数是()A.4B.5C.6D.37.用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有100张铁皮,用张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.8.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x只鸽子,则可列方程.9.为保障一线医护人员的健康安全,某防护服厂加班生产防护服和防护面罩.已知工厂共54人,每人每天可加工防护服80件或防护面罩100个,已知一套防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排人生产防护服.10.某厂生产一批纸盒,2米硬纸板可以做3个盒盖或者4个盒身,现有硬纸板140米,为了使盒盖和盒身正好配套,制作盒盖需要米硬纸板.11.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?12.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?13.某车间共有36名工人生产桌子和椅子,每人每天平均可生产桌子20张或椅子50把,一张桌子要配两把椅子.已知车间每天安排x名工人生产桌子.(1)车间每天生产桌子张,生产椅子把.(用含x的代数式表示)(2)问如何安排可使每天生产的桌子和椅子刚好配套?14.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?方案选择问题15.某书城开展学生优惠购书活动,凡一次性购书不超200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款为()A.204 元B.230元C.256元D.264元16.某校七年级三个班级联合开展户外研学活动,此次活动由一班班长负责购买车票,票价每张20元.有如图两种优惠方案:班长思考一会儿说,无论选择哪种方案所要付的车费是一样的,则七年级三个班级共有()A.60人B.61人C.62人D.63人17.七年级某班准备组织同学们观看电影,由班长负责买票,已知电影票价每张50元,对观影人数超过40人的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案二:若有5人免票,则其他人可以打9折.班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的.若这个班级观影人数超过40人,则该班共有___________人观看电影.18.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠;②一次性购书超过200元但不超过400元一律打九折;③一次性购书400元以上一律打八折.如果小聪同学一次性购书共付款324元,那么小聪所购书的原价是.19.在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?20.某公园门票规定如下:若办金卡,需200元,则全年进入公园无需再付钱;若办银卡,需100元,进入公园每次还需付5元;若不办卡,则每次进入公园需购票12元.(1)若小东每年去公园15次,那么应选择哪一种购票方式较为优惠?请说明理由;(2)若小明进入公园的全年预算门票费用为150元,按公园门票规定,求小明全年进入公园次数n的最大值.21.2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A:买一件运动速干衣送一双运动棉袜;方案B:运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x双(x≥30).(1)若该户外俱乐部按方案A购买,需付款元(用含x的式子表示);若该户外俱乐部按方案B购买,需付款元(用含x的式子表示);(2)若x=40,通过计算说明此时按哪种方案购买较为合算;(3)当购买运动棉袜多少双时两种方案付款相同.22.某市两超市在元旦期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过300元,不给与优惠;超过300元而不超过600元一律打九折;超过600元时,其中的600元优惠10%,超过的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是500元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客购物总额相同,其在乙超市实付款584元,问其在甲超市需实付款多少元?23.随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车、滴滴快车和神州专车三种网约年,收费标准见图(该市规定网约车行驶的平均速度为40公里/时).TAXI起步价:14元超公里费:超过3公里2.4元/公里滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟神州专车起步价:10元里程安:2.8元/公里时长要:0.5元/分钟不足1公里按1公里计(1)如果里程为10公里,出租车的费用为元;(2)已知甲,乙两地的路程超过3公里,从甲地到乙地,乘坐出租车比滴滴快车节省17.8元,求甲、乙两地间的里程数;(3)神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费;滴滴快车超过10公里总费用立减9.1元.如果两位顾容,都是第一次下单且乘车里程数相同,他们分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.参考答案配套问题1.【解答】解:∵该车间有28名工人生产螺丝和螺母,且有x个工人生产螺丝,∴有(28﹣x)个工人生产螺母,又∵每人每天生产1200个螺丝或1800个螺母,且恰好每天生产的螺母和螺丝按2:1配套,∴2×1200x=1800(28﹣x).故选:B.2.【解答】解:设安排x名工人生产口罩面,则(26﹣x)人生产耳绳,由题意得2×800x=1000(26﹣x).故选:B.3.【解答】解:设用x立方米的木料做桌子,则用(90﹣x)立方米的木料做椅子,依题意,得:4x=5(90﹣x).故选:A.4.【解答】解:设安排x名工人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.5.【解答】解:设x名学生组装A部件,则(20﹣x)名学生组装B部件,则=.解得x=15.在规定的时间内,最多可以组装出实验仪器的套数为=50(套).故选:A.6.【解答】解:设安排x名技术人员生产甲种零件,则安排(20﹣x)名技术人员生产乙种零件,依题意得:=,解得:x=5,即安排生产甲种零件的技术人员人数是5.故选:B.7.【解答】解:设用x张铁皮制作盒身,则用(100﹣x)铁皮制作盒底,依题意得:2×16x=48(100﹣x),解得:x=60,∴用60张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.故答案为:60.8.【解答】解:设原有x只鸽子,则可列方程:=.故答案为:=.9.【解答】解:设需要安排x人生产防护服,则安排(54﹣x)人生产防护面罩,依题意得:80x=100(54﹣x),解得:x=30.故答案为:30.10.【解答】解:设制作盒盖需要x米硬纸板,则制作盒身需要(140﹣x)米硬纸板,根据题意得:×3=×4,解得:x=80,故答案为:80.11.【解答】解:设安排x人加工甲种部件,则安排(85﹣x)人加工乙种部件,依题意得:=,解得:x=25,∴85﹣x=85﹣25=60.答:安排25人加工甲种部件,60人加工乙种部件,才能使每天加工的甲、乙两种部件刚好配套.12.【解答】解:设分配x个工人生产塑料棒,则分配(34﹣x)个工人生产金属球,依题意得:=,解得:x=18,∴34﹣x=34﹣18=16.答:应分配18个工人生产塑料棒,16个工人生产金属球.13.【解答】解:(1)∵该车间共有36名工人生产桌子和椅子,且车间每天安排x名工人生产桌子,∴车间每天安排(36﹣x)名工人生产椅子.又∵每人每天平均可生产桌子20张或椅子50把,∴车间每天生产桌子20x张,椅子50(36﹣x)把.故答案为:20x;50(36﹣x).(2)依题意得:2×20x=50(36﹣x),解得:x=20,∴36﹣x=36﹣20=16.答:车间每天安排20名工人生产桌子、16名工人生产椅子刚好配套.14.【解答】解:(1)设蓝布料买了x米,则黑布料买了(136﹣x)米.根据题意,得30x+50(136﹣x)=5400.解这个方程,得x=70.∴136﹣x=66.答:蓝布料买了70米,黑布料买了66米;(2)设蓝布料买了y米,则黑布料买了(162﹣y)米.根据题意,得=.解这个方程,得y=90.∴30×90+50(162﹣90)=6300.答:购买这162米布料花了6300元.方案选择问题15.【解答】解:∵第一次购书付款72元,享受了九折优惠,∴实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.由题意得(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为:230﹣26=204(元).故选:A.16.【解答】解:设七年级三个班级共有x人,根据题意得:20×0.8x=20×0.9(x﹣7),解得:x=63,∴七年级三个班级共有63人.故选:D.17.【解答】解:设该班共有x人观看电影,根据题意,得x×50×0.8=(x﹣5)×0.9×50,解得x=45,即该班共有45人观看电影.故答案是:45.18.【解答】解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,0.8x=324,解得,x=405,由上可得,小聪所购书的原价是360元或405元,故答案是:360元或405元.19.【解答】解:设小冯班人数为x人,根据题意列方程得:2x+2x×+x+1=100,2x+x=99,x=99,x=36,答:小冯班上有学生36人.20.【解答】解:(1)若办金卡则需200元;若办银卡则需100+15×5=175(元);若不办卡则需12×15=180(元);故办银卡较为优惠;(2)若办银卡:100+5n=150,解得n=10,若不办卡:12n=150,解得n=12.5,∵n为正整数,∴n取最大值为12.21.【解答】解:(1)按方案A购买,需付款:30×1600+20(x﹣30)=20x+4200,即需要付款(20x+4200)元;按方案B购买,需付款:30×160×0.9+20×0.9x=18x+4320,即需要付款(18x+4320)元.故答案是:(20x+4200),(18x+4320);(2)当x=40时,方案A:20×40+4200=5000(元).方案B:18×40+4320=5040(元).因为5000<5040,所以按方案A购买较为合算;(3)根据题意,得20x+4200=18x+4320.解得x=60.答:当购买运动棉袜60双时,两种方案付款相同.22.【解答】解:(1)在甲超市实付款为:500×0.88=440(元);在乙超市实付款为:500×0.9=450(元).∴在甲超市购买实付款为440元,在乙超市购买实付款为450元;(2)设当购物总额为x元时,两家超市实付款相同,根据题意得:0.88x=600×0.9+0.8(x﹣600),解之得,x=750.∴当购物总额为750元时,两家超市实付款相同.(3)设该顾客购物总额为y元,根据题意得:600×0.9+0.8(y﹣600)=584,解之得,y=655;∴0.88y=0.88×655=576.4(元),∴其在甲超市需实付款576.4元.23.【解答】解:(1)14+2.4×(10﹣3)=30.8(元),答:出租车的费用为30.8元.故答案为:30.8;(2)设甲、乙两地间的里程数是x公里,由题意得,14+2.4(x﹣3)+17.8=12+2.5x+×60×0.4,解得x=18.答:甲、乙两地间的里程数是18公里;(3)设这两位顾客乘车的里程数是y公里,当0<y≤10时,12+2.5y+×60×0.4=0.8(10+2.8y+×60×0.5)+5.3,解得y=5,当>10时,12+2.5y+×60×0.4﹣9.1=0.8(10+2.8y+×60×0.5)+5.3,解得y=40,答:这两位顾客乘车的里程数是5公里或40公里.。
中考数学专题练习一元一次方程的实际应用方案选择问题(含解析)
欢送下载2021中考数学专题练习-一元一次方程的实际应用-方案选择问题〔含解析〕 、单项选择题1.“地球停电一小时〞活动的某地区烛光晚餐中, 设座位有x 排,每排坐30人, 那么有8人无座位;每排坐31人,那么空26个座位.那么以下方程正确的选项是〔 〕A. 30x-8=31x-26B. 30x+8=31x+26C. 30x+8=31x-26D. 30x-8=31x+262.超市推出如下优惠方案:〔1〕 一次性购物不超过100元,不享受优惠;〔2〕 一次性购物超过100元,但不超过300元一律9折;〔3〕 一次性购物超过300 元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品 一次性购置,那么应付款〔 〕A. 288 元B. 332 元N C. 288元或316 元r,D. 332元或363元二、填空题 3 .在甲、乙两家复印店打印文件,收费标准如下表所示:打印 _________ 张,两家 复印店收费相同.如果小明每月拨打本地 时间是长途 时间的 2倍,且每月总通话时间在 65—70分钟之间,那么他选择 _______________ 较为省钱〔填“全球通〞或“神州行〞〕 5 .某学校要买精美笔记本〔大于10本〕用作奖品,可以到甲、乙两家商店购置, 两商店的标价都是每本10元,甲商店的优惠条件是:购置10本以上,前面 10本按标价出售,从第11本开始按标价的七折出售;乙商店的优惠条件是:从 第一本起都按标价的八折出售.〔1〕假设要购置20本,到 商店买更省钱.欢送下载 学习必备 学习必备(2)学校现准备用296元钱买此种奖品,最多可买本.(3)买本时,到两家商店购置付款相等?三、解做题6.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购置商品超出300元之后,超出局部按原价的八折优惠;在乙超市累计购置商品超出200元之后,超出局部按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比拟顾客到哪家超市购物更优惠?说明你的理由.7.某誉印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过局部每页收费降为0.09元.在某图书馆复印同样的文件,不管复印多少页,每页收费0.1元.设需要复印文件x页(x为正整数),请根据表中提供的信息答复以下问题:(I )用含有x的式子填写下表:(H)当x为何值时,两处收费相等;(m)当40Vx<50时,你认为在哪里复印省钱?(直接写出结果即可)8.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?9.甲乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠举措, 甲商场的优惠举措是:累计购置100元商品后,再买的商品按原价的90%攵费; 乙商场那么是:累计购置50元商品后,再买商品按原价的95%攵费,顾客选择哪个商店购物获得更多的优惠?10.某超市为了回馈广阔新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠. (1)假设用x (元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;欢送下载学习必备(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)假设某人方案在该超市购置价格为2700元的一台电脑,请分析选择那种优惠更省钱?四、综合题11.酒泉某校安排2名老师带着学生参加今年的科技夏令营活动,现有两家旅行社前来承包,报价均为每人2021元,他们都表示优惠:敦煌旅行社表示带队老师免费,学生按8折收费;祁连旅行社表示师生一律按7折收费,经核算,教师和学生参加两家旅行社的实际费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了6名学生,学校应选择哪家旅行社?12.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球假设干盒(不小于5盒)问:(1)当购置乒乓球多少盒时,两种优惠方法付款一样?(2)当购置15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?13.某社区活动中央为鼓励居民增强体育锻炼, 准备购置10副某种品牌的羽毛球拍,x (x>20)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%销售;B超市:买一副羽毛球拍送2个羽毛球.(1)在A超市购置羽毛球拍和羽毛球的费用为 ,在B超市购置羽毛球拍和羽毛球的费用为.(用含x的代数式表示)(2)该活动中央决定只在一家超市购置10副球拍和100个羽毛球,你认为在哪家超市购置划算?为什么?14.莒县两商场以同样的价格出售同样的商品, 并且又各自推出不同的优惠方案:在万德福商场累计购物超过100元后,超出100元的局部按八折收费;在新世纪商场累计购物超过50元后,超出50元的局部按九折收费.(1)假设小薇妈妈准备购120元的商品,你建议小薇妈妈去_______ 商场购物(在横线上直接填写“万德福〞或者“新世纪〞);(2)请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?并说明理由.15.为庆祝“六一〞儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购置服装参加演出,下面是某服装厂给出的演出服装的价格表:学习必备欢送下载如果两校分别单独购置服装,一共应付元.〔1〕如果甲、乙两校联合起来购置服装,那么比各自购置服装共可以节省多少钱?〔2〕甲、乙两校各有多少学生准备参加演出?〔3〕如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出, 请为两校设计一种省钱的购置服装方案.答案解析局部一、单项选择题1.“地球停电一小时〞活动的某地区烛光晚餐中, 设座位有x排,每排坐30人, 那么有8人无座位;每排坐31人,那么空26个座位.那么以下方程正确的选项是〔〕A.30x-8=31x-26B.30x+8=31x+26C.30x+8=31x-26D. 30x-8=31x+26【答案】C【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】设座位有x排,根据总人数是一定的,列出一元一次方程30x+8=31x-26.故答案为:C.【分析】根据总人数一定的等量关系列出方程即可.2.超市推出如下优惠方案:〔1〕一次性购物不超过100元,不享受优惠;〔2〕一次性购物超过100元,但不超过300元一律9折;〔3〕一次性购物超过300 元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购置,那么应付款〔〕A. 288 元B. 332元H C. 288元或316元Q. 332元或363元【答案】C【解析】【解答】〔1〕假设第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,那么90%x=252解彳 4 x=280;两次所购物价值为80+280=360>300, 所以享受8折优惠;因此王波应付360X 80%=288 〔 2〕假设第二次购物超过300 元,设此时购物价值为y元,那么80%y=252解彳3y=315,两次所购物价值为80+315=395,因此王波应付395X 80%=3167s.所以选C.【分析】能够分析出第二次购物可能有两种情况,进行讨论是解决此题的关键. 二、填空题欢送下载学习必备3.在甲、乙两家复印店打印文件,收费标准如下表所示:打印_________ 张,两家复印店收费相同.【答案】【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】解:设打印x张,两家复印店收费相同.〔1〕当0<xW 20 时,根据题意得:0.5x=0.4x,此方程无解;〔2〕当x- 20 时,根据题意得:20K 0.5+ 〔x-20〕x 0.35=0.4x ,解得:x=60.答:打印60张,两家复印店收费相同.故答案为:60.【分析】此题首先判断要想两家复印店收费相同,打印的张数需超过20张,然后根据等量关系列出方程即可.4.某地中国移动“全球通〞与“神州行〞收费标准如下表:如果小明每月拨打本地时间是长途时间的2倍,且每月总通话时间在65—70分钟之间,那么他选择________________ 较为省钱〔填“全球通〞或“神州行〞〕【答案】全球通【考点】一元一次不等式的应用【解析】【解答】解:设小明打长途的时间为x分钟,那么打本地的时间为2x分钟,,选择“全球通〞所需总费用为13+0.15x+0.35 X2x=0.85x+13,选择“神州行〞所需总费用为0.3x+0.6 X2x=1.5x,当0.85x+13 >1.5x ,即0Vx < 20时,选择神州行较为省钱;当0.85x+13=1.5x ,即x=20时,都一样省钱;当0.85x+13<1.5x ,即x>20时,选择全球通较为省钱;欢送下载学习必备•••每月总通话时间在65〜70分钟之间,.•・选择全球通较为省钱,故答案为:全球通.【分析】设小明打长途的时间为x分钟,那么打本地的时间为2x分钟, 然后用含x的式子表示出选择“全球通〞所需总费用为0.85X+13,选择“神州行〞所需总费用为1.5x ,然后分三类进行讨论:①当0.85x+13>1.5x ,即0V x<20时,选择神州行较为省钱;②当0.85x+13=1.5x ,即x=20时,都一样省钱;③当0.85x+13<1.5x ,即x>20时,选择全球通较为省钱;然后根据每月总通话时间在65〜70分钟之间作出判断即可.5.某学校要买精美笔记本(大于10本)用作奖品,可以到甲、乙两家商店购置, 两商店的标价都是每本10元,甲商店的优惠条件是:购置10本以上,前面10本按标价出售,从第11本开始按标价的七折出售;乙商店的优惠条件是:从第一本起都按标价的八折出售.(1)假设要购置20本,到商店买更省钱.(2)学校现准备用296元钱买此种奖品,最多可买本.(3)买本时,到两家商店购置付款相等?【答案】乙;38; 30【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】解:(1)甲商店买的费用10X10+10X 70%=170%, 乙商店买的费用20X 10X80%=1607s假设要购置20本,到乙商店买更省钱.(2)甲商店购置:(296- 10X10) + ( 10X70% +10=38本,乙商店购置:296+ (10X80% =37本,学校现准备用296元钱买此种奖品,最多可买38本.(3)设买x本时,到两家商店购置付款相等,根据题意,得10X 10+10X 0.7 (x- 10) =10X 0.8x 解得:x=30买30本时,到两家商店购置付款相等.【分析】(1)根据甲乙两店给出的优惠条件,算出买20本笔记本花费的购书款, 通过比拟得到在哪个商店购置较省钱;(2)通过计算得出在甲乙商店所能购置的笔记本数,比拟得出最大值;(3)根据等量关系列方程求解:甲商店购书款=10本X标价+超出10本的数目X70%乙商店购书款=购置的本数X 80% 三、解做题6.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购置商品超出300元之后,超出局部按原价的八折优惠;在乙超市累计购置商品超出200元之后,超出局部按原价的九折优惠.设顾客预计累计购物x元(x>300).欢送下载学习必备(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比拟顾客到哪家超市购物更优惠?说明你的理由.【答案】解:(1)二.在甲超市累计购置商品超出300元之后,超出局部按原价的八折优惠,•••在甲超市购物所付的费用为:300+0.8 (x- 300) =0.8x+60,;在乙超市累计购置商品超出200元之后,超出局部按原价的九折优惠,•••设顾客预计累计购物x元(x>300),在乙超市购物所付的费用为:200+0.9 (x- 200) =0.9x+20;(2)当0.8x+60=0.9x+20 时,解得:x=400,・•・当x=400元时,两家超市一样;当 0.8x+60<0.9x+20 时,解得:x>400,当x >400元时,甲超市更合算;当 0.8x+60 >0.9x+20 时,解得:x<400,当x<400元时,乙超市更合算.【考点】一元一次方程的实际应用-方案选择问题【解析】【分析】(1)根据总费用等于两次费用之和就可以分别表示出在两家 超市购物所付的费用;(2)根据(1)的结论分别讨论,三种情况就可以求出结论.7.某誉印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过 20时,超过局部每页收费降为0.09元.在某图书馆复印同样的文件,不管复印 多少页,每页收费0.1元.设需要复印文件x 页(x 为正整数),请根据表中提供的信息答复以下问题: (I )用含有x 的式子填写下表:(H)当x 为何值时,两处收费相等;(m)当40Vx<50时,你认为在哪里复印省钱?(直接写出结果即可)【答案】(I ) 2.4+0.09(x-20)0.1x欢送下载 (H )当x=60时,两处收费相等(田)当40<x<50时,图书馆收费更省钱 【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】(I)当x>20时,誉印社收费为24+0.09(x-20), 图书馆收 费为:0.1x; (H)由题意得:2.4+0.09(x-20)=0.1x, 解得 x=60,所以当 x=60 时,两处收费一样.(田)当x=60时,两处收费相等,.••当40Vx<50时,图书馆收 费更省钱.【分析】(I )根据收费标准,列代数式就行;(H )当x020时,两处收费显然 不一样,根据(I)的关系式列出方程,解出答案;(田)根据(H)的结果就可 以判断;此题的关键是将实际问题转化为数学模型.8 .加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两 种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台 电脑上网),另学习必备外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?【答案】解:(1)根据题意得:第一种方式为:(0.05+0.02 ) x=0.07x .第二种方式为:50+0.02x.(2)设上网时长为x分钟时,两种方式付费一样多,依题意列方程为:(0.05+0.02 ) x=50+0.02x,解得x=1000,答:当上网时全长为1000分钟时,两种方式付费一样多;(3)当上网15小时,得900分钟时,A方案需付费:(0.05+0.02 ) X 900=63 (元),B方案需付费:50+0.02X900=68 (元),.「63< 68, ••・当上网15小时,选用方案A合算.【考点】列式表示数量关系,一元一次方程的实际应用-方案选择问题【解析】【分析】(1)根据第一种方式为计时制,每分钟0.05,第二种方式为包月制,每月50元,两种方式都要加收每分钟通信费0.02元可分别有x表示出收费情况.(2)根据两种付费方式,得出等式方程求出即可;(3)根据一个月只上网15小时,分别求出两种方式付费钱数,即可得出答案.9.甲乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠举措, 甲商场的优惠举措是:累计购置100元商品后,再买的商品按原价的90%攵费;乙商场那么是:累计购置50元商品后,再买商品按原价的95%攵费,顾客选择哪个商店购物获得更多的优惠?【答案】解:设在甲商场购置x元的花费为W甲元,在乙商场购置的花费为W 乙元,由题意,得欢送下载学习必备Wff =100+(X-100) X0.9=0.9x+10 (x>100)WJL =50+0.95 (x-50) =0.95x+2.5 (x>50).当W甲 > 明时,0.9x+10 >0.95x+2.5 ,x<150Wff =此时,0.9x+10=0.95x+2.5 , x=150Wff <雌时,0.9x+10<0.95x+2.5 , x>150.综上所述:当50Vx<150时,在乙商场购置优惠些,当x=150或x050时,在甲、乙两商场购置一样优惠,当x>150时,在甲商场购置优惠些【考点】一元一次不等式的应用【解析】【分析】设在甲商场购置x元的花费为W甲元,在乙商场购置的花费为W%元,根据连个商场的不同优惠方案列出解析式,再分情况建立不等式求出其解即可.10.某超市为了回馈广阔新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠. (1)假设用x (元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)假设某人方案在该超市购置价格为2700元的一台电脑,请分析选择那种优惠更省钱?【答案】解:(1)由题意可得:优惠一:付费为:0.9x ,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,那么0.9x=200+0.8x ,解得:x=2021,答:当商品价格是2021元时,两种优惠后所花钱数相同;(3)二.某人方案在该超市购置价格为2700元的一台电脑,.•.优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360, 答:优惠二更省钱.【考点】一元一次方程的实际应用-方案选择问题【解析】【分析】(1)根据题意分别得出两种优惠方案的关系式即可;(2)利用(1)中所列关系式,进而解方程求出即可;(3)将数据代入(1)中代数式求出即可.四、综合题11.酒泉某校安排2名老师带着学生参加今年的科技夏令营活动,现有两家旅行社前来承包,报价均为每人2021元,他们都表示优惠:敦煌旅行社表示带队老欢送下载学习必备师免费,学生按8折收费;祁连旅行社表示师生一律按7折收费,经核算,教师和学生参加两家旅行社的实际费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了6名学生,学校应选择哪家旅行社?【答案】(1)解:设参加夏令营的学生有工名那么200 8 30%工=2 x 2000 乂7.%+2000 * 70必X=14答:参加夏令营的学生有1珞.(2)解:那么:敦煌旅行社的费用为:2000 x 80% x 20 = 3200元祁连旅行社的费用为2000 X 70%乂(14 + 642)= 308沅答:学校应该选择祁连旅行社【考点】一元一次方程的实际应用-方案选择问题【解析】【分析】(1)设参加夏令营的学生有x人,那么敦煌旅行社需付的费用为:2021X 80%x元,那么祁连旅行社需付费用2X2021X 70%+2021K 70%x元, 根据师和学生参加两家旅行社的实际费用正好相等,列出方程求解即可;(2)根据题意现在有20名学生,把x=20代入2021X 80%x算出敦煌旅行社需付的费用,把x=20代入2X 2021X 70%+2021< 70%x算出祁连旅行社需付费用, 然后再比大小即可得出结论.12.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球假设干盒(不小于5盒)问:(1)当购置乒乓球多少盒时,两种优惠方法付款一样?(2)当购置15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?【答案】(1)解:设购置x盒乒乓球时,两种优惠方法付款一样,根据题意有:30 X 5+ (x-5) X5= (30X 5+5x) X 0.9 ,解得x=20,答:购置20盒乒乓球时,两种优惠方法付款一样(2)解:当购置15盒时,甲店需付款30X5+ (15- 5) X5=200元.乙店需付款(30X 5+15X 5) X 0.9=202.5 元.由于200V202.5,所以去甲店合算.当购置30盒时,甲店需付款30 X 5+ (30-5) X5=275元.乙店需付款(30X5+30X5) X 0.9=270 元.由于275> 270,去乙店合算【考点】一元一次方程的实际应用-方案选择问题第10页欢送下载学习必备【解析】【分析】〔1〕设该班购置乒乓球x盒,根据乒乓球拍每幅定价30元, 乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.〔2〕根据各商店优惠条件计算出所需款数确定去哪家商店购置合算.13.某社区活动中央为鼓励居民增强体育锻炼, 准备购置10副某种品牌的羽毛球拍,x 〔x>20〕个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折〔按标价的90%销售;B超市:买一副羽毛球拍送2个羽毛球.〔1〕在A超市购置羽毛球拍和羽毛球的费用为 ,在B超市购置羽毛球拍和羽毛球的费用为.〔用含x的代数式表示〕〔2〕该活动中央决定只在一家超市购置10副球拍和100个羽毛球,你认为在哪家超市购置划算?为什么?【答案】〔1〕 270+2.7x; 30x+240〔2〕解:当x=10 时,270+2.7X10=540, 30x+240=30X 10+240=54〔^答:A、B花费一样多【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】解:〔1〕在A超市购置羽毛球拍和羽毛球的费用为:10X 30X 0.9+3 X 0.9 Xx=270+2.7x,在B超市购置羽毛球拍和羽毛球的费用:10 X 30+3 〔 10x- 20〕 =30x+240, 故答案为:270+2.7x; 30x+240;【分析】〔1〕根据购置费用=单价X数量建立关系就可以表示出在两个超市购置羽毛球拍和羽毛球的费用;〔2〕把x=10分别代入两个代数式可得答案.14.莒县两商场以同样的价格出售同样的商品, 并且又各自推出不同的优惠方案:在万德福商场累计购物超过100元后,超出100元的局部按八折收费;在新世纪商场累计购物超过50元后,超出50元的局部按九折收费.〔1〕假设小薇妈妈准备购120元的商品,你建议小薇妈妈去_____ 商场购物〔在横线上直接填写“万德福〞或者“新世纪〞〕;〔2〕请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?并说明理由.【答案】〔1〕新世纪〔2〕解:I.当累计购物不超过50元时,两家商场购物都不享受优惠,且两家商场以同样价格出售同样商品,因此到两家商场购物花费一样II.当累计购物超过50元而不到100元时,享受新世纪的购物优惠,不享受万德福商场的购物优惠,因此到新世纪购物花费少;m.当累计超过100元时,设累计购物x〔x>100〕元.①假设到万德福商场购物花费少,那么第11页欢送下载学习必备100+0.8 (x- 100) <50+0.9 (x-50),解得x>150.这就是说,累计购物超过150元时,到万德福商场购物花费少.②假设到新世纪商场购物花费少,那么100+0.8 (x- 100) >50+0.9 (x-50),解得x<150.这就是说,累计购物超过100元而不到150元时,到新世纪商场购物花费少.③假设100+0.8 (x- 100) =50+0.9 (x-50),解得x=150.这就是说,累计购物为150元时,到万德福和新世纪两家商场购物花一样【考点】一元一次不等式的应用【解析】【解答】解:(1) 100+ (120— 100) X 0.8=116 (元),50+ (120-50) X 0.9=113 (元),116 元>113 元,故建议小薇妈妈去新世纪商场购物;故答案为:新世纪.【分析】(1)根据两种优惠方式算出购置120元物品需要消耗的钱算出来,选出较少的那一个即可.(2)根据题目所给的优惠方式分类讨论即可.15.为庆祝“六一〞儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购置服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两校分别单独购置服装,一共应付元.(1)如果甲、乙两校联合起来购置服装,那么比各自购置服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出, 请为两校设计一种省钱的购置服装方案.【答案】(1)解:依题意知,甲乙共92人,联合购置比单独买节省:5000-92X40=1320 (元).(2)解:设甲学校人数为x人,x<90,那么乙人数为92-x人.x>92-x,解得x>46, 92-x <46所以甲单独购置花费50x元,乙单独购置花费60 (92-x)元得方程:50x+60 (92-x) =5000 .解得x=52.第12页欢送下载学习必备那么乙有92-52=40 〔人〕.〔3〕解:依题意知当甲少10人,那么全部人数为92-10=82 〔人〕.假设两校联合购置每套为50元,82 X 50=4100 〔元〕.假设两校联合购置91套,那么每套为40元,只需91X40=3640 〔元〕因此最省钱的购置服装方案是两校联合购置91套服装〔即比实际人数多购9套〕.【考点】一元一次不等式的应用【解析】【分析】〔1〕依题意知,甲乙共92人,由表中数据可以求出答案.〔2〕设甲学校人数为x人,x<90,那么乙人数为92-x人;根据题意可以得出x 的范围;从而得出方程50x+60 〔92-x〕 =5000 .解之即可.〔3〕依题意知当甲少10人,那么全部人数为92-10=82 〔人〕.由表中数据可以得出此时联合购置最优惠.第13页。
一元一次方程练习题与答案1
一元一次方程练习题与答案一、选择题1,家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅= B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=2. 今年“十.一”长假期间,我市磁器口古镇在10月1日接待游客约2.83万人,“2.83万”的有效数字和精确度为( )A . 3个 、十分位B .3个、百位C . 5个 、十分位D . 5个、百位 3下列各组数中,不相等的一组是 ( )A .()23-与23-B .-23-与23-C . -33-与 33-D .()33- 与33- 4 .计算(-3)2+(-3)3-22+(-2)2的结果是( )A. 36B. -18C. -36D. 185.下列说法中正确的是( )A. 0不是单项式B.x1是整式C. -2x y 的系数是1 D. -322x y 的次数是36 。
某书店按标价的八折售出,仍可获利20﹪,若该书的进价为18元,则标价为( )A. 27元B. 28元C. 29元 D ,30元7 、方程12=+a x 与方程2213+=-x x 的解相同,则a 的值为( )A. -5 B . -3 C. 3 D. 58 设a 表示三位数, b 表示两位数, 如果把a 放在b 的左边组成一个五位数, 可表示为( )A. abB. 1000 a + bC. a + bD. 100 a + b9. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设xs后甲可追上乙,则下列四个方程中不正确的是 ( )A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-510.某种手机卡的市话费上次已按原收费标准降低了b 元/分钟,现在又下调20﹪,使收费标准为a 元/分钟,那么原收费标准为( )A. B. C. D.11.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程所需天数为( )A.1x y + B.11x y + C.1xy D.111x y +12.小明把400元钱存入银行,年利率为1.8%,到期时小明得到利息36元,则她一共存了( ) A 、6年 B 、5年 C 、4年 D 、3年13,足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,那么这个队胜了( )A.3场 B.4场 C.5场 D.6场14,我国股市交易中每买、卖一次需交千分之七点五的各种费用。
应用一元一次方程——方案问题专题(含答案解析)
应用一元一次方程——方案问题专题(含答案解析)1.某班需要购买乒乓球和乒乓球拍。
甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍。
乒乓球拍的定价为30元/副,乒乓球的定价为5元/盒。
甲店提供一副球拍赠送一盒乒乓球的优惠,乙店提供全部按定价的9折优惠。
该班需要购买5副球拍和至少5盒乒乓球。
问题如下:1)购买多少盒乒乓球时,两种优惠方案的付款金额相同?2)购买15盒和30盒乒乓球时,你打算去哪家商店购买?为什么?2.某厂生产一种计算器,每只成本价为36元。
该厂有两种销售方式:第一种是由厂门市部销售,每只售价为48元,但需要支付每月固定费用6480元(包括门市部的房租等);第二种是批发给文化用品商店销售,批发价为每只42元。
两种方式的税款均为销售金额的10%。
1)销售多少只计算器时,两种方式的利润相等?2)该厂计划在今年6月份销售1500只计算器,应该选择哪种销售方式以获得最大利润?(利润=售价-税款-成本)3.一家游泳馆在每年的6-8月份出售夏季会员证,每张会员证售价为80元,只限本人使用。
持会员证购买入场券每张1元,不持会员证购买入场券每张3元。
问题如下:1)在什么情况下,购买会员证和不购买会员证的花费相同?2)在什么情况下,购买会员证比不购买会员证更划算?3)在什么情况下,不购买会员证比购买会员证更划算?4.某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:第一档:月用电量不超过240度的部分的电价为每度0.6元;第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;第三档:月用电量超过400度的部分的电价为每度0.9元。
1)已知XXX家去年5月份的用电量为380度,那么老王家5月份应该支付的电费是多少元?2)如果XXX家去年6月份的平均电价为0.70元,那么老王家6月份的用电量是多少度?3)已知XXX家去年7月和8月的用电量总共是500度(7月份的用电量少于8月份的用电量),两个月的总电费是303元。
人教版七年级上册数学实际问题与一元一次方程(方案选择问题)训练含答案
人教版七年级上册数学3.4实际问题与一元一次方程(方案选择问题)训练一、单选题1.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.39B.40C.41D.422.在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树3.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是()A.20B.22C.25D.20或25 4.某班同学一起去看电影,票价每张50元,20张以上(不含20张)打八折,他们一共花了1000元,则共买了()张电影票.A.20B.25C.20或25D.25或30 5.一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的45优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能6.某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是().A.买甲站的B.买乙站的C.买两站的都可以D.先买甲站的1罐,以后再买乙站的7.七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生()A.240人B.300人C.360人D.420人8.七年级某班为奖励学习进步的学生,购买了两种文具:单价为6元/本的笔记本和单价为4元/支的水笔,正好花费60元,则购买方案共有()A.3种B.4种C.5种D.6种二、填空题9.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.则这个学校有__________间宿舍.10.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,每支铅笔的原价是________.11.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.12.一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x个玩具,根据题意可列方程______.13.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.14.五羊自行车厂组织78 位劳动模范参观科普展览,为了节省经费,决定让其中10 位劳模兼任司机.厂里有 2 种汽车:大车需1 名司机,可坐11 位乘客;小车需 1 名司机,可坐4 名乘客.大车每辆出车费用为150元,小车每辆出车费用为70 元.现备有大车7 辆,小车8 辆.为使费用最省,应安排开出大车________辆.15.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.16.某中学学生志愿服务小组在“学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,那么正好送完.则敬老院有_____位老人.三、解答题17.这个星期周末,七年级准备组织观看电影《我和我的祖国》,每张票价60元.由各班班长负责买票,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案二:若打9折,有6人可以免票.(1)一班班长思考了一会儿,说我们班无论选择哪种方案要付的钱是一样的,请问一班有几人?(2)如果二班有58人,二班应该选择哪种优惠方案更省钱.说明理由.18.某乳制品厂有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,该工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,剩余鲜牛奶直接销售;方案二:将一部分鲜牛奶制成奶粉,剩余的制成酸奶,并恰好4天完成.你认为哪种方案获利较多,为什么?19.某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说服他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?20.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,两超市各自推出了不同的优惠方案:甲超市:在该超市累计购买商品超出300元之后,超出部分按原价的8折优惠;乙超市:在该超市累计购买商品超出200元之后,超出部分按原价的8.5折优惠.(1)当累计购物500元时,选择哪家超市购买更优惠?请说明理由;(2)当累计购物多少元时,在甲、乙两家超市所需支付的费用相同?(3)小明发现去甲、乙两家超市买同样的商品,乙超市比甲超市便宜12元,小明选择了去乙超市购买,则小明花的钱是__________元.答案第1页,共1页 参考答案:1.A2.A3.D4.C5.A6.B7.C8.B9.3010.1.8元11.200元或210元12.3(2)29x x -=+13.8人14.415.4516509x x +=-16.1617.(1)54人(2)选择方案二更省钱18.第二种方案获利较多19.(1)360元,92元(2)该同学在A 、B 两家超市均可购买到所需的随身听和书包;在A 超市购买更省钱20.(1)乙超市(2)小于等于200元或等于600元(3)268或336。
一元一次方程应用题方案选择问题训练题(含解析)
一元一次方程应用题方案选择问题(含解析)一、单选题(共5题;共10分)1.(2020·丰南模拟)下图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生计算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们在同一间包厢里欢唱的至少()A. 6人B. 7人C. 8人D. 9人2.(2020·黑龙江)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A. 3种B. 4种C. 5种D. 6种3.(2019七上·合肥月考)“欢乐购”元旦促销活动即将到来,小芳的妈妈计划花费1000元,全部用来购买价格分别为80元和120元的两种商品若干件,则可供小芳妈妈选择的购买方案有()A. 4种B. 5种C. 6种D. 7种4.(2019七上·崇川月考)小明和爸爸妈妈三人暑假准备参加旅游团去北京旅游,甲旅行社说:“如果父母买全票,小孩可半价优惠”:乙旅行社说:“全部按全票价的8 折优惠”,若全票价为1200元,则小明应选择哪家旅行社()A. 选择甲B. 选择乙C. 选择甲、乙都一样D. 无法确定5.(2016·赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A. 东风B. 百惠C. 两家一样D. 不能确定二、综合题(共16题;共173分)6.(2020七上·武威月考)某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话),若一个月内通话分钟,两种通话方式的费用分别为元和元.(1)写出,与之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?7.(2020八上·宁波月考)某体育用品商店对甲、乙两种品牌的足球开展促销活动,已知甲、乙两种品牌的足球的标价分别是160元/个,60元/个,现有如下两种优惠方案;方案一:未购买会员卡时,甲品牌足球享受八五折优惠,乙品牌足球买5个(含5个)以上时所有足球享受八五折,5个以下必须按标价购买方案二:办理一张会员卡100元,会员卡只限本人使用,全部商品享受七五折优惠(1)若购买甲品牌足球3个,乙品牌足球4个,哪一种方案更优惠?优惠了多少元?(2)如果购买甲品牌足球若干个,乙品牌足球6个,方案一与方案二所付钱数一样多,求购买甲品牌的足球的个数8.(2020七上·合肥期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?9.(2020七上·庐阳期中)某校组织学生外出研学,旅行社报价每人收费300元,当研学人数超过50人时,旅行社给出两种优惠方案:方案一:研学团队先交1500元后,每人收费240元;方案二:5人免费,其余每人收费打九折(九折即原价的90%)(1)用代数式表示,当参加研学的总人数是x()人时,用方案一共收费________元;用方案二共收费________元;(2)当参加旅游的总人数是80人时,采用哪种方案省钱?说说你的理由10.(2020七上·沂南期中)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过元的电器,超出的金额按收取;乙商场规定:凡超过元的电器,超出的金额按收取,某顾客购买的电器价格是元.(1)当时,分别用代数式表示在两家商场购买电器所需付的费用(2)当时,该顾客应选择哪一家商场购买比较合算?说明理由.11.(2020七上·吉安期中)初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?12.(2020七上·新津期中)某市电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:3元/时;(B)包月制:60元/月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费1.2元/时.(1)某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2)当某用户某月上网的时间为90小时,你认为采用哪种方式较为合算?(3)根据上网时间的不同,你认为采用哪种方式较为合算?13.(2020七上·舒城月考)某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“教师在内全部按票价的6折优惠;”若全部票价是240元. (1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?14.(2020七上·慈溪期中)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元。
(完整版)一元一次方程练习题及答案
一元一次方程和它的解法练习时间60分钟,满分100分)1.判断题:(1′+4′=5′)(1)判断下列方程是否是一元一次方程:①-3x-6x 2=7;( ) ②;31=+x x( )③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( ) (2)判断下列方程的解法是否正确: ①解方程3y-4=y+3解:3y-y=3+4,2y=7,y=72;( )②解方程:0.4x-3=0.1x+2解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )③解方程15123=--+x x解:5x+15-2x-2=10,3x=-3,x=-1;④解方程12.015.02-=-+-xx解:2x-4+5-5x=-1,-3x=-2,x=32.( )2.填空题:(2′×8=10′)(1)若2(3-a )x-4=5是关于x 的一元一次方程,则a ≠ . (2)关于x 的方程ax=3的解是自然数,则整数a 的值为: . (3)方程5x-2(x-1)=17 的解是 .(4)x=2是方程2x-3=m-x 21的解,则m= .(5)若-2x 2-5m +1=0 是关于x 的一元一次方程,则m= . (6)当y= 时,代数式5y+6与3y-2互为相反数.(7)当m= 时,方程65312215--=--x m x 的解为0.(8)已知a ≠0.则关于x 的方程3ab-(a+b)x=(a-b)x 的解为 . 3.选择题:(4′×5=20′) (1)方程ax=b 的解是( ).A .有一个解x=abB .有无数个解C .没有解D .当a ≠0时,x=ab(2)解方程43(34x-1)=3,下列变形中,较简捷的是( )A.方程两边都乘以4,得3(34x-1)=12B.去括号,得x-43=3C.两边同除以43,得34x-1=4 D.整理,得3434=-x(3)方程2-67342--=-x x 去分母得( ) A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7 C.12-2(2x-4)=-(x-7) D.以上答案均不对(4)若代数式21+x 比35x-大1,则x 的值是( ).A .13B .513C .8D .58(5)x=1是方程( )的解.A .-35.0815-=+x xB .03425233.16.049.0=-----x x xC .2{3[4(5x-1)-8]-2}=8D .4x+413=6x+454.解下列方程:(5′×7=35′)(1)7(2x-1)-3(4x-1)=4(3x+2)-1; (2)61(5y+1)+ 31(1-y)= 81(9y+1)+ 51(1-3y);(3)32[23(141-x )-421]=x+2; (4);1322213-=--+x x x(5);21644533313---+=+-y y y (6);214535.05.25.12.022.1=-----x x x(7);5.04314.0623.036--=-+-y y y (8)21{x-21[x-21(x-21)]}=1;5.解答下列各题:(6′×4=24′)(1)x 等于什么数时,代数式6323)1(221+-++x x x 与的值相等? (2)y 等于什么数时,代数式2439y y --的值比代数式 643--y y 的值少3? (3)当m 等于什么数时,代数式2m-315-m 的值与代数式327--m的值的和等于5?【素质优化训练】(1)若23234+x a 与43152+x a 是同类项,则x=.(2)已知2125=-a b a ,则a b=. (3)已知5243+=--+x y x y x ,用含x 的代数式表示,则y= .(4)当a= 时,方程14523-+=-ax a x 的解是x=0. (5)当m=时,方程mx 2+12x+8=0的一个根是x=-21.(6)方程4312-=-x x 的解为.(7)若(1-3x )2+mx -4=0,,则6+m 2= .(8)若a ≥0,且方程a+3x=10的解是自然数,则a= .(9)已知关于x 的方程21ax+5=237-x 的解x 与字母a 都是正整数,则a=.(10)已知方程2+-=-axb b a x 是关于x 的一元一次方程,则a,b 之间的关系是 .2.选择题(1)在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( )A .2cmB .5cmC .4cmD .1cm(2)若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ). A .a,b 为任意有理数 B .a ≠0 C .b ≠0 D .b ≠3(3)方程12-x =4x+5的解是( ).A .x=-3或x=-32B .x=3或x=32C .x=-32D .x=-3(4)下列方程 ①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个.A.1B.2C.3D.4(5)当x=2时,二次三项式3x 2+ax+8的值等于16,当x=-3时,这个二次三项式的值是( )A.29B.-13C.-27D.41 (6)方程x(x 2+x+1)-x(x 2-x-1)=2x 2-1的解是( ). A.21 B.- 21 C. 21或-21 D.无解 (7)若关于x 的方程10-4)2(35)3(--=+x k x x k 与方程8-2x=3x-2的解相同,则k 的值为( )A.0B.2C.3D.4 3.解下列方程我国邮政部门规定:国内平信100克以内(包括100克)每20克需贴邮票0.80元,不足20克重的以20克计算;超过100克的,超过部分每100克需加贴2.00元,不足100克的以100克计算.(1)寄一封重41克的国内平信,需贴邮票多少元?(2)某人寄一封国内平信贴了6.00元邮票,此信重约多少克?(3)有9人参加一次数学竞赛,每份答卷重14克,每个信封重5克,将这9份答卷分装两个信封寄出,怎样装才能使所贴邮票金额最少?参考答案【同步达纲练习】1.(1)×××√ (2) ×××√2.(1)3, (2)1或3, (3)x=5, (4)2, (5)51 (6)- 21; (7) 32; (8)x=23b.3.DBCBD4.(1)-1 (2)7; (3)-8; (4)13; (5)-3; (6);2315 (7);1916 (8)213.31 5.(1)54; (2)-1; (3)-25; (4)① 1;②-3516+m m 【素质优化训练】1.(1)6; (2)49;(3);35247+x (4)131; (5)-8; (6)3;(7)150;(8)1,4,7;(9)6;(10)b a -≠,且0ab ≠ 2.C D C A D B D3.(1)617; (2)-2.7; (3)144; (4)-;14123 (5);181051(6)3,-1.4.先求出x=6,再求出m=-165. 5.a ≥1.【生活实际运用】1.① 1.64 ② 200 ③一个信封装3份答卷,另一个信封装6份答卷,或一个装4份,另一个装5份。
一元一次方程方案选择问题
一元一次方程方案选择问题1.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?2.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内).若一个月内通话x分钟,两种通话方式的费用分别为y1元与y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?答案:7.解:方案一:获利140×4500=630000(元)方案二:获利15×6×7500+(140-15×6)×1000=725000(元)方案三:设精加工x 吨,则粗加工(140-x )吨. 依题意得140616x x -+=15解得x=60获利60×7500+(140-60)×4500=810000(元) 因为第三种获利最多,所以应选择方案三.8.解:(1)y 1=0.2x+50,y 2=0.4x .(2)由y 1=y 2得0.2x+50=0.4x ,解得x=250.即当一个月内通话250分钟时,两种通话方式的费用相同.(3)由0.2x+50=120,解得x=350由0.4x+50=120,得x=300因为350>300故第一种通话方式比较合算.。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.
一元一次方程的应用——方案选择问题专题练习(解析版)
一元一次方程的应用——方案选择问题专题练习一、单选题1、今年五一长假期间,某博物馆门票的收费标准如下:乐乐和欢欢两个家庭分别去该博物馆参观,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果乐乐家比欢欢家少花40元.则乐乐家购门票共花了()A. 200元B. 240元C. 260元D. 300元答案:C解答:设乐乐家花了x元,依题意,得:x+40=60×5,解得:x=260.选C.2、某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一-次购买的话,那么该公司一共可少付款()A. 3360元B. 2780元C. 1460元D. 1360元答案:D解答:如果购买金额是3万元,则实际付款是:30000×0.9=27000元>25200元;∴第二次购买的实际金额不超过3万,应享受9折优惠:25200÷0.9=28000,∴两次购买金额和是:7800+28000=35800元,如一次性购买则所付钱数是:30000×0.9+5800×0.8=31640元,∴可少付款7800+25200-31640=33000-31640=1360(元).选D.3、阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果乐乐同学一次性购书付款171元,那么他所购书的原价为()A. 190元或213.75元B. 213.75元C. 200元D. 190元或200元答案:A解答:设他所购书的原价为x元当100<x≤200时,由题意可得:90%x=171解得:x=190当x>200时,由题意可得:80%x=171解得:x=213.75综上:他所购书的原价为190元或213.75元.选A.4、一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员年卡,一年内健身20次,消费1500+100×20=3500元.若一年内在该健身俱乐部健身55次,则最省钱的方式为()A. 购买C类会员年卡B. 购买B类会员年卡C. 购买A类会员年卡D. 不购买会员年卡答案:A解答:购买A类会员年卡,一年内健身55次,消费:1500+100×55=7000(元)购买B类会员年卡,一年内健身55次,消费:3000+60×55=6300(元)购买C类会员年卡,一年内健身55次,消费:4000+40×55=6200(元)不购买会员年卡,一年内健身55次,消费:180×55=9900(元)∵6200<6300<7000<9900,∴最省钱的方式为购买C类会员年卡.选A.5、某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;欢欢在该超市两次购物分别付了90元和270元,如果欢欢把这两次购物改为一次性购物,则欢欢至少需付款()元A. 288B. 296C. 312D. 320答案:C解答:第一次购物可能有两种情况,这两种情况下付款方式不同(折扣率不同),①没有超过100元,即是90元,则实际购物为90;②一次性购物在100元(含100元)以上,350元(不含350元)以内,享受九折优惠,设实际购物为x元,依题意得:x×0.9=90,解得x=100元;第二次购物消费270元,满足一次性购物在100元(含100元)以上,350元(不含350元)以内,享受九折优惠;设第二次实质购物价值为x元,那么依题意有x×0.9=270,解得:x=300元;∴他两次购物的实质价值为90+300=390或100+300=400,均超过了350元,因此均可以按照8折付款:390×0.8=312(元),400×0.8=320(元),综上所述:如果欢欢把这两次购物改为一次性购物,则欢欢至少需付款312元;故答案为:C.6、某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?()A. 方案一B. 方案二C. 两种方案一样D. 工龄短的选方案一,工龄长的选方案二答案:B解答:第n年:方案一:12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永远比方案一,选方案二更划算;选B.二、填空题7、在甲、乙两家复印店打印文件,收费标准如下表所示:打印______张,两家复印店收费相同.答案:60解答:设打印数量为x张时,两家店收费一样,由题意可知x>20.依题意得:0.5×20+0.35(x-20)=0.4x解得x=60.故答案为:60.8、某超市十一优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款120元,第二次购物付款288元,若这两次购物合并成一次性付款可节省______元.答案:40.8或12解答:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得:x=320,两次所购物价值为120+320=440>300,∴享受9折优惠,因此应付440×90%=396(元).这两次购物合并成一次性付款可节省:120+288-396=12(元).(2)若第二次购物没有过300元,两次所购物价值为120+288=408(元),∵408>300,∴享受9折优惠,这两次购物合并成一次性付款可以节省:408×10%=40.8(元)故答案为:40.8或12.9、购买某原料有如下优惠方案:a.一次性购买金额不超过1万元不享受优惠;b.一次性购买超过1万元但不超过3万元给予9折优惠;c.一次性购买超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料款是______元.(2)如果另一人分两次购买,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料可比原先少付的金额是______元.(注:9折是指折后价格为原来的90%)答案:9900或11000;2000解答:(1)金额不超过1万元不享受优惠,则购买原材料是9900元;②9折优惠,则购买原材料的款是9900÷90%=11000元;(2)第一次购买原料的费用为8000元,第二次购买原料的费用为25200÷0.9=28000(元).设如果把两次购买的原料改为一次购买的话,那么一共可少付款x 元,根据题意得:8000+25200-x =30000×0.9+(8000+28000-30000)×0.7解得:x =2000.10、某超市在“十一”黄金周活动期间,推出如下购物优惠方案:①一次性购物在200元(不含200元)以内,不享受优惠;②一次性购物在200元(含200元)以上,400元(不含400元)以内,一律享受九折优惠; ③一次性购物在400元(含400元)以上,一律享受八折优惠;李兰妈妈在该超市两次购物分别付款189元和440元,如果李兰妈妈把这两次购物合并为一次性购物,则应付款______元.答案:591.2或608解答:设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元, 当0<x <200时,x =189;当200≤x <400时,0.9x =189,解得:x =210;∵0.8y =440,∴y =550.∴0.8(x +y )=591.2或608.故答案为:591.2或608.11、国家发展改革委表示,今年国庆中秋小长假中,居民消费需求集中释放,进一步巩固了消费回升的好势头.小长假期间,某商场推出回馈消费者的打折活动,具体优惠情况如表:某市民在该商场购买了一件原价400元的商品A 和一件原价x 元的商品B ,实际付费1006元.则x 的值可能为______(注:两件商品可以单独付款或一起付款)答案:760或857.5或807.5解答:①若0100x <≤时,合在一起付款,()4000.91006x +⨯=,解得717.78x ≈(不合题意),分开付款,4000.91006x ⨯+=,解得646x =(不合题意);②若100300x <≤时,合在一起付款,()4000.851006x +⨯=,解得783.53x ≈(不合题意),分开付款,4000.91006x ⨯+=,解得646x =(不合题意);③若300400x <≤时,合在一起付款,()4000.851006x +⨯=,解得783.53x ≈(不合题意),分开付款,4000.90.91006x ⨯+=,解得717.78x ≈(不合题意);④若400500x <≤时,合在一起付款,()4000.81006x +⨯=,解得857.5x =(不合题意),分开付款,4000.90.91006x ⨯+=,解得717.78x ≈(不合题意);⑤若500800x <≤时,合在一起付款,()4000.81006x +⨯=,解得857.5x =(不合题意),分开付款,4000.90.851006x ⨯+=,解得760x =,成立;⑥若800x >时,合在一起付款,()4000.81006x +⨯=,解得857.5x =,成立分开付款,4000.90.81006x ⨯+=,解得807.5x =,成立.故答案是:760或857.5或807.5.三、解答题12、某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用. 若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.答案:(1)篮球的单价是20元,排球的单价是15元;(2)选择方案一更省钱,见解答解答:(1)设排球的单价是x 元,则篮球的单价是(210)x -元,依题意,得:21035x x +-=,解得:15x =,21020x ∴-=,答:篮球的单价是20元,排球的单价是15元;(2)选择方案一更省钱,理由如下: 选择方案一所需费用为7.5(20151510)337.510⨯+⨯⨯=(元); 选择方案二所需最低费用为20152015151030360100⨯⨯+⨯-⨯=(元). 337.5360<,∴选择方案一更省钱.13、某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x 台(x >2).(1)若该客户按方案一购买,需付款______元.(用含x 的代数式表示);若该客户按方案二购买,需付款______元.(用含x 的代数式表示)(2)若x =5时,通过计算说明此时按哪种方案购买较为合算?(3)当x =5时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.答案:(1)200x +1200;180x +1440;(2)按方案一购买比较合算;(3)用一方案买2台微波炉送2电磁炉,用方案二购买3电磁炉.解答:(1)根据题意:若该客户按方案一购买,需付款:800×2+200(x -2)=200x +1200元;若该客户按方案二购买,需付款:90%×(800×2+200x )=180x +1440元;故答案为:200x +1200;180x +1440.(2)将x =5代入方案一的付款中得:200×5+1200=2200元,x =5代入方案二的付款中得:180×5+1440=2340元,∵2200元<2340元,∴当x =5时,按方案一购买比较合算.(3)若该客户按方案一购买微波炉2台送电磁炉2台;再按方案二购买电磁炉3台.付款金额为:800×2+200×3×90%=2140元.∵2140元<2200元,∴当x=5时,按此方案购买更为省钱.14、某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,(1)则选择方式一的总费用为______元,选择方式二的总费用为______元.(2)小亮一年内在此游泳馆游泳的次数为30次时,选择哪种方式更省钱,并说明理由.+,40x;(2)方式一更省钱,理由见解答答案:(1)20030x+,解答:(1)方式一总费用是:20030x方式二总费用是:40x,+,40x;故答案是:20030x(2)选择方式一省钱,理由如下:x=时,当30+⨯=+=,方式一:20030302009001100⨯=,方式二:40301200<,∵11001200∴方式一更省钱.15、某市电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:3元/时;(B)包月制:60元/月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费1.2元/时.(1)某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2)当某用户某月上网的时间为90小时,你认为采用哪种方式较为合算?(3)根据上网时间的不同,你认为采用哪种方式较为合算?答案:(1)计时制花费为:4.2x,包月制花费为:60+1.2x;(2)当某用户某月上网的时间为90小时,采用包月制比较划算;(3)当上网时间小于20小时,计时制划算,当上网时间等于20小时,两种方式一样划算,当上网时间大于20小时,包月制划算.解答:(1)计时制花费为:3 1.2 4.2xx x ,包月制花费为:60+1.2x ; (2)当某用户某月上网的时间为90小时,计时制花费为:4.290378元, 包月制花费为:60+1.2×90=168元,∴采用包月制比较划算;(3)当60 1.24.2x x ,解得20x , 当60 1.24.2x x ,解得20x >, 当60 1.24.2x x ,解得20x <,故当上网时间小于20小时,计时制划算,当上网时间等于20小时,两种方式一样划算,当上网时间大于20小时,包月制划算.16、甲乙两家商店出售两种同样品牌的乒乓球和球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一幅球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x 盒(不小于5)(1)若该班在甲商店购买,乒乓球拍需付款______元,乒乓球需付款______元(用含x 的代数式表示);若该班在乙商店购买,乒乓球拍需付款______元,乒乓球需付款______元(用含x 的代数式表示)(2)该班在甲商店购买共需付款______元(用含x 的代数式表示);该班在乙商店购买共需付款______元(用含x 的代数式表示)(3)若该班买30盒乒乓球,请您去买,你打算去其中哪家商店买?为什么?答案:(1)150,5(5)x -;135,4.5x(2)5125x +,4.5+135x(3)乙商店,见解答.解答:(1)依题意,乒乓球x 盒(不小于5)在甲商店购买乒乓球拍需付款305150⨯=元,乒乓球需付款5(5)x -元在乙商店购买乒乓球拍需付款3050.9135⨯⨯=元,乒乓球需付款50.9 4.5x x ⨯=元(2)该班在甲商店购买共需付款1505(5)5125x x +-=+元,该班在乙商店购买共需付款4.5135x +元(3)当选择甲商店时,需付款530125275⨯+=元;当选择乙商店时,需付款4.530135270⨯+=元则选择乙商店更划算一些,故去乙商店买.17、德强技术公司开发一批新产品,须经加工后投放市场.现有A 和B 两家工厂想要生产这批新品.已知A 厂单独加工这批新品比B 厂单独加工多用12天,A 厂每天可以加工15件产品B 厂每天可以加工20件新品.如果A 厂加工产品,德强技术公司每天需付120元;如果B 厂加工产品,德强技术公司每天需付150元(1)求德强技术公司开发的这批新产品有多少件.(2)方案一,由A 厂全部生产方案二,由B 厂全部生产方案三,由A 厂独做m 天后,B 厂再单独做,两厂共用40天完成.请计算以上方案,帮助德强技术公司选取最省钱的方案.答案:(1)720件;(2)方案二解答:(1)设德强技术公司开发的这批新产品有x 件121520x x =+ 解得720x =答:德强技术公司开发的这批新产品有720件.(2)方案一:720120576015⨯=(元); 方案二:720150540020⨯=(元); 方案三:()15m 40m 20720+-⨯=解得16m =()1612040161505520⨯+-⨯=(元)540055205760<<,∴选方案二.18、张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000-5000)×80%+(15000-10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.求该品牌电脑的原价是多少元/台?答案:(1)张老师实际付款6900元;(2)该品牌电脑的原价是6500元/台.解答:(1)5000×910+(8000-5000)×810=6900(元)答:张老师实际付款6900元.(2)设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000×910+(x-5000)×810=57004500+0.8x-4000=57000.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.19、某市出租车的计费标准如下:行程3km以内(含3km),收费7元.行程超过3km,如果往返乘同一出租车并且中间等候时间不超过3min,超过3km的部分按每千米1.6元计费,另加收1.6元等候费;如果返程时不再乘坐此车,超过3km的部分按每千米2.4元计费.小文等4人从A处到B处办事,在B处停留时间在3min之内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.(1)若A ,B 两地相距1.2km ,方案一付费______元,方案二付费______元;(2)若A ,B 两地相距2.5km ,方案一付费______元,方案二付费______元;(3)设A ,B 两地相距xkm (x <12),请问选择那种方案更省钱?答案:(1)15,8.6;(2)15,11.8;(3)当0<x <5时,方案二更省;当x =5时,方案一、二一样;当5<x <12时,方案一更省.解答:(1) 1.2<3,∴方案一:7+42=7+8=15⨯(元),方案二:7+1.6=8.6(元),故答案为:15,8.6.(2)∵2.5<3,∴方案一付费:7+4×2=15元,方案二付费:()7+53 1.6 1.611.8-⨯+=,故答案为:15,11.8.(3)当0<x ≤1.5时,方案一:7+42=7+8=15⨯元;方案二:7+1.6=8.6元,∴方案二更省钱;当1.5<x ≤3时,方案一:7+42=7+8=15⨯元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x =3,最大费用为:13.4元, 方案二:13.4<15∴方案二更省钱;当x >3时;方案一:()7 2.438 2.47.8x x +-+=+;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+;当2.47.8 3.2 3.8x x +=+时,解得:5x =;∴当x =5时,两者均可,当2.47.8x +<3.2 3.8x +时,0.8x ∴-<4-,∴x >5,∴x >5时方案一更省,当2.47.8x +>3.2 3.8x +时,0.8x ∴->4-,∴x <5,∴x <5时,方案二更省;综上可得:当0<x <5时,方案二更省;当x =5时,方案一、二一样;当5<x <12时,方案一更省.。
一元一次方程章节常考选择40个附详细答案解析
咸课堂一元一次方程章节常考选择40个附详细答案解析一元一次方程章节常考选择40个附详细答案解析一.选择题(共40小题)1.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣52.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个3.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8 4.若m满足方程|2019﹣m|=2019+|m|,则|m﹣2020|等于()A.m﹣2020B.﹣m﹣2020C.m+2020D.﹣m+2020 5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.06.下列方程中,是一元一次方程的是()A.x+2=2B.x+y=2C.x2﹣2x=1D.=2 7.下列变形错误的是()A.若a=b,则3+a=3+b B.若a=b,则ac=bcC.若ac=bc(c≠0),则a=b D.若a2=b2,则a=b8.下列利用等式的基本性质变形错误的是()A.如果x﹣3=7,那么x=7+3B.由2x=10得x=5C.如果x+1=y﹣4,那么x﹣y=﹣4﹣1D.如果﹣x=4,那么x=﹣29.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.一个有理数不是整数就是分数C.是单项式D.2是方程2x+1=4的解10.方程,去分母得到了8x﹣4﹣3x+3=1,这个变形()A.分母的最小公倍数找错了B.漏乘了不含分母的项C.分子中的多项式没有添括号,符号不对D.无错误11.已知关于x的方程3x+2a+1=0的解是﹣1,则a的值是()A.﹣2B.﹣1C.1D.212.下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+1813.如果关于x的方程x﹣3=3x+7与3(x+6)+4k=11的解相同,则求k为()A.2B.﹣2C.1D.不确定14.将方程=1去分母得到2(2x﹣1)﹣3x+1=6,错在()A.分母的最小公倍数找错B.去分母时漏乘项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同15.在解方程+x=时,在方程的两边同时乘以6,去分母正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+6x=3(3x+1)16.已知关于x的一元一次方程(k﹣2)x+2=0的解是x=2,则k的值为()A.﹣1B.0C.1D.217.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a*b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3*1=2.若2*3=(2x+1)*2,则x的值为()A.0,2B.1,2C.1,0D.1,318.定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.219.若关于x的方程3x+5=m与x﹣2m=5有相同的解,则x的值是()A.3B.﹣3C.﹣4D.420.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣21.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.22.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或23.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.324.鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”图是嘉淇解题过程,需要补足横线上符号所代表的内容,则下列判断不正确的是()解:设鸡有x只,那么兔子有□只.因为☆+兔的足数=94,所以列方程为〇x+△(35﹣x)=94,解这个方程,得x=23,从而35﹣23=12.答:鸡有23只,兔子有12只.A.□代表(35﹣x)B.☆代表鸡的足数C.〇代表2D.△代表225.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣2 26.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=527.将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同28.若关于x的方程ax﹣4=20+a的解为x=5,则a的值为()A.﹣6B.﹣4C.6D.4 29.下列结论正确的是()A.﹣3ab2和b2a是同类项B.a不是单项式C.a一定比﹣a大D.x=3是方程﹣x+1=4的解30.根据等式的性质,下列变形正确的是()A.由﹣x=y,得x=2y B.由3x=2x+2,得x=2C.由2x﹣3=3x,得x=3D.由3x﹣5=7,得3x=7﹣5 31.下列变形符合等式性质的是()A.如果2x﹣3=7,那么2x=7﹣3B.如果,那么x=﹣3C.如果﹣2x=5,那么x=5+2D.如果3x﹣2=x+1,那么3x﹣x=1﹣232.已知(m﹣3)x|m﹣2|+6=0是关于x的一元一次方程,则m的值为()A.1B.2C.3D.1或3 33.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则3a﹣5=2b﹣5C.若3a=2b,则D.若3a=2b,则9a=4b34.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+ 35.已知x=y,则下列各式中,不一定成立的是()A.x﹣2=y﹣2B.x+C.﹣3x=﹣3y D.36.下列式子中:①5x+3y=0,②6x2﹣5x,③3x<5,④x2+1=3,⑤+2=3x.是方程的有()A.1个B.2个C.3个D.4个37.若关于x的方程2x﹣(2a﹣1)x+3=0的解是x=3,则a=()A.1B.0C.2D.338.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是()A.2B.﹣3C.3D.﹣239.方程=4(x﹣1)的解为x=3,则a的值为()A.2B.22C.10D.﹣240.已知关于x的方程3x+2a=2的解是x=a﹣1,则a的值是()A.1B.C.D.﹣1一元一次方程章节常考选择40个详细答案解析一.选择题(共40小题)1.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣5【解答】解:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A.2.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.3.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8【解答】解:3π+4≠5中不含未知数,所以错误.故选:B.4.若m满足方程|2019﹣m|=2019+|m|,则|m﹣2020|等于()A.m﹣2020B.﹣m﹣2020C.m+2020D.﹣m+2020【解答】解:∵m满足方程|2019﹣m|=2019+|m|,∴m≤0,∴|m﹣2020|=|m|+|﹣2020|=﹣m+2020.故选:D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0【解答】解:根据题意得:|a﹣2|=1,解得a=3或a=1,因为a﹣3≠0,所以a≠3,综上可知:a=1.故选:B.6.下列方程中,是一元一次方程的是()A.x+2=2B.x+y=2C.x2﹣2x=1D.=2【解答】解:A.x+2=2,是一元一次方程,故A符合题意;B.x+y=2,是二元一次方程,故B不符合题意;C.x2﹣2x=1,是一元二次方程,故C不符合题意;D.=2是分式方程,故D不符合题意;故选:A.7.下列变形错误的是()A.若a=b,则3+a=3+b B.若a=b,则ac=bcC.若ac=bc(c≠0),则a=b D.若a2=b2,则a=b【解答】解:A.若a=b,则3+a=3+b,故本选项不符合题意;B.若a=b,则ac=bc,故本选项不符合题意;C.若ac=bc,当c≠0时,a=b,故本选项符合题意;D.若a2=b2,则a=b或a=﹣b,故本选项符合题意;故选:D.8.下列利用等式的基本性质变形错误的是()A.如果x﹣3=7,那么x=7+3B.由2x=10得x=5C.如果x+1=y﹣4,那么x﹣y=﹣4﹣1D.如果﹣x=4,那么x=﹣2【解答】解:如果x﹣3=7,那么x=7+3,原变形正确,故此选项不符合题意;如果2x=10,那么x=5,原变形正确,故此选项不符合题意;如果x+1=y﹣4,那么x﹣y=﹣4﹣1,原变形正确,故此选项不符合题意;如果﹣x=4,那么x=﹣8,原变形错误,故此选项符合题意;故选:D.9.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.一个有理数不是整数就是分数C.是单项式D.2是方程2x+1=4的解【解答】解:A、连接A,B,线段AB的长度是AB的距离,故此选项不符合题意;B、整数和分数统称为有理数,一个有理数不是整数就是分数,故此选项符合题意;C、是多项式,故此选项不符合题意;D、当x=2时,2x+1=2×2+1=5≠4,故此选项不符合题意;故选:B.10.方程,去分母得到了8x﹣4﹣3x+3=1,这个变形()A.分母的最小公倍数找错了B.漏乘了不含分母的项C.分子中的多项式没有添括号,符号不对D.无错误【解答】解:方程﹣=1,左右两边同乘12,去分母得:4(2x﹣1)﹣3(x﹣1)=12,去括号得:8x﹣4﹣3x+3=12,题中的变形漏乘了不含分母的项.故选:B.11.已知关于x的方程3x+2a+1=0的解是﹣1,则a的值是()A.﹣2B.﹣1C.1D.2【解答】解:将x=﹣1代入得:﹣3+2a+1=0,解得:a=1.故选:C.12.下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+18【解答】解:A、4x﹣3=3x+2变形得:4x﹣3x=2+3,不符合题意;B、3x=2变形得:x=,不符合题意;C、2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3,不符合题意;D、x﹣1=x+3变形得:4x﹣6=3x+18,符合题意.故选:D.13.如果关于x的方程x﹣3=3x+7与3(x+6)+4k=11的解相同,则求k为()A.2B.﹣2C.1D.不确定【解答】解:∵x﹣3=3x+7,∴x=﹣5,将x=﹣5代入3(x+6)+4k=11得:3+4k=11,∴k=2.故选:A.14.将方程=1去分母得到2(2x﹣1)﹣3x+1=6,错在()A.分母的最小公倍数找错B.去分母时漏乘项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同【解答】解:将方程=1去分母得到2(2x﹣1)﹣3x+1=6,错在去分母时分子部分没有加括号.故选:C.15.在解方程+x=时,在方程的两边同时乘以6,去分母正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+6x=3(3x+1)【解答】解:在解方程+x=时,在方程的两边同时乘以6,去分母正确的是:2(x﹣1)+6x=3(3x+1).故选:B.16.已知关于x的一元一次方程(k﹣2)x+2=0的解是x=2,则k的值为()A.﹣1B.0C.1D.2【解答】解:把x=2代入(k﹣2)x+2=0,得2(k﹣2)+2=0.解得k=1.故选:C.17.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a*b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3*1=2.若2*3=(2x+1)*2,则x的值为()A.0,2B.1,2C.1,0D.1,3【解答】解:∵2*3=(2x+1)*2,∴(2x+1)*2=3,根据数表,可得:2x+1=3或2x+1=1,解得:x=1或x=0.故选:C.18.定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.2【解答】解:根据题意(3*x)+(x*3)=14,可化为:(3x+6)+(3x+2x)=14,解得x=1.故选:B.19.若关于x的方程3x+5=m与x﹣2m=5有相同的解,则x的值是()A.3B.﹣3C.﹣4D.4【解答】解:3x+5=m,∴m=3x+5①;又x﹣2m=5,∴m=②;令①=②,∴3x+5=,6x+10﹣x+5=0,∴x=﹣3,故选:B.20.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣【解答】解:3x+5=11,移项,得3x=11﹣5,合并同类项,得3x=6,系数化为1,得x=2,把x=2代入6x+3a=22中,得6×2+3a=22,∴a=,故选:B.21.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.【解答】解:∵|2x﹣6|=0,∴2x﹣6=0,解得:x=3.故选:A.22.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或【解答】解:因为方程|x﹣|=1,所以x﹣=±1,解得x=或x=﹣,因为关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,所以解方程x+2=2(m﹣x)得,m=,当x=时,m=,当x=﹣时,m=.所以m的值为:或.故选:A.23.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.3【解答】解:∵|x﹣|=0,∴x=,把x代入方程mx+2=2(m﹣x)得:m+2=2(m﹣),解之得:m=2;故选:B.24.鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”图是嘉淇解题过程,需要补足横线上符号所代表的内容,则下列判断不正确的是()解:设鸡有x只,那么兔子有□只.因为☆+兔的足数=94,所以列方程为〇x+△(35﹣x)=94,解这个方程,得x=23,从而35﹣23=12.答:鸡有23只,兔子有12只.A.□代表(35﹣x)B.☆代表鸡的足数C.〇代表2D.△代表2【解答】解:设鸡有x只,则兔子有(35−x)只,∵鸡的足数+兔的足数=94,∴列方程为2x+4(35−x)=94,解这个方程,得:x=23,从而35−23=12,∴鸡有23只,兔子有12只,∴□代表(35−x),☆代表鸡的足数,〇代表2,△代表4,故选:D.25.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣2【解答】解:根据题意得:a+2=1,解得:a=﹣1,b+1=3,解得:b=2,把a=﹣1,b=2代入方程ax+b=0得:﹣x+2=0,解得:x=2,故选:C.26.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.27.将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同【解答】解:方程去分母,得,3(y+2)+2(2y﹣1)=12,去括号得,3y+6+4y﹣2=12,∴错在分子部分没有加括号,故选:C.28.若关于x的方程ax﹣4=20+a的解为x=5,则a的值为()A.﹣6B.﹣4C.6D.4【解答】解:把x=5代入方程ax﹣4=20+a得:5a﹣4=20+a,解得:a=6,故选:C.29.下列结论正确的是()A.﹣3ab2和b2a是同类项B.a不是单项式C.a一定比﹣a大D.x=3是方程﹣x+1=4的解【解答】解:A、﹣3ab2和b2a是同类项,原说法正确,故本选项符合题意;B、a是单项式,原说法错误,故本选项不符合题意;C、当a=0时,a=﹣a,原说法错误,故本选项不符合题意;D、x=﹣3是方程﹣x+1=4的解,原说法错误,故本选项不符合题意.故选:A.30.根据等式的性质,下列变形正确的是()A.由﹣x=y,得x=2y B.由3x=2x+2,得x=2C.由2x﹣3=3x,得x=3D.由3x﹣5=7,得3x=7﹣5【解答】解:A、由﹣x=y,得﹣x=2y,故不符合题意;B、由3x=2x+2,得x=2,符合题意;C、由2x﹣3=3x,得x=﹣3,故不符合题意;D、由3x﹣5=7,得3x=7+5,故不符合题意;故选:B.31.下列变形符合等式性质的是()A.如果2x﹣3=7,那么2x=7﹣3B.如果,那么x=﹣3C.如果﹣2x=5,那么x=5+2D.如果3x﹣2=x+1,那么3x﹣x=1﹣2【解答】解:A、等式2x﹣3=7的两边都加3,可得2x=7+3,原变形错误,故此选项不符合题意;B、等式﹣x=1的两边都乘﹣3,可得x=﹣3,原变形正确,故此选项符合题意;C、等式﹣2x=5的两边都除以﹣2,可得x=﹣,原变形错误,故此选项不符合题意;D、等式3x﹣2=x+1的两边都加﹣x+2,可得3x﹣x=1+2,原变形错误,故此选项不符合题意.故选:B.32.已知(m﹣3)x|m﹣2|+6=0是关于x的一元一次方程,则m的值为()A.1B.2C.3D.1或3【解答】解:∵(m﹣3)x|m﹣2|+6=0是关于x的一元一次方程,∴|m﹣2|=1且m﹣3≠0,∴m=1,故选:A.33.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则3a﹣5=2b﹣5C.若3a=2b,则D.若3a=2b,则9a=4b【解答】解:A、在3a=2b两边同时加2,即得3a+2=2b+2,故A不符合题意;B、在3a=2b两边同时减5,即得3a﹣5=2b﹣5,故B不符合题意;C、在3a=2b两边同时除以6,即得=,故C不符合题意;D、将3a=2b两边平方,得9a2=4b2,不能得到9a=4b,故D符合题意;故选:D.34.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+【解答】解:由等式3a=2b+5,可得:3a﹣5=2b,3a+1=2b+6,a=,当c=0时,无意义,不能成立,故选:D.35.已知x=y,则下列各式中,不一定成立的是()A.x﹣2=y﹣2B.x+C.﹣3x=﹣3y D.【解答】解:当m=0时,=无意义,故D不一定成立,故选:D.36.下列式子中:①5x+3y=0,②6x2﹣5x,③3x<5,④x2+1=3,⑤+2=3x.是方程的有()A.1个B.2个C.3个D.4个【解答】解:①5x+3y=0,是方程;②6x2﹣5x,是多项式,不是方程;③3x<5,是不等式,不是方程;④x2+1=3,是方程;⑤+2=3x是方程.所以方程有①④⑤,共3个.故选:C.37.若关于x的方程2x﹣(2a﹣1)x+3=0的解是x=3,则a=()A.1B.0C.2D.3【解答】解:把x=3代入方程得到:6﹣3(2a﹣1)+3=0解得:a=2.故选:C.38.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是()A.2B.﹣3C.3D.﹣2【解答】解:把x=﹣3代入方程得:k﹣2k+3=5,解得:k=﹣2.故选:D.39.方程=4(x﹣1)的解为x=3,则a的值为()A.2B.22C.10D.﹣2【解答】解:把x=3代入原方程得:解得:a=10故选:C.40.已知关于x的方程3x+2a=2的解是x=a﹣1,则a的值是()A.1B.C.D.﹣1【解答】解:根据题意得:3(a﹣1)+2a=2,解得a=1故选:A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程-方案选
择类-答案版
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
方案设计问题
1、某通讯公司推出了甲、乙两种市内移动通讯业务。
甲种使用者需每月缴纳15元月租费,然后每通话1分钟,再付花费元;乙种使用者不缴纳月租费,每通话1分钟,付花费元。
根据一个月的通话时间,选择哪种方式更优惠
解:设通话时间为x,则甲种使用者每月需缴费(15+)元;乙种使用者每月需缴费()元。
当两种方式付费相同时有:15+=,
解得:x=50
即:当通话时间在50分钟时两种方式付费相同
当你通话大于50分钟时第一种方式更省钱;当你通话小于50分钟时第二种方式更省钱答:当通话时间在50分钟时两种方式付费相同;当你通话大于50分钟时第一种方式更省钱;当你通话小于50分钟时第二种方式更省钱。
2、已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里元计费。
(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费(列代数式,不化简)(2)某游客乘出租车从客运中心到三星堆,付了车费元,试估算从客运中心到三星堆大约有多少公里
解:(1)该乘客乘车行驶x公里(x>2)中,前2公里收费为2元;超过了(x-2)公里,收费为(x-2)×元,共应付车费2+(x-2)×
答:他应付2+(x-2)×元车费。
(2)>2,所以该游客乘车里程超过了2公里,根据题意可列方程:2+(x-2)*=
解得:x=8
答:从客运中心到三星堆大约有8公里。
3、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多为什么
解:第三种方案获利最多,原因如下:
方案一:因为每天粗加工16吨,140吨可以在15天内加工完,总利润W 1=4500×140=630000(元)
方案二:15天可以加工6×15=90吨,说明还有50吨需要在市场直接销售,
总利润W 2=7500×90+1000×50=725000(元);
方案三:现将x 吨进行精加工,将(140-x )吨进行粗加工,
1516
1406=-+x x ,解得x=60. 总利润W 3=7500×60+4500×80=810000(元)
答:所以,第三种方案获利最多。
4、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案 解:按购A ,B 两种,B ,C 两种,A ,C 两种电视机这三种方案分别计算,设购A 种电视机x 台,则B 种电视机y 台.
(1)①当选购A ,B 两种电视机时,B 种电视机购(50-x )台,根据题意可列方程: 1500x+2100(50-x )=90000
解得:x=25 50-x=25
②当选购A ,C 两种电视机时,C 种电视机购(50-x )台,根据题意可列方程:
1500x+2500(50-x )=90000
解得:x=35 50-x=15
③当购B ,C 两种电视机时,C 种电视机为(50-y )台.根据题意可列方程:
2100y+2500(50-y )=90000
解得:4y=350,不合题意,舍去
答:可选两种方案:一是购A ,B 两种电视机25台;二是购A 种电视机35台,C 种电视机15台.
(2)若选择(1)①,可获利150×25+250×15=8750(元)
若选择(1)②,可获利150×35+250×15=9000(元)
答:故为了获利最多,选择第二种方案.
5、某公园门票价格规定如下:
某年级(1)、(2)个班共104人去公园玩儿,其中(1)班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生
(2)如果两班联合起来作为一个团体购票,可省多少钱
(3)如果(1)班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱
解:(1)设(1)班有x人,则(2)班人数为(104-x),根据题意可列方程:
解得:
(2)班人数:
答:(1)班有48人,(2)班有56人。
(2)两班联合起来共104人,每张票价为9元,则购票所需共为:元可省钱:元
答:可以省304元;
(3)按13元/张购票时,需,按11元/张购票时,需
所以,按按11元/张购票更省钱。
答:(1)班买51张票最省钱.。