中学数学竞赛中常用的几个重要定理资料

合集下载

数学竞赛知识点总结归纳

数学竞赛知识点总结归纳

数学竞赛知识点总结归纳数学竞赛是广泛开展的一种竞赛性学科竞赛活动,在全国范围内得到了广泛的推广和支持。

数学竞赛知识点涉及范围广泛,内容丰富,包括数论、代数、几何、概率统计等多个方面的知识。

本文将对数学竞赛的一些重要知识点进行总结和归纳,以帮助竞赛选手更好地掌握相关知识,提高竞赛表现。

一、数论1.1 整数的性质整数的性质是数论中的基本知识。

其中包括奇数、偶数、素数、合数等概念。

奇数是指不能被2整除的数,偶数是指可以被2整除的数,素数是指除了1和本身外没有其他因数的数,合数是指除了1和本身外还有其他因数的数。

1.2 除法算法除法算法包括整除算法和余数算法。

整除算法是指对两个整数进行除法运算,结果是一个整数,没有余数。

余数算法是指对两个整数进行除法运算,结果是一个整数和一个余数。

1.3 最大公约数和最小公倍数最大公约数是指两个或多个整数中最大的公约数,最小公倍数是指两个或多个整数中最小的公倍数。

最大公约数和最小公倍数是数论中基本的概念,应用广泛。

1.4 质因数分解任何一个正整数必能由几个素数相乘而得。

这几个素数叫做这个正整数的质因数,并且这几个质因数只有一种顺序。

数学中叫做质因数分解定理。

1.5 同余定理同余定理是数论中的重要定理。

同余定理是指对于任意整数a、b、m,如果a与b对模m同余,那么a与b相减之后得到的差也对模m同余。

1.6 途中数途中数指一个数只有1和它本身两个因素,这个数称为素数。

途中数包括2、3、5、7、11、13等,它们被称为素数。

二、代数2.1 一元二次方程一元二次方程是代数中的重要概念。

一般形式为ax^2+bx+c=0,求解一元二次方程的方法有配方法、因式分解、求和差、公式法等多种。

2.2 因式分解因式分解是指将多项式分解成比较简单的乘积的过程。

因式分解是代数中常见的求解方法。

2.3 多项式的运算多项式包括加法、减法、乘法、除法等运算。

多项式的运算是代数中的基本知识,是解决多项式问题的重要方法。

初中数学竞赛数论定理

初中数学竞赛数论定理

初中数学竞赛数论定理数论是数学的一个重要分支,它研究的是整数之间的性质和关系。

在中学阶段数学竞赛中,数论是一个必考的难点,其中数论定理是必须掌握的内容。

下面就来讲述一下中学数学竞赛中常考的数论定理。

1. 质数分解定理任意一个自然数都可以唯一分解成若干个质数的积。

例如,24=2×2×2×3,而28=2×2×7。

在数论中,质数是自然数中只能够被1和其本身整除的数,2、3、5、7、11、13、17等等都是质数。

而将一个自然数n分解成若干个质数的积,又称为n的质因数分解式。

2. 最大公约数定理对于任意两个自然数a和b(a≠0或b≠0),有:它们的最大公约数(Greatest Common Divisor,缩写为GCD)等于它们的公因数中最大的一个。

例如,GCD(18,24)=6,因为18的因数有1、2、3、6、9和18,而24的因数有1、2、3、4、6、8、12和24,它们的公因数有1、2、3和6,而其中最大的一个就是6,即GCD(18,24)=6。

4. 模运算定理(欧拉定理)当a和n是互质的正整数时,有a^(φ(n)) ≡ 1(mod n),其中φ(n)代表n的欧拉函数,即小于n的正整数中与n互质的数的个数。

例如,当a=2、n=3时,φ(n)=2,有2^(φ(n))=2^2=4,而4-1=3是3的倍数,因此2^(φ(n)) ≡ 1(mod n),即2^(φ(n)) ≡ 1(mod 3)。

5. 费马小定理当p是一个质数,a是一个正整数时,有a^(p-1) ≡ 1(mod p)。

以上就是中学数学竞赛中常考的数论定理。

掌握好这些定理,将有利于解决数论问题。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

imo中的问题定理与方法

imo中的问题定理与方法

imo中的问题定理与方法IMO(国际数学奥林匹克竞赛)是世界上最具影响力的数学竞赛之一,旨在培养学生的数学思维能力和解决问题的能力。

其中的问题定理与方法涉及数论、几何、代数等多个数学领域,下面将介绍一些与之相关的参考内容。

数论问题是IMO中经常出现的类型之一。

对于数论问题,学生需要掌握一些基本的定理和方法。

其中,费马小定理是一个重要的数论定理,它指出如果p是一个素数,a是一个整数,那么a的p次方与a模p同余。

孙子定理是另一个常用的定理,它用于求解一类同余方程。

此外,欧几里得算法、中国剩余定理、RSA加密算法等也是解决数论问题时常用的方法和技巧。

在几何问题中,学生需要了解一些基本的几何定理和公式。

例如,勾股定理是解决直角三角形问题的基本工具。

海伦公式和三角形面积公式可以用来求解各种三角形的面积。

对于平面几何问题,学生需要掌握直线与圆的问题解决方法,如相交、切线、切点等问题。

代数问题在IMO中也是常见的。

学生需要掌握代数方程的解法,如一元二次方程的求解方法、韦达定理和柯西不等式等。

此外,排列组合与概率也是常见的代数问题类型。

学生需要了解排列组合的基本原理,如乘法原理、加法原理和排列组合计数等。

解决IMO问题的方法通常包括分析问题、归纳法、反证法等。

学生需要学会分析问题的关键点,提取问题的核心信息,并通过归纳法来总结经验和规律。

反证法在解决一些假设性问题时常用,通过推理和推导来证明问题的正确性。

在解题过程中,学生还需要培养一些技巧和策略。

例如,合理利用图形信息,将复杂的问题转化为简单的几何图形或代数方程。

学会运用特殊值法或特殊构造法,通过假设一些特殊情况来辅助解题。

除了理论知识,对于参加IMO的学生来说,实践和经验也是非常重要的。

解决数学问题是一个长期的过程,需要不断的练习和思考。

参加国内的数学竞赛,如全国中学生数学奥林匹克竞赛、亚洲太平洋地区数学奥林匹克竞赛等,可以提高解题的技巧和水平。

总之,IMO中的问题定理与方法涉及到多个数学领域,如数论、几何、代数等。

高中数学竞赛讲义

高中数学竞赛讲义

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛〔一试〕所涉及的知识范围不超出教育部2000年【全日制普通高级中学数学教学大纲】中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试〔二试〕与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛根底知识第一章 集合与简易逻辑一、根底知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否那么称x 不属于A ,记作A x ∉。

赣县中学高中数学竞赛平面几何第9九讲托定理勒密

赣县中学高中数学竞赛平面几何第9九讲托定理勒密

第九讲托勒密(Ptolemy)定理一、知识要点:1、托勒密定理:圆内接凸四边形两组对边乘积之和等于两条对角线之积,即已知,如图,四边形ABCD为圆内接凸四边形,则有 AB·CD+AD·BC =A C·BD ADB C托勒密定理的逆定理:如果凸四边形的两组对边的乘积之和等于对角线之积,那么这个四边形是圆内接四边形。

即:如图,若AB·CD+AD·BC =A C·BD,则A、B、C、D四点共圆。

ADB C托勒密定理的推广:在任意凸四边形ABCD中,有AB·CD+AD·BC ≥A C·BD,当且仅当ABCD四点共圆时取等号。

DAB C二、要点分析:托勒密定理可以用于线段长的转换,其逆定理可用于证明四点共圆。

三、 例题讲解:例1、设ABCD 为圆内接正方形,P 为弧DC 上的一点,求证:PA(PA+PC)=PB(PB+PD) PD CA B例2、如图,设P 、Q 为平行四边形ABCD 的边AB 、AD 上的两点,APQ ∆的外接圆交对角线AC 于R ,求证:A P ·AB+AQ ·AD=AR ·RCDA B CQP R例3、已知ABC ∆中,C B ∠=∠2,求证:AC 2=AB 2+AB ·BCAB C例4、如图所示,已知两同心圆O,四边形ABCD 内接于内圆,AB 、BC 、CD 、DA 的延长线交外圆于A 1、B 1、C 1、D 1,若外圆的半径是内圆的半径的2倍,求证:四边形A 1B 1C 1D 1的周长≥四边形ABCD 的周长的2倍,并确定等号成立的条件。

D 1例5、已知ABC ∆中,AB>AC,A ∠的一个外角平分线交ABC ∆的外接圆于点E,过E 作EF ⊥AB,垂足为F (如图),求证:2AF=AB-ACABC EF第九讲 托勒密(Ptolemy )定理练习1、 如图,已知圆内接正五边形ABCDE,若P 为弧AB 上一点,求证:PA+PD+PB=PE+PC AB C D EP2、 ABCD 为圆内接四边形,DC=BC ,对角线DB 与AC 交于E,若CE :EA=1:3,AB+AD=m,求BD 的长。

平面几何名定理、名题与竞赛题

平面几何名定理、名题与竞赛题

平面几何名定理、名题与竞赛题江苏省常州高级中学 顾九华平面几何在其漫长的发展过程中,得出了大量的定理,积累了大量的题目,其中很多题目都是大数学家的大手笔,这些题目本身就是典范,这些题目的解决方法则更是我们学习平面几何的圭臬.通过学习这些题目,大家可以体会到数学的美.而且这些题目往往也是数学竞赛命题的背景题,在很多竞赛题中都可以找到他们的身影.本讲及下讲拟介绍几个平几名题及其应用.定理1 (Ptolemy 定理)圆内接四边形对角线之积等于两组对边乘积之和;(逆命题成立) 分析 如图,即证AC ·BD =AB ·CD +AD ·BC .可设法把 AC ·BD 拆成两部分,如把AC 写成AE +EC ,这样,AC ·BD 就拆成了两部分:AE ·BD 及EC ·BD ,于是只要证明AE ·BD =AD ·BC 及EC ·BD =AB ·CD 即可.证明 在AC 上取点E ,使∠ADE =∠BDC , 由∠DAE =∠DBC ,得⊿AED ∽⊿BCD .∴ AE ∶BC =AD ∶BD ,即AE ·BD =AD ·BC . ⑴ 又∠ADB =∠EDC ,∠ABD =∠ECD ,得⊿ABD ∽⊿ECD . ∴ AB ∶ED =BD ∶CD ,即EC ·BD =AB ·CD . ⑵ ⑴+⑵,得 AC ·BD =AB ·CD +AD ·BC .说明 本定理的证明给证明ab =cd +ef 的问题提供了一个典范.用类似的证法,可以得到Ptolemy 定理的推广(广义Ptolemy 定理):对于一般的四边形ABCD ,有AB ·CD +AD ·BC ≥AC ·BD .当且仅当ABCD 是圆内接四边形时等号成立.例1 (1987年第二十一届全苏)设A 1A 2A 3…A 7是圆内接正七边形,求证: 1A 1A 2=1A 1A 3+1A 1A 4. 证明 连A 1A 5,A 3A 5,并设A 1A 2=a ,A 1A 3=b ,A 1A 4=c . 本题即证1a =1b +1c.在圆内接四边形A 1A 3A 4A 5中,有A 3A 4=A 4A 5=a ,A 1A 3=A 3A 5=b ,A 1A 4=A 1A 5=c .于是有ab +ac =bc ,同除以abc ,即得1a =1b +1c,故证. 例2.(美国纽约,1975)证明:从圆周上一点到圆内接正方形的四个顶点的距离不可能都是有理数. 分析:假定其中几个是有理数,证明至少一个是无理数.证明:设⊙O 的直径为2R ,不妨设P 在⌒AD 上,则∠APB =45︒,设∠PBA =α,则∠P AB =135︒-α.若P A =2R sin α及PC =2R sin(90︒-α)=2R cos α为有理数, 则 PB =2R sin ∠P AB =2R sin(135︒-α)=2R (22cos α+22sin α)=2R (sin α+cos α)即为无理数. 或用Ptolemy 定理:PB·AC=P A·BC+PC·AB .⇒2PB=P A+PC .故P A 、PB 、PC 不能同时为有理数.例3.⑴ 求证:锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. ⑵ 若∆ABC 为直角三角形或钝角三角形,上面的结论成立吗?证明:如图,∆ABC 内接于⊙O ,设⊙O 的半径=R ,∆ABC 的边长分别为a ,b ,c .三边的中点分别为X 、Y 、Z .由A 、X 、O 、Z 四点共圆,据Ptolemy 定理,有A BC DE 16例1OA ·XZ=OX ·AZ +OZ ·AX ,⇒R ·12a=OX ·12b +OZ ·12c .即R ·a=OX ·b +OZ ·c , ①同理,R ·b=OX ·a +OY ·c , ② R ·c=OY ·b +OZ ·a , ③三式相加,得R (a +b +c )=OX (a +b )+OY (b +c )+OZ (c +a ). ④但 r (a +b +c )=OX ·a +OY ·b +OZ ·c .(都等于三角形面积的2倍) ⑤ ④式与⑤式两边分别相加,得R (a +b +c )+r (a +b +c )= OX (a +b )+OY (b +c )+OZ (c +a )+OX ·c +OY ·a +OZ ·b .故, R +r=OX +OY +OZ .⑵ 当∆ABC 为直角三角形(∠C 为直角),则O 在边AB 上,OX=0,上述结论仍成立. 当∆ABC 为钝角三角形 (∠C 为直角或钝角)时,则有 R +r=-OX +OY +OZ . 证明同上.定理2 设P 、Q 、A 、B 为任意四点,则P A 2-PB 2=QA 2-QB 2⇔PQ ⊥AB . 证明 先证P A 2-PB 2=QA 2-QB 2⇒PQ ⊥AB .作PH ⊥AB 于H ,则 P A 2-PB 2=( PH 2+AH 2)-(PH 2+BH 2)=AH 2-BH 2=(AH +BH )(AH -BH )=AB (AB -2BH ). 同理,作QH ’⊥AB 于H ’,则 QA 2-QB 2=AB (AB -2AH’)∴H =H ’,即点H 与点H ’重合.PQ ⊥AB ⇒P A 2-PB 2=QA 2-QB 2显然成立.说明 本题在证明两线垂直时具有强大的作用.点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.例5.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.(1985年第26届国际数学竞赛)分析 对于与圆有关的问题,常可利用圆幂定理,若能找到BM 上一点,使该点与点B对于圆O 等幂即可. 证明:由BM 、KN 、AC 三线共点P ,知PM ·PB =PN ·PK =PO 2-r 2. ⑴ 由∠PMN =∠BKN =∠CAN ,得P 、M 、N 、C 共圆,故 BM ·BP =BN ·BC =BO 2-r 2. ⑵ ⑴-⑵得, PM ·PB -BM ·BP = PO 2 - BO 2, 即 (PM -BM )(PM +BM )= PO 2 - BO 2,就是PM 2 -BM 2= PO 2 - BO 2,于是OM ⊥PB .定理3 (Ceva 定理)设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是A BC PXYZA B PQHH'分析 此三个比值都可以表达为三角形面积的比,从而可用面积来证明. 证明:设S ⊿APB =S 1,S ⊿BPC =S 2,S ⊿CPA =S 3. 则AZ ZB =S 3S 2,BX XC =S 1S 3,CY YA =S 2S 1, 三式相乘,即得证.说明 用同一法可证其逆正确.本题也可过点A 作MN ∥BC 延长BY 、CZ 与MN 分别交于M 、N ,再用比例来证明,例6.以△ABC 的三边为边向形外作正方形ABDE 、BCFG 、ACHK ,设L 、M 、N 分别为DE 、FG 、HK 的中点.求证:AM 、BN 、CL 交于一点.分析 设AM 、BN 、CL 分别交BC 、CA 、AB 于P 、Q 、R .利用面积比设法证明BP PC ·CQ QA ·ARRB=1. 证明 设AM 、BN 、CL 分别交BC 、CA 、AB 于P 、Q 、R .易知,∠CBM =∠BCM =∠QCN =∠QAN =∠LAR =∠LBR =θ. BP PC =S ∆ABM S ∆ACM =AB ·BM sin(B +θ)AC ·CM sin(A +θ)=AB sin(B +θ)AC sin(C +θ). CQ QA =BC sin(C +θ)AB sin(A +θ),AR RB =AC sin(A +θ)BC sin(B +θ), 三式相乘即得BP PC ·CQ QA ·ARRB=1,由Ceva 定理的逆定理知AM 、BN 、CL 交于一点.例7.如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证:AK ⊥BC ;证明:⑴ 作高AH . 则由∆BDP ∽∆BAH ,⇒BH PB =BA BD ,由∆CDQ ∽∆CAH ,⇒CQ HC =DC CA .由AD 平分∠BAC ,⇒DC BD =ACAB ,由DP ⊥AB ,DQ ⊥AC ,⇒AP=AQ .∴AP PB ·BH HC ·CQ QA =AP QA ·BH PB ·CQ HC =BA BD ·DC CA =DC BD ·BACA=1,据Ceva 定理,AH 、BQ 、CP 交于一点,故AH 过CP 、BQ 的交点K ,∴ AK 与AH 重合,即AK ⊥BC .例8.在四边形ABCD 中,对角线AC 平分∠BAD ,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:∠GAC =∠EAC .(1999年全国高中数学联赛)分析 由于BE 、CA 、DG 交于一点,故可对此图形用Ceva 定理,再构造全等三角形证明两角相等.证明 连结BD 交AC 于H ,对⊿BCD 用Ceva 定理,可得CG GB ·BH HD ·DEEC =1.因为AH 是∠BAD 的角平分线,由角平分线定理,可得BH HD =ABAD,故ABC DEFGH IJHK Q PDCBARQPN MLKHGFC EDBA过点C 作AB 的平行线交AG 延长线于I ,过点C 作AD 的平行线交AE 的延长线于J , 则CG GB =CI AB ,DE EC =ADCJ,所以, CI AB ·AB AD ·ADCJ=1. 从而,CI =CJ .又因CI ∥AB ,CJ ∥AD ,故∠ACI =π-∠BAC =π-∠DAC =∠ACJ , 因此,⊿ACI ≌⊿ACJ ,从而∠IAC =∠JAC ,即∠GAC =∠EAC .定理4 (Menelaus 定理)设X 、Y 、Z 分别在△ABC 的BC 、CA 、AB 所在直线上,则X 、Y 、Z 共线的充要条件是AZ ZB ·BX XC ·CYYA=1. 证明:作CM ∥BA ,交XY 于N , 则AZ CN =CY YA ,CN ZB =XC BX. 于是AZ ZB ·BX XC ·CY YA =AZ CN ·CN ZB ·BX XC ·CYYA=1.本定理也可用面积来证明:如图,连AX ,BY , 记S ∆AYB =S 1,S ∆BYC =S 2,S ∆CYX =S 3,S ∆XYA =S 4.则 AZ ZB =S 4S 2+S 3;BX XC =S 2+S 3S 3;CY YA =S 3S 4,三式相乘即得证. 说明 用同一法可证其逆正确.Ceva 定理与Menelaus 定理是一对“对偶定理”.例9.(南斯拉夫,1983)在矩形ABCD 的外接圆弧AB 上取一个不同于顶点A 、B 的点M ,点P 、Q 、R 、S 是M 分别在直线AD 、AB 、BC 与CD 上的投影.证明,直线PQ 和RS 是互相垂直的,并且它们与矩形的某条对角线交于同一点.证明:设PR 与圆的另一交点为L .则→PQ ·→RS =(→PM +→P A )·(→RM +→MS )=→PM ·→RM +→PM ·→MS +→P A ·→RM +→P A ·→MS =-→PM ·→PL +→P A ·→PD =0.故PQ ⊥RS .设PQ 交对角线BD 于T ,则由Menelaus 定理,(PQ 交∆ABD )得DP P A ·AQ QB ·BT TD =1;即BT TD =P A DP ·QBAQ; 设RS 交对角线BD 于N ,由Menelaus 定理,(RS 交∆BCD )得BN ND ·DS SC ·CR RB =1;即BN ND =SC DS ·RBCR; 显然,P A DP =RB CR ,QB AQ =SC DS .于是BT TD =BNND,故T 与N 重合.得证.例10.(评委会,土耳其,1995)设∆ABC 的内切圆分别切三边BC 、CA 、AB 于D 、E 、F ,X 是∆ABC内的一点,∆XBC 的内切圆也在点D 处与BC 相切,并与CX 、XB 分别切于点Y 、Z ,证明,EFZY 是圆内接四边形.分析:圆幂定理的逆定理与Menelaus 定理.ZY XC BANZ Y XCBAS 1S 2 S 3S 4 题11T,NSRQPM A BCDL证明:延长FE 、BC 交于Q .AF FB ·BD DC ·CE EA =1,XZ ZB ·BD DC ·CY YA =1,⇒AF FB ·CE EA =XZ ZB ·CY YA . 由Menelaus 定理,有AF FB · BQ QC · CEEA=1. 于是得XZ ZB ·BQ QC ·CYYA=1.即Z 、Y 、Q 三点共线.但由切割线定理知,QE ·QF =QD 2=QY ·QZ .故由圆幂定理的逆定理知E 、F 、Z 、Y 四点共圆.即EFZY 是圆内接四边形.定理5 (蝴蝶定理)AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .分析 圆是关于直径对称的,当作出点F 关于OM 的对称点F'后,只要设法证明⊿FMP≌⊿F'MQ 即可.证明:作点F 关于OM 的对称点F ’,连FF ’,F’M ,F’Q ,F’D .则 MF =MF ’,∠4=∠FMP =∠6.圆内接四边形F ’FED 中,∠5+∠6=180︒,从而∠4+∠5=180︒, 于是M 、F ’、D 、Q 四点共圆,∴ ∠2=∠3,但∠3=∠1,从而∠1=∠2, 于是⊿MFP ≌⊿MF ’Q .∴ MP =MQ .说明 本定理有很多种证明方法,而且有多种推广.例11.在筝形ABCD 中,AB =AD ,BC =CD ,经AC 、BD 交点O 作二直线分别交AD 、BC 、AB 、CD 于点E 、F 、G 、H ,GF 、EH 分别交BD 于点I 、J ,求证:IO =OJ .(1990年冬令营选拔赛题)分析 通常的解法是建立以O 为原点的直角坐标系,用解析几何方法来解,下面提供的解法则利用了面积计算.证明:如图,由S ⊿AOB =S ⊿AOG +S ⊿GOB 得 12(at 1cos α+bt 1sin α)=12ab . ∴ t 1=ab a cos α+b sin α.即1t 1=cos αb +sin αa ;同理得,1t 2=cos βb +sin βc ;1t 3=cos αb +sin αc ;1t 4=cos βb +sin βa .再由S ⊿GOF =S ⊿GOI +S ⊿IOF ,又可得sin(α+β)IO =sin αt 2+sin βt 1;同理,得sin(α+β)OJ =sin αt 4+sin βt 3.∴ IO =OJ ⇔(1t 4-1t 2)sin α=(1t 1-1t 3)sin β.以1t 4、1t 2的值代入左边得,(1t 4-1t 2)sin α=(1a -1c)sin αsin β,同样得右边.可证. 定理6 张角定理:从一点出发三条线段长分别为a 、b 、t 、(t 在a 、b 之间),则sin(α+β)t =sin αb +sin βa. 例12.(评委会,爱尔兰,1990)设l 是经过点C 且平行于∆ABC 的边AB 的直线,∠A 的平分线交BC 于D ,交l 于E ,∠B 的平分线交AC 于F ,交l 于G ,已知,GF =DE ,证明:AC =BC .A BCDEFGHOI J αβab ct t t t 1234A BC D E F MF'123456O PQ 例12QP I Z Y X F EABC D abtβα分析:设∠A =2α,∠B =2β,即证α=β. 证明:设α>β,则BC >AC , 利用张角定理可得,sin A t a =sin αc +sin αb ,⇒2cos αt a =1c +1b ,⇒t a =2bc cos αb+c. 再作高CH ,则AE =CH csc α=b sin2αcsc α=2b cos α.⇒DE=AE -t a =2b cos α-2bc cos αb+c =2b 2cos αb+c .同理,GF =2a 2cos βa+c .由α>β,a >b ,知cos β<cos α.1+c a <1+c b ,⇒ GF=2a 2cos βa+c=2a cos β1+c a >2b cos α1+c b=2b 2cos αb+c =DE .矛盾.又证:设BC >AC ,即a>b ,故α>β,由张角定理得,sin A t a =sin αc +sin αb ,⇒2cos αt a =1c +1b. 同理2cos βt b =1c +1a,由于a >b ,故cos αt a >cos βt b ,⇒t b t a >cos β cos α >1,即t b >t a .就是BF>AD . ⑴∴ BG =BF +FG >AD +DE=AE .即是BG >AE . ∴GF BF = CF AF ⇒GF =BG ·CF AF+FC =BG 1+AF CF =BG 1+AB BC >AE 1+AB AC =AE 1+BD DC =AE ·DCBC=DE .矛盾.故BC =AC . 或BF GF =AF CF =AB CB <AB CA =BD DC =ADDE,注意到GF=DE ,故BF <AD .与⑴矛盾.故证. 定理7 (Simson line ) P 是ΔABC 的外接圆⊙O 上的任意一点,PX ⊥AB ,PY ⊥BC ,PZ ⊥CA ,垂足为X 、Y 、Z ,求证: X 、Y 、Z 三点共线.分析 如果连ZX 、ZY ,能证得∠1=∠3,则由∠AZB =180︒得∠YZX =180︒,即可证此三点共线. 证明 ∠PXB =∠PZB =90︒⇒P 、Z 、X 、B 四点共圆⇒∠1=∠2.∠PZA =∠PYA =90︒⇒P 、Z 、A 、Y 四点共圆⇒∠3=∠4.但∠2+∠5=90︒,∠4+∠6=90︒,而由P 、A 、C 、B 四点共圆, 得∠5=∠6.故∠2=∠4,从而∠1=∠3.故X 、Y 、Z 共线. 说明 本题的证法也是证三点共线的重要方法.本题的逆命题成立,该逆命题的证明曾是江苏省高中数学竞赛的试题.例13.设H 为ΔABC 的垂心,P 为ΔABC 的外接圆上一点,则从点P 引出的三角形的西姆松线平分PH .分析:考虑能否用中位线性质证明本题:找到一条平行于Simson 线的线段,从PX ∥AH 入手.连PE ,得∠1=∠2,但∠2=∠3,再由四点共圆得∠3=∠4,于是得∠6=∠7.可证平行.证明 连AH 并延长交⊙O 于点E ,则DE =DH ,连PE 交BC 于点F ,交XY 于点K ,连FH 、PB . ∵ PX ∥AE ,∴ ∠1=∠2,又∠2=∠3, ∵ P 、Z 、X 、B 四点共圆, ∴∠3=∠4,∴ ∠1=∠4. ∴ K 为PF 中点.∵ DE =DH ,BD ⊥EH ,∴ ∠2=∠5.AB C P X YZ 123456AB C X YZP KD HE M 12345F 672α2βαβαβFEDC BA G∴ FH ∥XY . ∴ XY 平分PH .又证:延长高CF ,交圆于N ,则F 是HN 的中点,若K 为PH 中点,则应有FK ∥PN .再证明K 在ZX 上.即证明∠KZF=∠XZB . 设过P 作三边的垂线交BC 、CA 、AB 于点X 、Y 、Z .连KZ 、KF 、ZX ,延长CF 交⊙O 于点N ,连PN . 由PZ ⊥AB ,CF ⊥AB ,K 为PH 中点知,KZ =KF . ∴ ∠KZF =∠KFZ . 易证HF =FN ,故KF ∥PN .∴ ∠PNC =∠KFH . 但∠PNC +∠PBC =180︒,∴ ∠KFZ +∠ZFH +∠PBC =180︒. 即∠KFZ +∠PBC =90︒.又PX ⊥BC ,PZ ⊥BZ ⇒P 、Z 、X 、B 共圆. ∴ ∠XZB =∠XPB ,而∠XPB +∠PBC =90︒.∴ ∠KZF =∠KFZ =∠XZB .∴ ZK 与ZX 共线.即点K 在⊿ABC 的与点P 对应的Simson line 上.)定理8(Euler line )三角形的外心、重心、垂心三点共线,且外心与重心的距离等于重心与垂心距离的一半.分析 若定理成立,则由AG =2GM ,知应有AH =2OM ,故应从证明AH =2OM入手.证明:如图,作直径BK ,取BC 中点M ,连OM 、CK 、AK ,则∠KCB =∠KAB =90︒,从而KC ∥AH ,KA ∥CH ,⇒□CKAH ,⇒AH =CK =2MO .由OM ∥AH ,且AH =2OM ,设中线AM 与OH 交于点G ,则⊿GOM ∽⊿GHA ,故得MG ∶GA =1∶2,从而G 为⊿ABC 的重心.且GH =2GO .说明 若延长AD 交外接圆于N ,则有DH =DN .这一结论也常有用.例14.设A 1A 2A 3A 4为⊙O 的内接四边形,H 1、H 2、H 3、H 4依次为⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心.求证:H 1、H 2、H 3、H 4四点在同一个圆上,并定出该圆的圆心位置.(1992年全国高中数学联赛)分析 H 1、H 2都是同一圆的两个内接三角形的垂心,且这两个三角形有公共的底边.故可利用上题证明中的AH =2OM 来证明. 证明 连A 2H 1,A 1H 2,取A 3A 4的中点M ,连OM ,由上证知A 2H 1∥OM ,A 2H 1=2OM ,A 1H 2∥OM , A 1H 2=2OM ,从而H 1H 2A 1A 2是平行四边形,故H 1H 2∥A 1A 2 ,H 1H 2=A 1A 2. 同理可知,H 2H 3∥A 2A 3,H 2H 3=A 2A 3; H 3H 4∥A 3A 4,H 3H 4=A 3A 4; H 4H 1∥A 4A 1,H 4H 1=A 4A 1. 故 四边形A 1A 2A 3A 4≌四边形H 1H 2H 3H 4. 由四边形A 1A 2A 3A 4有外接圆知,四边形H 1H 2H 3H 4也有外接圆.取H 3H 4∥的中点M 1,作M 1O 1⊥H 3H 4,且M 1O 1=MO ,则点O 1即为四边形H 1H 2H 3H 4的外接圆圆心.又证:以O 为坐标原点,⊙O 的半径为长度单位建立直角坐标系,设OA 1、OA 2、OA 3、OA 4与OX 正方向所成的角分别为α、β、γ、δ,则点A 1、A 2、A 3、A 4的坐标依次是(cos α,sin α)、(cos β,sin β)、(cos γ,sin γ)、(cos δ,sin δ).显然,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的外心都是点O ,而它们的重心依次是:(13(cos β+cos γ+cos δ),13(sin β+sin γ+sin δ))、(13(cos γ+cos δ+cos α),13(sin α+sin δ+sin γ))、 (13(cos δ+cos α+cos β),13(sin δ+sin α+sin β))、(13(cos α+cos β+cos γ),13(sin α+sin β+sin γ)). ABC MD O HG FKA A A A H H H H OM12341234M O 11从而,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心依次是H 1(cos β+cos γ+cos δ, sin β+sin γ+sin δ)、H 2 (cos γ+cos δ+cos α,sin α+sin δ+sin γ)、 H 3 (cos δ+cos α+cos β,sin δ+sin α+sin β)、H 4 (cos α+cos β+cos γ,sin α+sin β+sin γ).而H 1、H 2、H 3、H 4点与点O 1(cos α+cos β+cos γ+cos δ,sin α+sin β+sin γ+sin δ)的距离都等于1,即H 1、H 2、H 3、H 4四点在以O 1为圆心,1为半径的圆上.证毕.定理9 (Nine point round )三角形的三条高的垂足、三条边的中点以及三个顶点与垂心连线的中点,共计九点共圆.分析 要证九个点共圆,可先过其中三点作一圆,再证其余的点在此圆上.为此可考虑在三种点中各选一点作圆,再在其余三类共六个点中每类取一个点证明其在圆上,即可证明.证明:取BC 的中点M ,高AD 的垂足D ,AH 中点P ,过此三点作圆,该圆的直径即为MP .由中位线定理知,MN ∥AB ,NP ∥CH ,但CH ⊥AB ,故∠PNM =90︒,于是,点N 在⊙MDP 上,同理,AB 中点在⊙MDP 上. 再由QM ∥CH ,QP ∥AB ,又得∠PQM =90︒,故点Q 在⊙MDP 上,同理,CH 中点在⊙MDP 上.由FP 为Rt .⊿AFH 的斜边中线,故∠PFH =∠PHF =∠CHD ,又FM 为Rt .⊿BCF 的斜边中线,得∠MFC =∠MCF ,但∠CHD +∠DCH =90︒,故∠PFM =90︒.又得点F 在⊙MDP 上,同理,高BH 的垂足在⊙MDP 上.即证.说明 证明多点共圆的通法,就是先过三点作圆,再证明其余的点在此圆上. 九点圆的圆心在三角形的Euler 线上.九点圆的直径等于三角形外接圆的半径.由OM ∥AP ,OM =AP ,知PM 与OH 互相平分,即九点圆圆心在OH 上.且九点圆直径MP =OA =⊿ABC 的外接圆半径.定理10(三角形的内心的一个重要性质)设I 、I a 分别为⊿ABC 的内心及∠A 内的旁心,而∠A 平分线与⊿ABC 的外接圆交于点P ,则PB =PC =PI =PI a .例15.设ABCD 为圆内接四边形,ΔABC 、ΔABD 、ΔACD 、ΔBCD 的内心依次为I 1、I 2、I 3、I 4,则I 1I 2I 3I 4为矩形.(1986年国家冬令营选拔赛题)分析 只须证明该四边形的一个角为直角即可.为此可计算∠1、∠2、∠XI 2Y .证明 如图,BI 2延长线与⊙O 的交点X 为⌒AD 中点.且XI 2=XI 3=XA =XD , 于是∠1=12(180︒-∠X )=90︒-14⌒BC ,同理,∠2=90︒-14⌒CD .∠XI 2Y =12(⌒XY +⌒BD )= 14(⌒AB +⌒AD )+12(⌒BC +⌒CD ), 故∠1+∠2+∠XI 2Y =90︒+90︒+14(⌒AB +⌒BC +⌒CD +⌒DA )=270︒.从而∠I 1I 2I 3=90︒.同理可证其余.说明 亦可证XZ ⊥YU ,又XZ 平分∠I 2XI 3及XI 2=XI 3⇒I 2I 3⊥XZ ,从而I 2I 3∥YU ,于是得证.定理11 (Euler 定理)设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .(1992年江苏省数学竞赛)分析 改写此式,得:d 2-R 2=2Rr ,左边为圆幂定理的表达式,故可改为过I 的任一直线与圆交得两段的积,右边则为⊙O 的直径与内切圆半径的积,故应添出此二者,并构造相似三角形来证明.F HD MC BA PQ N10.22ABCD I I I I 123412XYZU证明:如图,O 、I 分别为⊿ABC 的外心与内心.连AI 并延长交⊙O 于点D ,由AI 平分∠BAC ,故D 为弧BC 的中点.连DO 并延长交⊙O 于E ,则DE为与BC 垂直的⊙O 的直径.由圆幂定理知,R 2-d 2=(R +d )(R -d )=IA ·ID .(作直线OI 与⊙O 交于两点,即可用证明)但DB =DI (可连BI ,证明∠DBI =∠DIB 得),故只要证2Rr =IA ·DB ,即证2R ∶DB =IA ∶r 即可.而这个比例式可由⊿AFI ∽⊿EBD 证得.故得R 2-d 2=2Rr ,即证.例16.(1989IMO)锐角∆ABC 的内角平分线分别交外接圆于点A 1、B 1、C 1,直线AA 1与∠ABC 的外角平分线相交于点A 0,类似的定义B 0,C 0,证明:⑴ S A 0B 0C 0=2S A 1CB 1AC 1B ;⑵ S A 0B 0C 0≥4S ABC .分析:⑴利用A 1I=A 1A 0,把三角形A 0B 0C 0拆成以I 为公共顶点的六个小三角形,分别与六边形A 1CB 1AC 1B 中的某一部分的2倍相等. ⑵ 若连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形,再计算其面积和,最后归结为证明R ≥2r .也可以这样想:由⑴知即证S A 1CB 1AC 1B ≥2 S ABC ,而IA 1、IB 1、IC 1把六边开分成三个筝形,于是六边形的面积等于∆A 1B 1C 1面积的2倍.故只要证明S A 1B 1C 1≥S ABC .证明:⑴ 设∆ABC 的内心为I ,则A 1A 0=A 1I ,则S A 0BI =2S A 1BI ;同理可得其余6个等式.相加⑴即得证. ⑵ 连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形,由OC 1⊥AB ,OA 1⊥BC ,OB 1⊥CA ,得∴ S A 1CB 1AC 1B =S OAC 1B + S OB 1A 1C + S OCB 1A =12AB ·R +12BC ·R +12CA ·R =Rp .但由Euler 定理,R 2-2Rr =R (R -2r )=d 2≥0,知R ≥2r ,故Rp ≥2rp =2S ∆ABC .故得证.⑵ 证明:记A =2α,B =2β,C =2γ.0<α,β,γ<π2.则S ABC =2R 2sin2αsin2βsin2γ,S A 1B 1C 1=2R 2sin(α+β)sin(β+γ)sin(γ+α).又sin(α+β)=sin αcos β+cos αsin β≥2sin αcos β cos αsin β =sin2αsin2β ,同理,sin(β+γ)≥sin2βsin2γ ,sin(γ+α)≥sin2γsin2α ,于是S A 1B 1C 1≥S ABC 得证.又证:连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形, 由OC 1⊥AB ,OA 1⊥BC ,OB 1⊥CA ,得∴ S A 1CB 1AC 1B =S OAC 1B + S OB 1A 1C + S OCB 1A =12AB ·R +12BC ·R +12CA ·R =Rp .但由Euler 定理,R 2-2Rr =R (R -2r )=d 2≥0,知R ≥2r ,故Rp ≥2rp =2S ∆ABC .故得证.又证:α+β+γ=π,故sin(α+β)=cos γ,sin(β+γ)=cos α,sin(γ+α)=cos β. 于是,sin(α+β)sin(β+γ)sin(γ+α)=cos αcos βcos γ,故sin(α+β)sin(β+γ)sin(γ+α)≥sin2αsin2βsin2γ,⇔ cos αcos βcos γ≥8sin αsin βsin γcos αcos βcos γ,由0<α、β、γ<π2,故cos αcos βcos γ≥8sin αsin βsin γcos αcos βcos γ,⇔sin αsin βsin γ≤18.而最后一式可证.定理12 (Fermat point )分别以ΔABC 的三边AB ,BC ,CA 为边向形外作正三角形ABD ,BCE ,CAH ,则此三个三角形的外接圆交于一点.此点即为三角形的Fermat point .AB C D O IE F例C 0分析 证三圆共点,可先取二圆的交点,再证第三圆过此点.证明:如图,设⊙ABD 与⊙ACH 交于(异于点A 的)点F ,则由A 、F 、B 、D共圆得∠AFB =120︒,同理∠AFC =120︒,于是∠BFC =120︒,故得B 、E 、C 、F 四点共圆.即证. 由此得以下推论:1︒ A 、F 、E 三点共线;因∠BFE =∠BCE =60︒,故∠AFB +∠BFE =180︒,于是A 、F 、E 三点共线.同理,C 、F 、D 三点共线;B 、F 、H 三点共线. 2︒ AE 、BH 、CD 三线共点. 3︒ AE =BH =CD =F A +FB +FC .由于,F 在正三角形BCE 的外接圆的弧BC 上,故由Ptolemy 定理,有FE =FB +FC .于是AE =AF +FB +FC .同理可证BH =CD =F A +FB +FC .也可用下法证明:在FE 上取点N ,使FN =FB ,连BN ,由⊿FBN 为正三角形,可证得⊿BNE ≌⊿BFC .于是得,NE =FC .故AE =F A +FN +NE =F A +FB +FC .例17.(Steiner 问题)在三个角都小于120°的ΔABC 所在平面上求一点P ,使P A +PB +PC 取得最小值. 证明:设P 为平面上任意一点,作等边三角形PBM (如图)连ME , 则由BP =BM ,BC =BE ,∠PBC =∠MBE =60︒-∠MBC . 得⊿BPC ≌⊿BME ,于是ME =PC ,故得折线APME =P A +PB +PC ≥AE =F A +FB +FC . 即三角形的Fermat point 就是所求的点.说明:本题也可用Ptolemy 的推广来证明:由PB ·CE +PC ·BE ≥PE ·BC ,可得,PB +PC ≥PE .于是P A +PB +PC ≥P A +PE ≥AE .定理13 到三角形三顶点距离之和最小的点——费马点. 例18.凸六边形ABCDEF ,AB =BC =CD ,DE =EF =F A ,∠BCD =∠EF A =60︒,G、H在形内, 且∠AGB =∠DHE =120︒.求证:AG +GB +GH +DH +HE ≥CF .证明 连BD 、AE 、BE ,作点G 、H 关于BE 的对称点G '、H ',连BG '、DG '、G 'H '、AH '、EH '。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

初中数学奥林匹克几何问题斯特瓦尔特定理及应用

初中数学奥林匹克几何问题斯特瓦尔特定理及应用

初中数学奥林匹克几何问题-斯特瓦尔特定理及应用第四章特瓦尔特定理及应用【基础知识】斯特瓦尔特定理设为的边上任一点(,),则有①或.②证明如图4-1,不失一般性,不妨设,则由余弦定理,有,.对上述两式分别乘以,后相加整理,得①式或②式.斯特瓦尔特定理的逆定理设,,依次分别为从点引出的三条射线,,上的点,若,或,则,,三点共线.证明令,,对和分别应用余弦定理,有,.将上述两式分别乘以,后相加,再与已知条件式相比较得,由此推出,即证.斯特瓦尔特定理的推广(1)设为的边延长线上任一点,则.③(2)设为的边反向延长线上任一点,则.④注若用有向线段表示,则②,③,④式是一致的.推论1设为等腰的底边上任一点,则.注此推论也可视为以为圆心,为半径的圆中的圆幂定理.推论2设为的边上的中线,则.推论3设为的的内角平分线,则.推论4设为的的外角平分线,则.推论5在中,若分线段满足,则.注若,则.【典型例题与基本方法】1.选择恰当的三角形及一边上的一点,是应用斯特瓦尔特定理的关键.例1如图4-2,凸四边形中,,,,,对角线,交于点.求.(1996年北京中学生竞赛题)解延长,相交于,设,则,,对及边上的点,应用斯特瓦尔特定理,有.由,有,即,求得.于是,.又在中,,从而.而,故,即为所求.例2如图4-3,在中,,,点是外心,两条高,交于点,点,分别在线段,上,且满足,求的值.(20XX年全国高中联赛题)解延长交于,由三角形垂心性质,知为关于的对称点,则.设的半径为,,,,由,知.延长两端交于,,如图4-3,由相交弦寇理有,即,即.在及边上的点,应用斯特瓦尔特定理,并注意到,可得,即,亦即.于是,有.亦即,即.而当时,,故为所求.2.注意斯特瓦尔特定理的推论的应用例3如图4-4,自外一点引圆的两条切线,,,为切点,过点任意引圆的割线交于,,交于.证明:.(20XX年湖南中学生夏令营试题)证明由相交弦定理,有.由于,对等腰及底边上的点,应用斯特瓦尔特定理的推论1,有,即有.而,从而.故.注此例结论表示线段是线段,的调和平均.这个结论亦即为点、调和分割弦.例4如图4-5,设在中,,平分,且交于,在上有一点,使.求证:.(1979年江苏省竞赛题)证明对及边上的点,应用斯特瓦尔特定理,有.由平分,对及边上的点,应用斯特瓦尔特定理的推论3,有,从而.①因,有,即.由角平分线的性质,有,即.从而,由①式,有.例5凸多边形外切于,两组对边所在的直线分别交于点、,对角线交于点.求证:.(《中等数学》奥林匹克题高中251题)证明如图4-6,设与边、、、分别切于点、、、,则由牛顿定理知,、、、四线共点于.由切线长定理,知.由推论1,有.①同理,.②联结、、,令的半径为,则.③又由相交弦定理,有.④于是,由①、②、③、④有.由定差幂线定理,知.注(1)牛顿定理圆外切四边形的两条对角线、两对边切点的连线,这4条直线共点.(2)定差幂线定理设、是两条线段,则的充要条件为.此定理可用勾股定理及逆定理证明.这个定理放到空间也是成立的.运用向量法可给出平面、空间的统一证明如下:由.知.故.例6已知、分剔是的边、的中点,、是边、上的高,联结、交于点.又设、分别是的外心、垂心,联结、.求证:.(20XX年国家队集训题)证明如图4-7,联结、.设、分别为、的中点,则,,即知点在线段的中重线上,应用推论1,有.注意到为中位线,在的中垂线上,由此知也在的中垂线上,应用推论1,有.再注意到,知、、、四点共圆,并由直角三角形性质,有.③及、.④由①、②、③、④得.由定差幂线定理,.而,故.注此例的其他证法可参见第九章例16、第十章例15.例7设是的边上一点,满足,经过、两点,并分别与、交于、两点,、交于点,联结、,取的中点.求证:.证明如图4-8,在的延长线上取点,使得(即、、、四点共圆),则由知、、、也四点共圆.于是,知、、、四点共圆,即有.联结、、,并令半径为,则对、分别应用推论1,有.①.②联结,由三角形中线长公式,并注意①、②,有.③联结、,对应用推论1,有.又由,有,即有.④注即为完全四边形的密克尔点,由③、④有.由定差幂线定理,知.3.注意斯特瓦尔特定理等价于托勒密定理斯特瓦尔特定理可推导出托勒密定理.证明如图4-9,在中,点在上,由斯特瓦尔特定理,有.延长交的外接圆于,连,,由和,有,.又由相交弦定理,有.于是,得,即,亦即.即为托勒密定理.由托勒密定理也可推导斯特瓦尔特定理.证明如图4-10,设圆内接四边形的对角线,交于.由托勒密定理,有.即.由和,有,.由相交弦定理,有.将这些式子代入前述式子即得斯特瓦尔特定理.因此,在应用中,两个定理的应用范围相同,所显示的功能也一样,即凡能用托勒密定理处理的问题也能用斯特瓦尔特定理处理.反之亦然.例8若的三边为连续整数,且最大角是最小角的两倍,求三角形的三边长.(-10试题)解法1作的平分线(图略),则,令,,则,,.由斯特瓦尔特定理的推论3,有,即,又,即,有.故由,求得(舍去),即,,.解法2作的外接圆,取的中点,连,,,则为梯形,其中.令,则,,且,.对四边形应用托勒密定理,有,求得.(下略)【解题思维策略分析】1.获得线段倍分关系的一条途径例9如图4-11,已知的外接圆的圆心为,半径为,内切圆的圆心为,半径为,另一个圆与边,分别切于点,,且与圆内切.求证:内心是线段的中点.(-34预选题)证明设圆的圆心为,半径为,于是,,三点共线,且,,则,且.于是,.连,,,对,及边上的点,应用斯特瓦尔特定理,有①注意到欧拉公式,,及,,并将其代入①式,得到,化简得.从而,即.②因为,且平分,令的中点为,由射影定理,有.③比较③式和②式,知与重合,即得为的中点.例10如图4-12,两个大圆,相等且相交;两个小圆,不相等但相交,且交点为,.若,既同时与内切,又同时与外切.试证:直线平分线段.(《中等数学》奥林匹克问题高中58题)证明由于,半径不相等,此两圆交点所在直线必与线段相交,设交点为.连,,,,,,,,,显然,设垂足为,又设,的半径均是,,的半径分别为,,则易得,,,,因为,或,垂足为,则.设,,对及边上的点,应用斯特瓦尔特定理,有.①对及边上的点,应用斯特瓦尔特定理,有.②①②,得,即,亦即.因,,从而,即.故,即直线平分线段.2.求解三角形问题的一种工具斯特瓦尔特定理在求解三角形中有关线段的问题有着重要作用,这可从习题A中的第6题,习题B中的第7题等可以看出.在求解三角形的其他问题中,它也有着重要作用.例11设的三边为,,,其面积为,则,当且仅当为正三角形时,等式成立.(-3试题)证明取的中点,对及边上的点,应用斯特瓦尔特定理的推论2,有.从而有.设的边上的高为,则,于是.故,其中等号当且仅当且时成立,也即且,此时恰为正三角形.例12如图4-13,在中,,分别为和同方向延长线上的点,与相交于,且.当在边的中线上时,则.证明设交于.分别对及点和及点应用斯特瓦尔特定理的推广结论,有,.于是.由于,对及点应用塞瓦定理,有,即.当点在边上的中线上时,有.从而,由此知,故.例13如图4-14,若是的边延长线上一点,则平分的外角的充分必要条件是.证明必要性:若平分的外角,则由推论4即有.或者按证明斯特瓦尔特定理的方法来推导.充分性:设直线交的外接圆于,连、.由割线定理有,并将其代入条件式可得.由此可知必在的延长线上(因).于是.①由,有.②由①②得.③由①④得,.⑤由③⑤得,.对四边形应用托勒密定理,有.于是.即,从而.因此.故平分的外角.例14如图4-15,设正的内切圆圆心为,半径为,在内任取一点,设点到,,的距离分别为,,.求证:以,,为边可以构成一个三角形,且其面积为.(《数学通报》问题1356题)证明设正三角形的边长为1,则,.连并延长交于,则由题设知,.由于,,对及边上的点,对及边上的点,均应用斯特瓦尔特定理的推论1,有.于是,.①又对及边上的点应用斯特瓦尔特定理,有.由,知,.将上述各式及①式代入②式,并注意,,,有.即.于是,.此式可写成为.③由于点在内部,则,从而,必有,,.如若不然,比如,,则,即与已知矛盾,则知,,.可见,以,,为边可以构成三角形,且由海伦—秦九韶公式及③式知其面积为.【模拟实战】习题A1.在中,,边有100个不同的点,,…,,记(1,2,…,100),求的值.2.在中,的平分线交于.证明:.(匈牙利中学生数学竞赛题)3.在中,是边上的点,已知,,,,求.4.在中,,,,设为边上任一点,则()A.B.c.D.与的大小关系不确定5.是的边上的一点,且,,,求证:是的外接圆的切线.6.设的三边,,,.设,分别为边上的中线长和高线长;,分别为边所对的角的内、外角平分线长.求证下列各式:(Ⅰ);(Ⅱ);(Ⅲ);(Ⅳ).7.在中,,,求证:是直角三角形.8.证明:到三角形三顶点的距离的平方和最小的点是重心.习题B1.设,,分别是共线的三点,,对于所作切线的长.求证:.2.锐角的外接圆过,的切线相交于,点是的中点.求证:.(-26预选题)3.和是的割线,分别交于,,且,过的直线交于,(在与之间),交,于,.求证.4.,,,四点在同一圆周上,且,,线段和的长都是整数,求的长.5.在正方形中,在上,,,点在上,则和的长度之和最小可达到多少?6.设凸四边形的边长是,,,,对角线长是和.求证:,当且仅当这个凸四边形是菱形时等号成立.7.设,,,分别为的内心,外心,重心,垂心,令,,,,,分别为外接圆和内切圆的半径.求证下列各式:(Ⅰ);(Ⅱ);(Ⅲ);(Ⅳ).8.已知满足,设是边上一点,且.延长线段至,使.证明:.(-39预选题)。

初中数学竞赛重要定理及结论(完整版)

初中数学竞赛重要定理及结论(完整版)
两个有公共边的三角形 ABD 和 ABC , ABC 与 DC 交于点 M ,则三角形 ABC 的面积与 三角形 ABD 的面积之比等于 CM 与 DM 的比。(定理描述对下图所示四种图形都成立)
C
C
C
C
A
B
M
D B
D
M
A
D
D
A
B
M
A
M
B
【重心】定义:重心是三角形三边中线的交点,
重心的性质:
(1)设 G 为△ ABC 的重心,连结 AG 并延长交 BC 于 D,则 D 为 BC 的中点,则 AG: GD 2 :1;
2
2
2
(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,
若 A 平分线交△ ABC 外接圆于点 K,I 为线段 AK 上的点且满足 KI=KB,则 I 为△ ABC 的
内心;
(4)设 I 为△ ABC 的内心,BC a, AC b, AB c, A 平分线交 BC 于 D,交△ ABC 外接
a H ( cos A
xA

b cosB
xB

c cosC
xC
,
a cos A
yA

b cosB
yB

c cosC
yC
)
abc
abc
cos A cosB cosC
cos A cosB cosC
垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍; (2)垂心 H 关于△ ABC 的三边的对称点,均在△ ABC 的外接圆上; (3)△ ABC 的垂心为 H,则△ ABC,△ ABH,△ BCH,△ ACH 的外接圆是等圆; ( 4 ) 设 O , H 分 别 为 △ ABC 的 外 心 和 垂 心 , 则 BAO HAC,CBO ABH,BCO HCA. 【内 心 】三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;

中学数学竞赛中常用的几个重要定理

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDCD塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1=••PACPNCBNMBAM塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1=••PACPNCBNMBAM,则AN、BP、CM相交于一点.【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F,过D作DN∥CG交BG于N,△DGL及△FGM是正三角形.求证:△LMN为正三角形.GCLMEDFN【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F 求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G 是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPE【练习2】 在△ABC 中,∠ABC 和∠ACB 均为锐角.D 是BC 边BC 上的内点,且AD 平分∠BAC ,过点D 作垂线DP ⊥AB 于P ,DQ ⊥AC 于Q ,CP 于BQ 相交于K. 求证:AK ⊥BCCCC托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值HABCEFAXYPOQ【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.【例1】过正△ABC 外接圆的弧AC 上点P 作P D ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.CABPEFD HABP1P2CP三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BCC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CD垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.BCB【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.CD【例2】AD是直角△ABC斜边BC上的高(AB<AC),I1,I2分别是△ABD,△ACD的内心,△A I1 I2的外接圆⊙O分别交AB,AC于E,F,直线FE与CB的延长线交于点M.证明:I1,I2分别是△ODM的内心与旁心.相交两圆的性质与应用【例1】证明:若凸五边形ABCDE中,∠ABC=∠ADE,∠AEC=∠ADB. 证明:∠BAC=∠DAEE【例2】已知⊙O1与⊙O2相交于A,B,直线MN垂直于AB且分别与⊙O1与⊙O2交于M,N,P 是线段MN的中点,Q1,Q2分别是⊙O1与⊙O2上的点,∠AO1Q1=∠AO2Q2求证:PQ1=PQ2【练习】梯形ABCD中,AB∥CD,AB>CD,K,M分别是腰AD,CB上的点,∠DAM=∠CBK,求证:∠DMA=∠CKBA其他的一些数学竞赛定理1、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+2、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、 正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线.。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

中学数学竞赛常见定理

中学数学竞赛常见定理

中学数学竞赛常见定理西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。

塞瓦定理: 在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1海伦公式: 设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] ,p为半周长:p=(a+b+c)/2托勒密定理: 圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).正余弦定理:正弦a/sinA=b/sinB=c/sinC=2R,其中R为三角形的外接圆半径.三角形面积S=(bcsinA)/2=(acsinB)/2=(absinC)/2余弦: 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足:a^2=b^2+c^2-2*b*c*Cos Ab^2=a^2+c^2-2*a*c*Cos Bc^2=a^2+b^2-2*a*b*Cos CCos C=(a^2+b^2-c^2)/2abCos B=(a^2+c^2-b^2)/2acCos A=(c^2+b^2-a^2)/2bc斯特瓦尔特定理:△ABC的BC边上有一点D则:AB^2*DC+AC^2*BD-AD^2*BC=BC*DC*BD广勾股定理:在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.阿基米德折弦定理笛沙格定理:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

初中数学竞赛专项_蝴蝶定理

初中数学竞赛专项_蝴蝶定理

蝴蝶定理[蝴蝶定理] 已知圆O,PQ是一条弦,设M为弦PQ的中点,过M作弦AB和CD。

设AD和BC各相交PQ于点X和Y,则M是XY的中点。

证明:过圆心O作AD与BC垂线,垂足为S、T,连接OX,OY,OM。

SM。

MT。

∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC,∴DS/BT=DM/BM又∵∠D=∠B∴△MSD∽△MTB,∠MSD=∠MTB∴∠MSX=∠MTY;又∵O,S,X,M与O,T。

Y。

M均是四点共圆,∴∠XOM=∠YOM∵OM⊥PQ∴XM=YM[推广] 二次曲线S的三条弦AB,CD,EF交于一点M,ED交AB于Q,CF 交AB于P,则1/QM-1/PM=1/AM-1/BM.以M为原点,AB为x轴,S:Ax^2+Bxy+Cy^2+Dx+Ey+F=0,CD:y=k1x,EF:Y=k2x,过C,D,E,F四点的二次曲线系方程:S+t(y-k1x)(y-k2x)=0.令y=0,得(A+tk1k2)x^2+Dx+F=0,其根为曲线与横轴交点的横坐标,则Fx^2+Dx+A+tk1k2=0根为横坐标的倒数,其和=-D/F为定值。

即1/QM+1/(-PM)=1/AM+1/(-BM).得证。

蝴蝶定理蝴蝶定理蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。

由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M 为XY之中点。

出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。

至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。

1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。

高中数学竞赛解题方法篇(不等式)

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。

希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。

高中数学竞赛常用定理

高中数学竞赛常用定理

高中数学竞赛常用定理在高中数学竞赛中,掌握一些常用的数学定理和公式是至关重要的。

这些定理和公式可以帮助学生在比赛中更快、更准确地解决问题,提高竞赛成绩。

下面我们就来介绍一些高中数学竞赛中常用的定理和公式。

1. 三角函数的基本关系:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=2R$,其中$a$、$b$、$c$分别为三角形$ABC$的三边长度,$A$、$B$、$C$为对应的内角,$R$为三角形$ABC$的外接圆半径。

- 余弦定理:$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。

- 正弦函数和余弦函数的关系:$\sin(a \pm b)=\sin a \cos b \pm \cosa \sin b$,$\cos(a \pm b)=\cos a \cosb \mp \sin a \sin b$。

2. 相似三角形的性质:- 相似三角形的对应角相等,对应边成比例。

- 直角三角形中,正弦、余弦、正切函数的关系:$\sinA=\frac{a}{c}$,$\cos A=\frac{b}{c}$,$\tan A=\frac{a}{b}$。

3. 平面几何中的重要定理:- 圆的性质:圆内角的和为$180^\circ$,圆周角等于其对应圆心角的一半。

- 相交弦定理:相交弦乘积相等,即$AB \times CD=BC \timesDA$。

- 切线和半径的关系:切线和半径垂直,切线与半径的交点与圆心连线构成直角三角形。

- 内切圆和外切圆的性质:内切圆的切点和三角形的顶点共线,外切圆的切点和三角形的对边中点共线。

4. 数列和级数中的常用公式:- 等差数列前$n$项和公式:$S_n=\frac{n}{2}(a_1+a_n)$。

- 等比数列前$n$项和公式:$S_n=\frac{a_1(1-q^n)}{1-q}$。

成都市第七中学高一年级竞赛数学数论专题讲义:5.素因数分解

成都市第七中学高一年级竞赛数学数论专题讲义:5.素因数分解

成都七中高一竞赛数论专题5.素因数分解算术基本定理:设整数1a >,那么12.s a p p p =其中j p 是素数,在不计次序下唯一.把12.s a p p p =中相同的素数合并,则得到标准素因数分解式12121212, ,,,,0.nn n n a p p p p p p αααααα=<<<≥正因数个数定理:设|()1d nn τ=∑表示大于1的整数n 的所有正因数的个数,若1212s s n pp p ααα=,其中j p 是素数,则1()(1).sii n τα==+∏正因数和定理:设|()d nn d σ=∑表示大于1的整数n 的所有正因数之和,若1212s s n pp p ααα=,其中j p 是素数,则111().1i si i i p n p ασ+=-=-∏1.设,a b 是非零的整数,证明:(,)[,].a b a b ab =2.设n 是正整数,证明:!n 的素因数分解式为(,)!,p n p nn pα≤=∏其中p 是素数,1(,).j j n p n p α∞=⎡⎤=⎢⎥⎣⎦∑3.求2017!的十进制表示式中末尾的零的个数.4.设n为正整数.证明:若n的所有正因数之和为2的整数次幂,则这些正因数的个数也为2的整数次幂.n ,不超过n的素数共有k个.设A为集合{2,3,,}n的子集,A的元素个数小于,k且A中任意5.设整数3一个数不是另一个数的倍数.证明存在集合{2,3,,}n的k元子集,B使得B中任意一个数也不是另一个数的倍数,且B包含.A高一竞赛数论专题 5.素因数分解解答算术基本定理:设整数1a >,那么12.s a p p p =其中j p 是素数,在不计次序下唯一.把12.s a p p p =中相同的素数合并,则得到标准素因数分解式12121212, ,,,,0.nn n n a p p p p p p αααααα=<<<≥正因数个数定理:设|()1d nn τ=∑表示大于1的整数n 的所有正因数的个数,若1212s s n pp p ααα=,其中j p 是素数,则1()(1).sii n τα==+∏正因数和定理:设|()d nn d σ=∑表示大于1的整数n 的所有正因数之和,若1212s s n pp p ααα=,其中j p 是素数,则111().1i si i i p n p ασ+=-=-∏1.设,a b 是非零的整数,证明:(,)[,].a b a b ab =证明:设素因数分解式1212121212, ,,0.n nn n n i i a p p p b p p p p p p αβααββαβ==<<<≥则11221122min{,}max{,}min{,}min{,}max{,}max{,}1212(,),[,].n n n n n n a b p p p a b p p p αβαβαβαβαβαβ==11112222min{,}max{,}min{,}max{,}min{,}max{,}12(,)[,]n n n n n a b a b p p p αβαβαβαβαβαβ+++=11221212121212.n n n nn n n p p p p p p p p p ab αβαβαβαβααββ+++==⋅=2.设n 是正整数,证明:!n 的素因数分解式为(,)!,p n p nn pα≤=∏其中p 是素数,1(,).j j n p n p α∞=⎡⎤=⎢⎥⎣⎦∑证明:一方面若素数|!,p n 则|,1.p k k n <≤另一方面,任一素数p n ≤,必有|!.p n 所以12121212!, 2 ,,,,0.ss n s n p p p p p p n αααααα=≤<<<≤>下面去确定.j α设(,)p n α为整数!n 的素因数p 的次方.因为必有整数k 满足1,kk p n p +≤<所以.k n n ∞⎡⎤⎡⎤=⎢⎥⎢⎥∑∑设j c 表示1,2,,n 中能被j p 整除的数的个数,则.j j n c p ⎡⎤=⎢⎥⎣⎦j d 表示1,2,,n 中恰能被j p 整除的数的个数.则11.j j j j j n n d c c p p ++⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦显然当j k >时,0.j d =及12(,)12.k p n d d k d α=⋅+⋅++⋅于是1212231(,)121()2()()k k k p n d d k d c c c c k c c α+=⋅+⋅++⋅=⋅-+⋅-++⋅-12112111.kkk k k k j j j j j n n c c c c c c c c p p ∞+===⎡⎤⎡⎤++++=+++===⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑所以(,)!.p n p nn p α≤=∏3.求2017!的十进制表示式中末尾的零的个数.解:这就是要求正整数k 使得10||2017!.k因为1025=⨯,实际上是求2的最大方次与5的最大方次的最小值. 显然2的最大方次大于5的最大方次. 所以就是求5的最大方次(5,2017).α 注意到520175.< 所以2342017201720172017(5,2017)40380163502.5555α⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦所以2017!的十进制表示式中末尾的零的个数为502个.4.设n 为正整数.证明:若n 的所有正因数之和为2的整数次幂,则这些正因数的个数也为2的整数次幂.证明:设12121212, ,,,,0,s s s s i n p p p p p p p αααααα=<<<>为素数.则n 的所有正因数之和2|1()(1).i siii d ni n d p pp ασ===++++∑∏若()n σ为2的整数次幂,则()n σ的因数12111i ii i i ii i p f p p p p αα+-=++++=-也是2的整数次幂.显然2,i p ≠i α是奇数.若1i α>, 则112324(1)()()(1)(1).i i i i i i i i i i i i i f p p p p p p p p p ααα--=+++++=+++++由于i f 的素因数只有2,所以1241i i i i p p p α-++++不含大于1的奇数因数.于是12i α-是奇数.所以11222124246221(1)()()i i i iiii i iiip p p p p p p p ααα--⋅-⋅-++++=++++++12232482482(1)(1)(1)(1)i i iiiii i i i p p p p p p p p αα-⋅--=++++=++++.从而3248(1)(1)(1).i i i i i i i f p p p p p α-=+++++于是21,1i i p p ++都是2的整数次幂,显然211i i p p +<+,于是21|1.i i p p ++因为21(1)(1)2i i i p p p +=+-+,1|(1)(1).i i i p p p ++-所以1|2.i p +于是1i p =矛盾.因此1,1,2,,).i i s α==n 的正因数的个数|11()1(1)(11)2.sss i d ni i n τα====+=+=∑∏∏故n 的正因数的个数也是2的整数次幂.5.设整数3n ≥,不超过n 的素数共有k 个.设A 为集合{2,3,,}n 的子集,A 的元素个数小于,k 且A 中任意一个数不是另一个数的倍数.证明存在集合{2,3,,}n 的k 元子集,B 使得B 中任意一个数也不是另一个数的倍数,且B 包含.A证明:引理:若||,A k <则可在{2,3,,}\n A 中找到一个数b ,其不整除集合A 中任意一个数,也不被集合A 中任意一个数整除.若引理得证,进而将数b 添入集合A 中,并重复这一过程,直到将A 扩充成一个k 元子集,B 则集合B 满足要求.下面证明引理,对大于1的整数m ,设m 的标准素因数分解为1212.ss m p p p ααα=定义1212()max{,,,}.s s f m p p p ααα=由于||,A k <则()a AN f a ∈=∏不同的素因子个数小于,k 又不超过n 的素数共有k 个,因此,存在素数,p n ≤使得.p N Œ于是().p f a Œ 设1,p n pαα+≤<则p A α∉(若不然,将有()f p p αα=,于是|,p N 与p N Œ矛盾).若|,p a α因为,p N Œ所以(),p f a 宖故(),f a q q β=为不同于p 的素数,且.q p p βα>≥从而1,a p q p p pn αβαα+≥>=>矛盾.因此.p a αŒ从而,不属于A 的元素p α不整除集合A 中任意一个数,也不被集合A 中任意一个数整除.法2 将不超过n 的所有k 个素数从下到大记为12,,,.k p p p对1,2,,i k =,取正整数i α满足1,i i i i p n p αα+≤<对这个i α,取正整数i λ满足(1),i i i i i i p n p ααλλ≤<+其中,,i i αλ均唯一确定的,且.i i p λ<令**{|,},{|,}.i s i i i i i i D p s s N M tp t t N ααλ=≤∈=≤∈则i D 为i i p α在{2,3,,}n 中的约数全体,i M 为i i p α在{2,3,,}n 中的倍数全体.考虑k 个集合(1,2,,}i i i A D M i k ==,注意到集合i A 中的每个数均以i p 为最大素因子,从而12,,,k A A A 为{2,3,,}n 的两两不相交的k 个子集.当||A k <时,必存在某个{1,2,,}i k ∈,使得,i AA =∅即ii p α不整除集合A 中任意一个数,也不被集合A 中任意一个数整除.将i i p α添入集合.A 重复这一过程,直到将A 扩充成一个k 元子集,B 则集合B 满足要求.。

数学竞赛初级讲座二项式定理

数学竞赛初级讲座二项式定理

数学竞赛初级讲座二项式定理竞赛园地★数学竞赛初级讲座二项式定理江苏省海安高级中学李红二项式定理是证明代数问题的重要工具之一,是组合数学的基础,它具有一定的技巧和难度,且灵活性、综合性强,对学生运算能力的培养和思维灵活性的训练都具有重大的作用.因此,它在国内外数学竞赛中出现的频率较高.一、基础知识1.(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C r n a n -r br +…+C n n bn=∑nr =0C r n a n -r b r (r =0,1,2,…,n ).21通项公式:T r +1=C r n a n -r b r(0≤r ≤n ).31二项式系数的性质:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.(2)如果n 为偶数,中间一项的二项式系数最大;如果n 为奇数,中间两项的二项式系数相等且最大.(3)所有项的二项式系数和等于2n .(4)奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C2n +…=C 1n +C 3n +…=2n -1.例1 设f (x )=(x 2+x -1)9(2x +1)4,试求:(1)f (x )的展开式中所有项的系数和;(2)f (x )的展开式中奇数次项的系数和.导析:设f (x )可展开为a 0+a 1x +a 2x 2+…+a 22x22,则f (1)=a 0+a 1+a 2+…+a 22即为所有项的系数和.若令x =1,得a 0+a 1+a 2+…+a 22=f (1)=81;令x =-1,得a 0-a 1+a 2-…+a 22=f (-1)=-1.两式相减除以2,得a 1+a 3+…+a 21=41.例2 求证:∑kr =0C r m C k -rn=C k m +n .导析:C r m 和C k -rn可分别看做是(1+x )m和(1+x )n二项展开式中x r 和x k -r 的二项式系数,于是构造恒等式(1+x )m (1+x )n =(1+x )m +n ,比较两边x k的系数,得∑kr =0C r m C k -r n =C km +n .例3 试证:大于(1+3)2n (n ∈N )的最小整数能被2n +1整除.(第六届普特南竞赛题)导析:由(1+3)2n 联想到其对偶式(1-3)2n ,且0<(1-3)2n<1,考虑它们的和(1+3)2n+(1-3)2n=2(3n+3n -1C 22n+3n -2C 42n+…)为偶数,记作2k (k ∈N ),所以大于(1+3)2n 的最小整数必为2k.同理可证(2+3)n +(2-3)n 也为偶数,记作2k 1(k 1∈N ),又因为2k =(1+3)2n +(1-3)2n =(4+23)n +(4-23)n =2n [(2+3)n+(2-3)n ]=2n2k 1=2n +1k 1,所以2n +1|2k.二、综合应用例4 设n =1990,求2-n (1-3C 2n +32C 4n -33C 6n+…+3994C 1988n -3995C 1990n)的值.(1990年全国联赛题)导析:考察各项的绝对值(12)1990?3r ?C 2r1990,它可以写成C 2r1990(12)1990-2r (32)2r ,再注意到虚数单位i 乘方的性质i 2=-1,i 4=1,就不难发现原式是复数(1+3i 2)1990的实部.而(1+3i 2)1990=(-1-3i 2)1990=-1-3i 2,∴原式=-12.例5 已知3|n ,求证:2|C 0n +C 3n +C 6n +…+C nn .导析:由(1+x )n =∑nk =1C k n x k,注意到单位根的周期性,令x =1、ω、ω2(ω=-12+32i ),得(1+1)n =C 0n +C 1n +C 2n +…+C n n ,(1+ω)n=C 0n +C 1n ω+C 2n ω2+…+C n n ωn ,(1+ω2)n=C 0n +C 1n ω2+C 2n ω4+…+C n nω2n .三式相加,得2n +(-ω2)n +(-ω)n =3(C 0n+C 3n +C 6n +…+C n n ).∵3|n ,∴2[2n -1+(-1)n -1]=3(C 0n +C 3n+C 6n +…+C n n ).又(2,3)=1,∴2|C 0n +C 3n +C 6n +…+C n n .例6 设a ,b ∈R +,且1a+1b=1,试证对于每个n ∈N ,都有(a +b )n-a n -b n ≥22n -2n +1.(1988年全国联赛题)导析1:由1=1a+1b≥2ab,得ab ≥4.则左边=C1n a n-1b+C2n a n-2b2+…+C n-2na2b n-2+C n-1n ab n-1=12[(a n-1b+ab n-1)C1n+(a n-2b2+a2b n-2)C2n+…]≥(ab)n(C1n+C2n+…+C n-1n)≥2n(2n-2)=22n-2n+1.导析2:由1a +1b=1,可令a=1+1t,b=1+t(t∈R+),结合a+b=ab,立得左边=a n b n-a n-b n=(a n-1)(b n-1)-1=[(1+1t)n-1][(1+t)n-1]-1=(t-1C1n+t-2C2n+…+t-n C n n)?(tC1n+t2C2n +…+t n C n n)-1≥(C1n+C2n+…+C n n)2-1=(2n-1)2-1=22n-2n+1.例7 已知实数a0、a1、a2、…满足a i-1+a i+1 =2a i(i=1,2,…),求证:对于任何自然数n,P(x) =a0C0n(1-x)n+a1C1n x(1-x)n-1+a2C2n x2(1-x)n-2+…+a n-1C n-1nx n-1(1-x)+a n C n n x n是x的一次多项式或常数.(1986年全国联赛二试题)导析:特殊值探路.令a0=a1=a2=…=a n,则P(x)=a0[C0n(1-x)n+C1n(1-x)n-1x+…+ C n n x n]=a0[(1-x)+x]n=a0为常数.对于一般情况,由已知,{a k}是等差数列,可设a k=a0+kd,k为公差(k∈Z-),则P(x)=a0C0n(1-x)n+a1C1n(1-x)n-1x+…+a n C n n x n=a0[C0n(1-x)n+C1n(1-x)n-1x+…+C n n x n]+d[1?C1n(1-x)n-1x+2C2n(1 -x)n-2x2+…+kC k n(1-x)n-k x k+…+nC n n x n]= a0+d[nC0n-1(1-x)n-1x+nC1n-1(1-x)n-2x2+…+nC k-1n-1(1-x)n-k x k+…+nC n-1n-1x n]=a0+dnx[(1-x)+x]n-1=a0+dnx是x的一次多项式.例8 已知数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≥1.(20届国际数学奥林匹克题) 导析:因1978n与1978m的最后三位数相等,所以1000|(1978n-1978m),又1978n-1978m=1978m (1978n-m-1),故23?53|2m?989m(1978n-m-1).又因为989m与1978n-m-1都是奇数,所以23|2m,则m≥3.而2m与989m中都不含因数5,所以53| (1978n-m-1),由二项式定理可知1978n-m=(2000 -22)n-m=1000k+(-22)n-m,这里k∈Z+,所以53 |[(-22)n-m-1].又因为22l(l∈Z+)的末位数字只能是2,4,8,6的循环,所以仅当4|n-m时, (-22)n-m-1能被25整除,不妨设n-m=4p(p∈N),则(-22)4p=4842p=(500-16)2p=(1000k1+256)p=(125k2+6)p(k1,k2∈Z+).由二项式定理知只要53|6p-1.又6p-1=(5+1)p-1,从而只要C2p ?52+C1p?5能被125整除即可,即52|p?5p-32.但5不整除5p-32,所以52|p,即p=25q(q∈N).于是,n -m=4p=100q,n-m至少等于100(当q=1时取到),因此,m+n的最小值是n-m+2m=106(当m =3,n=103时取到).三、强化训练1.求值:2n-C1n2n-1+C2n2n-2-…+(-1)n-1C n-1n2+(-1)n.2.计算:∑lk=0C k n C l-km.3.证明:∑nk=0(C k n)2=C n2n.4.证明:2n=(C0n-C2n+C4n-…)2+(C1n-C3n +C5n-…)2.(1980年安徽赛题)51试证:对任意的n∈N,不等式(2n+1)n≥(2n)n+(2n-1)n成立.61设自然数a、b的末位数字是3或7,试证对任意自然数m和n,a4n+2m-b2m是20的倍数.答案或提示11提示:逆用二项式定理.21C l m+n.提示:考察(1+x)m(1+x)n的展开式中x l的系数.31提示:C n2n为(1+x)2n展开式中x n的系数,而(1+x)2n=(1+x)n(1+x)n,对右边分别运用二项式定理展开,再求出x n的系数即可.41提示:左边=(1+1)n=(1+i)n(1-i)n= [(C0n-C2n+C4n-…)+(C1n-C3n+C5n-…)i]?[(C0n -C2n+C4n-…)-(C1n-C3n+C5n-…)i]=右边.5.原不等式等价于(1+12n)n≥1+(1-12n)n.则(1+12n)n-(1-12n)n=2[C1n?12n+C3n?(12n)3+…]≥2C1n?12n=1.6.不妨设a=10a1+7,b=10a1+3,则a4n+2m-b2m=[(10a1+7)2]2n+m-[(10b1+3)2]m=[20(5a12+7a1+2)+9]2n+m-[20(5b12+3b1)+9]m=(20a2 +9)2n+m-(20b2+9)m.由二项式定理可知只要证: 92n+m-9m是20的倍数即可,而92n+m-9m=9m ?[(80+1)n-1],运用二项式定理得证,其它情况同理可证.参考文献1 单土尊.数学竞赛研究教程.南京:江苏教育出版社2 胡炳生.国际数学奥林匹克(IMO)30年.中国展望出版社3 梅向明.中学数学奥林匹克丛书—组合基础.。

全国初中数学竞赛辅导(初3)第19讲平面几何中的几个著名定理(2021年整理)

全国初中数学竞赛辅导(初3)第19讲平面几何中的几个著名定理(2021年整理)

全国初中数学竞赛辅导(初3)第19讲平面几何中的几个著名定理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(全国初中数学竞赛辅导(初3)第19讲平面几何中的几个著名定理(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为全国初中数学竞赛辅导(初3)第19讲平面几何中的几个著名定理(word版可编辑修改)的全部内容。

第十九讲*平面几何中的几个著名定理几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理.1.梅内劳斯定理亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理"现载在初等几何和射影几何的书中,是证明点共线的重要定理.定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得同理将这三式相乘,得说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为AX×BY×CZ=XB×YC×ZA,仍然成立.(2)梅内劳斯定理的逆定理也成立,即“在△ABC的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线.例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线.证如图3-99有相乘后得由梅内劳斯定理的逆定理得F,D,E共线.例2(戴沙格定理)在△ABC和△A′B′C′中,若AA′,BB′,CC′相交于一点S,则AB与A′B′,BC与B′C′,AC与A′C′的交点F,D,E共线.证如图3-100,直线FA′B′截△SAB,由梅内劳斯定理有同理,直线EC′A′和DC′B′分别截△SAC和△SBC,得将这三式相乘得所以D,E,F共线.2.塞瓦定理意大利数学家塞瓦(G.Ceva)在1678年发表了下面的十分有用的定理,它是证明共点线的重要定理.定理在△ABC内任取一点P,直线AP,BP,CP分别与边BC,CA,AB相交于D,E,F,则证如图3-101,过B,C分别作直线AP的垂线,设垂足为H和K,则由于△BHD∽△CKD,所以同理可证将这三式相乘得说明 (1)如果P点在△ABC外,同样可证得上述结论,但P点不能在直线AB,BC,CA上,否则,定理的结论中的分母出现零,分子也出现零,这时,定理的结论应改为BD×CE×AF=DC×EA×FB,仍然成立.(2)塞瓦定理的逆定理也成立,即“在△ABC的边BC,CA,AB上分别取点D,E,F,如果那么直线AD,BE,CF相交于同一点.”证如图3-102,设AD和BE相交于P,作直线CP,交直线AB于F′,由塞瓦定理得所以 F′B=FB,即F′与F重合,所以AD,BE,CF相交于同一点.塞瓦定理的逆定理常被用来证明三线共点.例3 求证:三角形的三条中线、三条内角平分线和三条高所在的直线分别相交于同一点.证(1)如果D,E,F分别是△ABC的边BC,CA,AB的中点,则由塞瓦定理的逆定理得中线AD,BE,CF共点.(2)如果D,E,F分别是△ABC的内角平分线AD,BE,CF与边BC,CA,AB的交点,则由塞瓦定理的逆定理得角平分线AD,BE,CF共点.(3)设D,E,F分别是△ABC的高AD,BE,CF的垂足.(i)当△ABC是锐角三角形时(如图3-103),D,E,F分别在BC,CA,AB上,有BD=ccosB,DC=bcosC,CE=acosc,EA=ccosA,AF=bcosA,FB=acosB,所以由塞瓦定理的逆定理得高AD,BE,CF共点.(ii)当△ABC是钝角三角形时,有BD=ccosB,DC=bcosC,CE=acosC,EA=ccos(180°-A)=-ccosA,AF=bcos(180°-A)=—bcosA,FB=acosB,所以由塞瓦定理的逆定理,得高AD,BE,CF共点.(iii)当△ABC是直角三角形时,高AD,BE,CF都经过直角顶点,所以它们共点.例4 在三角形ABC的边上向外作正方形,A1,B1,C1是正方形的边BC,CA,AB的对边的中点,证明:直线AA1,BB1,CC1相交于一点.证如图3-104.设直线AA1,BB1,CC1与边BC,CA,AB的交点分别为A2,B2,C2,那么BA2:A2C等于从点B和C到边AA1的垂线的长度之比,即其中∠θ=∠CBA1=∠BCA1.同理将上述三式相乘得根据塞瓦定理的逆定理,得AA1,BB1,CC1共点.3.斯台沃特定理定理△ABC的边BC上任取一点D,若BD=u,DC=v,AD=t,则证过A作AE⊥BC,E为垂足(如图3-105),设DE=x,则有AE2=b2-(v-x)2=c2-(u+x)2=t2—x2,(若E在BC的延长线上,则v-x换成x—v.)于是得消去x得(u+v)2=b2u+c2v-uv(u+v),这就是中线长公式.(2)当AD是△ABC的内角平分线时,由三角形的内角平分线的性质设a+b+c=2p,得这就是内角平分线长公式.(3)当AD是△ABC的高时,AD2=b2—u2=c2-v2.再由u+v=a,解得所以若设AD=h a,则这就是三角形的高线长公式.当D在BC的延长线上时,用—v代替v,同样可得高线长线公式.这就是三角形的面积公式.伦公式例5 如图3-106.在△ABC中,c>b,AD是△ABC的角平分线,E在BC上,BE=CD.求证:AE2-AD2=(c-b)2.证为方便起见,设BD=u,DC=v,则BE=v,EC=u.由斯台沃特定理得所以因为AD是角平分线,所以于是4.托勒密定理托勒密(Ptolemy,约公元85~165年)是古代天文学的集大成者.一般几何教科书中的“托勒密定理”(圆内接四边形的对边积之和等于对角线之积),实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学数学竞赛中常用的几个重要定理数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F且D 、E 、F 三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P.证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD的对角线AC和BD交于点M,过M作AD的平行线分别交AB,CD于点E,F,交BC的延长线于点O,P是以O为圆心,以OM为半径的圆上一点.求证:∠OPF=∠OEP【练习2】在△ABC中,∠A=900,点D在AC上,点E在BD 上,AE的延长线交BC于F.若BE:ED=2AC:DC,则∠ADB=∠FDCD塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=••PACPNC BN MB AM塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PACPNC BN MB AM ,则AN 、BP 、CM 相交于一点.【例1】B E 是△ABC 的中线,G 在BE 上,分别延长AG ,CG 交BC ,AB 于点D ,F ,过D 作DN ∥CG 交BG 于N ,△DGL 及△FGM 是正三角形.求证:△LMN 为正三角形.【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPECCC【练习2】在△ABC中,∠ABC和∠ACB均为锐角.D是BC边BC上的内点,且AD 平分∠BAC,过点D作垂线DP⊥AB于P,DQ⊥AC于Q,CP于BQ相交于K. 求证:AK⊥BC托勒密定理:四边形ABCD是圆内接四边形,则有AB·CD+AD·BC=AC·BDKACPQ【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C 不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.FAO1O2BCDE CBEFP【例1】过正△ABC 外接圆的弧AC 上点P 作PD ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.P1三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC 的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CDCBCB垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.C旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.【例2】AD 是直角△ABC 斜边BC 上的高(AB<AC ),I 1,I 2分别是△ABD ,△ACD 的内心,△A I 1 I 2的外接圆⊙O 分别交AB ,AC 于E ,F ,直线FE 与CB 的延长线交于点M. 证明:I 1,I 2分别是△ODM 的内心与旁心.D相交两圆的性质与应用【例1】证明:若凸五边形ABCDE 中,∠ABC=∠ADE ,∠AEC=∠ADB. 证明:∠BAC=∠DAE【例2】已知⊙O 1与⊙O 2相交于A ,B ,直线MN 垂直于AB 且分别与⊙O 1与⊙O 2交于M ,N ,P 是线段MN 的中点,Q 1,Q 2分别是⊙O 1与⊙O 2上的点,∠AO 1Q 1=∠AO 2Q 2 求证:PQ 1=PQ 2E【练习】梯形ABCD 中,AB ∥CD ,AB >CD ,K ,M 分别是腰AD ,CB 上的点,∠DAM=∠CBK ,求证:∠DMA=∠CKB其他的一些数学竞赛定理1、广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a cb -+;m b =2222221b c a -+;m c =2222221c b a -+A2、三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC的外接圆圆心为O,半径为R,内切圆圆心为I,半径为r,记OI=d,则有:d2=R2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF(不论其六顶点排列次序如何),其三组对边AB与DE、BC与EF、CD与FA的交点P、Q、R共线.。

相关文档
最新文档