北师大版七年级上册数学[丰富的图形世界(基础版)知识点整理及重点题型梳理]

合集下载

北师大版七年级上册数学各章节知识点总结-

北师大版七年级上册数学各章节知识点总结-

(1)绝对值的定义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。数 a 的绝对值记作 |a| 。
( 2 )正数的绝对值是它本身;负数的绝对值是它的数;
a( a 0) a(a 0)
| a | 0(a 0) 或 | a | a(a 0)
a(a 0)
0 的绝对值是 0。
越来越大
-3 -2 -1 0 1 2 3
n 边形的同一个顶点出发,分
别连接这个顶点与其余各顶点,可以把这个
n 边形分割成( n-2 )个三角形。
8、弧:圆上 A、 B 两点之间的部分叫做弧。扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算
1.有理数的分类:
正整数 (如 :1, 2, 3 )
整数 零 (0)
(3)绝对值的性质:①除 0 外,绝对值为正数的数有两个,它们互为相反数; ②互为相反数的两数(除 0 外)的绝对值相等;即: |a|=|b| ,则 a+b=0 ③任何数的绝对值总是非负数,即 |a| ≥0 ④ 对任何有理数 a,都有 |a|=|-a|
5.比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下: ① 先求出两个数负数的绝对值; ② 比较两个绝对值的大小;
圆柱 柱 球 棱柱:三棱柱、四棱柱(长方体、正方体) 、五棱柱、……
( 按名称分 )
锥 圆锥 棱锥
3、棱柱: n 棱柱有两个底面, n 个侧面,共( n+2)个面; 3n 条棱, n 条侧棱; 2n 个顶点。 4、正方体的平面展开图: (一四一)中间四个面,上下各一面; (二三一)中间三个面,一二隔河见; (二二二)中间两个面,楼梯三
(1)绝对值的定义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。数 a 的绝对值记作 |a| 。

北师大版七年级上册数学第一章丰富的图形世界知识点归纳及巩固练习

北师大版七年级上册数学第一章丰富的图形世界知识点归纳及巩固练习

七年级数学上-—第一章丰富的图形世界—-知识点归纳1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成①点:线和线相交的地方是点,它是几何图形中最基本的图形。

②线:面和面相交的地方是线,分为直线和曲线。

③面:包围着体的是面,分为平面和曲面。

④体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

(点无大小,线无宽窄,面无厚度)3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱:棱柱三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 圆锥(圆锥的侧面是曲面,底面的圆)锥棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种3—3型2—2—2型总结:中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、其他常见图形的平面展开图:侧面可以展开成长方形的是:圆柱和棱柱;侧面可以展开为扇形的是:圆锥7、截一个正方体:用一个平面去截一个正方体,截出的面可能是:三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 、三视图:物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图.左视图:从左面看到的图,叫做左视图。

北师大版七年级上册数学丰富的图形世界知识点归纳

北师大版七年级上册数学丰富的图形世界知识点归纳

北师大版七年级上册数学丰富的图形世界知识点归纳Newly compiled on November 23, 2020第一章丰富的图形世界一、知识点回顾1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分)锥圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点。

5、正方体的平面展开图:11种总结:中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、其他常见图形的平面展开图:侧面可以展开成长方形的是:圆柱和棱柱侧面可以展开为扇形的是:圆锥7截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

3—3型 2—2—2型左视图:从左面看到的图,叫做左视图。

七年级数学上册第一章丰富的图形世界重点知识汇总

七年级数学上册第一章丰富的图形世界重点知识汇总

北师大版七年级上册 第一章 丰富的图形世界一、几何体的分类:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⇒⎪⎩⎪⎨⎧⇒⎩⎨⎧椭球圆球球体锥三棱锥、四棱锥、五棱棱锥圆锥椎体柱三棱柱、四棱柱、五棱斜棱柱直棱柱棱柱圆柱柱体几何体 1.n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点,底面是n 边形且大小形状完全相同.2.n 棱椎有一个底面,n 个侧面,共(n+1)个面;2n 条棱,n 条侧棱;( n+1)个顶点,底面是n 边形.3.棱柱的侧棱长均相等,直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形,棱锥的侧面是三角形.4. 点、线、面的关系:点动成线、线动成面、面动成体。

面与面相交得到线,线与线相交得到点.二、展开与折叠1、正方体的展开图形 1-4-1型 共6种2-3-1型 共3种2-2型 1种 3-3型 1种注意:常见的易错图形一线超四型:田凹型:2、圆柱的平面展开图3、三棱锥柱的平面展开图4、圆锥的平面展开图5、三棱柱锥的平面展开图6、长方体的平面展开图7、五棱柱的平面展开图8、四棱锥的平面展开图三、图形的切割1、正方体的切割注意:可能出现的:锐角三角型、等边三角形、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形.不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形2、圆柱的切割3、圆锥的切割四、三视图1、三视图主视图:从正面看到的图形.左视图:从左面看到的图形.俯视图:从上面看到的图形.原则:1.位置:主视图左视图俯视图2.大小:长对正,高平齐,宽相等.3.虚实:在画图时,看得见部分的轮廓通常画成实现,看不见部分的轮廓线通常画成虚线.2、常见几何体的三视图:圆柱主视图左视图俯视图圆锥主视图左视图俯视图正方体主视图左视图俯视图三棱柱主视图左视图俯视图四棱柱主视图左视图俯视图球体主视图左视图俯视图3、小立方块搭成几何体的三视图第一章丰富的图形世界经典练习一、选择题1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个2. 下面几何体截面一定是圆的是()( A)圆柱 (B) 圆锥(C)球 (D) 圆台3.如图绕虚线旋转得到的几何体是().4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是()(A)长方体( B)圆锥体(C)立方体(D)圆柱体(D)(B)(C)(A)5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()7. ( )(A ) (B ) (C ) (D ) 8.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是( ). A .5 B . 6 C .7 D .89.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是( )A B C D10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π-(C )π、、235- (D)235-、、π二、填空题11.正方体与长方体的相同点是_________________,不同点是_______________。

北师大版七年级(上册)数学第一章丰富的图形世界知识点归纳

北师大版七年级(上册)数学第一章丰富的图形世界知识点归纳

第一章 丰富的图形世界一、知识点回顾1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、…… (棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点。

5、正方体的平面展开图:11种总结:3—3型2—2—2型中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、其他常见图形的平面展开图:侧面可以展开成长方形的是:圆柱和棱柱侧面可以展开为扇形的是:圆锥7 截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

北师大版 七年级数学上丰富的图形世界知识点汇总

北师大版 七年级数学上丰富的图形世界知识点汇总

北师大版七年级数学上丰富的图形世界知识点汇总一、知识梳理一.几种常见的几何体1.柱体①棱柱体:〔如图(1)(2)〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的棱.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.点拨:正方体和长方体是特殊的棱柱,它们都是四棱柱.正方体是特殊的长方体.②圆柱:图(3)中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.点拨:棱柱和圆柱统称柱体.2.锥体①圆锥:〔如图(4)〕图中的圆面是圆锥的一个底面,中间曲面是圆锥的侧面,圆锥只有一个顶点.②棱锥:〔如图(5)〕图中下面多边形面是棱锥的一个底面,其余各三角形面是棱三角形正方形长方形梯形五边形六边形点拨:用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.2. 几种常见的几何体的截面:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、正方形、……圆锥圆、三角形、……球圆点拨:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,相交得到是曲线,无法截出三角形.四.识别物体的三视图1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看图叫主视图,从左面看图叫左视图,从上面看图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.(2)球体:三视图都是圆.(3)圆柱体:(4)圆锥体:点拨:圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.用若干个小正方体搭成几何体的三视图如图:从正面看2列每列1层;从左面看2列每列1层;从上面看2列左列2层右列1层.则三视图是:点拨:①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字即为左视图中的列的层数.五.生活中的平面图形1.多边形的定义三角形、四边形、五边形等都是多边形,它们都是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.边长都相等的多边形叫正多边形.2.多边形的分割设一个多边形的边数为n(n≥3) ,从这个n 边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以得到(n-3)条线段,这些线段又把这个n边形分割成(n-2)个三角形.3.扇形与弧的定义及区别(1)弧:圆上两点之间部分叫弧.(2)扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.(3)扇形与弧的区别:弧是一段曲线,而扇形是一个面.重点:常见几何体侧面底面面数顶点数棱数N棱柱N个(平行四边形或矩形)2个(上下各1个),全等N边形2+n 2n 3nN棱椎N个三角形1个N边形N+1 N+1 2nN棱台N个梯形2个(上下各1个)相似的N边形2+n 2n 3n圆锥1个曲面1个圆 2圆柱1个2个(上下各1个),全等的圆3圆台1个2个(上下各1个)相似的圆 3 球1个球面 1。

(完整word版)北师大版七年级上册数学第一章丰富的图形世界知识点归纳及巩固练习

(完整word版)北师大版七年级上册数学第一章丰富的图形世界知识点归纳及巩固练习

1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

圆柱(圆柱的侧面是曲面,底面是圆)(按名称分) 圆锥(圆锥的侧面是曲面,底面的圆)锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种型中间没有面,三三连一线侧面可以展开成长方形的是:圆柱和棱柱;侧面可以展开为扇形的是:圆锥7、截一个正方体:用一个平面去截一个正方体,截出的面可能是:三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。

9、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

①从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。

2、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:________,___________3、下图所示的三个几何体的截面分别是:(1)_________;(2)__________;(3)___________.5、已知三棱柱有5 个面、6 个顶点、9 条棱,四棱柱有6 个面、8 个顶点、12 条棱,五棱柱有7 个面、10个顶点、15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条棱。

6、当右面这个图案被折起来组成一个正方体,数字_____会在与数字2所在的平面相对的平面上。

北师大版七年级上册数学第一章丰富的图形世界知识点及对应练习(含答案)

北师大版七年级上册数学第一章丰富的图形世界知识点及对应练习(含答案)

1.1 生活中的立体图形一、情境导入我们生活在多姿多彩的图形世界中,许多美丽的图形装点着我们的生活,下面让我们一起来欣赏.二、知识梳理生活中的立体图形 ⎩⎪⎪⎨⎪⎪⎧几何体⎩⎪⎨⎪⎧柱体⎩⎨⎧圆柱棱柱锥体⎩⎨⎧圆锥棱锥球体图形的构成元素⎩⎨⎧点:点动成线线:线动成面面:面动成体三、考点分类考点一: 识别立体图形【例1】 如图,在给出的实物图中,(1)哪些是你学过的长方体、正方体?(2)请你从图中找出与圆锥、圆柱类似的几何体;(3)你还能发现哪些物体的形状与我们学过的几何体相同或相近?解:(1)物体a,d,h,i,n易使人联想起长方体;物体b,p易使人联想起正方体;(2)物体g,m类似于圆柱;物体l类似于圆锥;(3)物体e类似于棱锥;物体f,k类似于球.方法总结:考查了对现实生活中立体图形的初步认识,结合所学几何体的特征,抽象出几何图形.考点二:立体图形构成的元素【例2】观察图形,回答下列问题:(1)图①是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共有多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?解析:(1)根据长方体的面的特点解答;(2)根据圆锥的面的特点解答;(3)根据长方体和圆锥的线的特点解答;(4)根据长方体和圆锥的顶点情况解答.解:(1)图①是由6个面组成的,这些面都是平的面;(2)图②是由2个面组成的,1个平的面和1个曲的面;(3)图①中共有12条线,这些线都是直的;图②中有1条线,是曲线;(4)图①中有8个顶点,图②中只有1个顶点.方法总结:解答此类问题要联系实物的形状与面的形状作对比,然后作出判断,平面与平面相交成直线,曲面与平面相交成曲线.考点三:几何体的分类【例3】将如图所示的几何体分类:解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.考点四:几何体的形成【例4】笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.【例5】如图所示,将平面图形绕轴旋转一周,得到的几何体是( )解析:半圆绕其一条直径所在的直线旋转一周,得到的图形是球.故选A.方法总结:点动成线,线动成面,面动成体,以运动的观点观察静止的点、线、面,就能得到千姿百态的几何图形.解答此题可动手操作,也可以空间想象.同步练习:1,长方体共有()个面.A.8B.6C.5D.42,六棱柱共有()条棱.A.16B.17C.18D.203,下列说法,不正确的是()A.圆锥和圆柱的底面都是圆.B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形.D.长方体是四棱柱,四棱柱是长方体.4,判断题:(1)棱柱侧面的形状可能是一个三角形()(2)棱柱的每条棱长都相等. ()(3)正方体和长方体是特殊的四棱柱,有是特殊的六面体.()5,正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2.6,长方体有 个顶点, 条棱, 个面.7,五棱柱是由 个面围成的,它有 个顶点,有 条棱.8,一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是4cm ,那么它所有棱长的和是 cm.9,如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由 个面围成的,其中正方形有 个,长方形有 个.10,已知一圆柱内恰好能容纳一个球体,请画出示意图并尽可能多地写出一些你发现的关系式.11,在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12,如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.答案:1,B 2,C 3,D 4,(1)×(2)×(3)√5, 6 8 3 相同 6a2 6, 8 12 67, 7 10 15 8, 18 48 9,8 2 410,图略,该圆柱的高与底面直径相等 11,绿蓝黑12,1111.2 展开与折叠一、情境导入喜羊羊现有涂色方式完全相同的四个正方体,每个正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色.喜羊羊把这四个正方体拼成如图所示的长方体,并让美羊羊判断红、黄、白三种颜色的对面分别涂着哪一种颜色.你能帮助美羊羊吗?二、知识点梳理几何体的展开与折叠⎩⎨⎧棱柱的展开图圆柱的展开图圆锥的展开图三、考点分类考点一: 几何体的表面展开图【例1】下列图形中,是正方体表面展开图的是( )解析:选项A 是“田”字型,选项B 是“凹”字型,选项D 是“L ”型,它们都不是正方体的表面展开图;只有选项C 是“一四一”型,符合正方体的展开图形式,故选C.方法总结:方法1:根据正方体的11种表面展开图逐个进行选项核对;方法2:由于正方体的表面展开图不包括“L”型、“田”字型和“凹”字型,故可采用排除法进行判断.【例2】过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( )解析:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点.故选B.方法总结:考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.考点二:正方体的相对面【例3】杭州市将举办2016年G20峰会,为了迎接这一盛会,小威特意制作了一个正方体广告牌,并在各个表面上书写了汉字或符号,其表面展开图如图所示,则原正方体中的“州”字所在面的对面所标的是________.解析:将正方体展开图折叠后可知:“杭”与“您”相对,“州”与“迎”相对,“欢”与“!”相对.故填“迎”.方法总结:将正方体的展开图折叠找到相对的面,再判断相应面上应填的字.考点三:由展开图判断几何体【例4】下面的展开图能拼成如图立体图形的是( )解析:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除.故选B.方法总结:此题主要考查了展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.考点四:求立体图形的表面积【例5】如图是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,请说明理由.解:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(平方米);(2)能做成一个长方体盒子,如图所示.它的体积为3×1×2=6(立方米).方法总结:能否做成一个长方体盒子,就看相对的面的形状是否相同,大小是否相等.同步练习:1,如图,把左边的图形折叠起来,它会变为()2,下面图形经过折叠不能围成棱柱的是()3,如图,把左边的图形折叠起来,它会变成()4,一个几何体的边面全部展开后铺在平面上,不可能是()A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆5,(1)侧面可以展开成一长方形的几何体有;(2)圆锥的侧面展开后是一个;(3)各个面都是长方形的几何体是;(4)棱柱两底面的形状,大小,所有侧棱长都 .6,用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为 cm.7,用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.8,用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)9,如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.10,如图,正方体a的上、前、右三个面上分别注有A,B,C三个字母,它的展开图如图b所示,请用D,E,F三个字母在展开图上分别标注下、后、左三个面.11,如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,现沿图中粗黑线的棱剪开,请画出展开图。

北师大版七年级上数学知识点汇总(精心整理)

北师大版七年级上数学知识点汇总(精心整理)

北师大版七年级上数学知识点汇总(精心整理)七年级上册第一章丰富的图形世界一、生活中的立体图形分类在初中数学中,我们只讨论直棱柱,即侧面是长方形的棱柱。

棱柱的相关概念包括棱、侧棱、以及根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱等等。

棱柱的所有侧棱都相等,且上下底面的形状相同,侧面的形状都是平行四边形。

我们可以根据面、顶点、棱、侧棱、侧面的数量关系来分类n棱柱。

例如,三棱柱有5个面、6个顶点、9条棱、3条侧棱和3个侧面。

在几何中,点、线、面、体是最基本的图形,点动成线,线动成面,面动成体。

二、展开与折叠常见立体图形的展开图包括圆柱、圆锥、三棱锥、三棱柱和正方体。

展开正方体需要切开7条棱。

我们可以通过找对立面(相间、Z端)来展开正方体。

三、截一个几何体常见立体图形的截面可以得到三边形、四边形、五边形和六边形。

四、三视图(主视图、左视图、俯视图)在三视图中,有6种题型,包括已知实物图画三视图、已知俯视图画主视图和左视图、已知主视图、左视图和俯视图确定小立方体的个数、已知主视图和俯视图确定小立方体最多和最少个数、已知左视图和俯视图确定小立方体最多和最少个数、已知主视图和左视图确定小立方体最多和最少个数。

五、多边形的一些规律从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。

从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。

从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。

4.从一个n边形的一个顶点出发,可以引出(n-3)条对角线。

一个n边形共有n(n-3)/2条对角线。

5.数学家欧拉发现了一个公式:如果用f表示正多面体的面数,e表示棱数,v表示顶点数,则有f+v-e=2.第二章:有理数及其运算一、有理数1.有限小数和无限循环小数都是分数,也都是有理数。

2.正负数表示相反意义的量。

北师大版数学七年级上册第一章丰富的图形世界知识点总结

北师大版数学七年级上册第一章丰富的图形世界知识点总结

第一章丰富的图形世界知识点知识点一:棱柱分为(直棱柱)和(斜棱柱)。

人们通常根据(底面图形的边数)将棱柱分为三棱柱、四棱柱、五棱柱┈┈。

知识点二:如上图所示,n棱柱的面有(n+2)个,其中侧面有(n)个;顶点有(2n)个;棱有(3n)条,其中侧棱有(n)条。

知识点三:如上图所示,棱柱的两个底面是(多边形),他们的大小和形状(相同),侧棱的长度(相同),侧面均为(长方形),但侧面的大小(不一定相同)。

知识点四:将以上几何体进行分类:(一)按照“柱锥球”划分柱体:正方体、长方体、圆柱、五棱柱。

锥体:圆锥。

球体:球(二)按照有无曲面划分都是平面的:正方体、长方体、五棱柱。

至少有一个面是曲面:球、圆柱、圆锥(三)按照有无顶点划分有顶点:正方形、长方形、圆锥、五棱柱。

没有顶点:球、圆柱知识点五:点动成(线),线动成(面),面动成(体)。

粉笔再黑板上划线是(点动成线),钟表指针在表盘上转动是(线动成面),硬币立在桌面上转动是(面动成体)。

知识点六:将长5cm和宽3cm的长方形分别绕长、宽旋转一周,得到两个不同的几何体,求出他们的体积。

35 3(一)绕宽旋转时:3.14×42×3=3.14×16×3=150.72(cm3)(二)绕长旋转时:3.14×32×4=3.14×9×4=113.04(cm3)知识点七:正方体至少切割(7)下才能展开成平面图形,而且最多可以得到(11)中平面展开图。

我们把他们分为四类,分别是(141型)(231型)(222型)(33型)。

正方体的展开图相对的两个面遵循(隔一个格)的规律。

有三种情况可以直接排除不是正方体的平面展开图,即(一字行)(田字格)(凹字体)。

知识点八:正方体的平面展开图得到六个大小一模一样的(正方形)圆柱的平面展开图是一个(长方形)和两个(圆)。

圆锥的平面展开图是一个(扇形)和一个(圆)。

七年级数学上册 第一章 丰富的图形世界知识点汇总 北师大版

七年级数学上册 第一章 丰富的图形世界知识点汇总 北师大版

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版初中数学定理知识点汇总七年级上册第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面) ¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面; ②面与面相交得到线; ③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… ¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

初一数学知识点梳理及典型例题

初一数学知识点梳理及典型例题

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版 知识点汇总[七年级上册]第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n (n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算 ﻩ ※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

北师大版七年级上册数学第一章丰富的图形世界知识点归纳

北师大版七年级上册数学第一章丰富的图形世界知识点归纳

第一章丰富的图形世界一、知识点回顾1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点。

5、正方体的平面展开图:11种总结:中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、其他常见图形的平面展开图:侧面可以展开成长方形的是:圆柱和棱柱侧面可以展开为扇形的是: 圆锥 3—3型 2—2—2型7 截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。

(完整版),北师大版七年级数学上册丰富图形世界重点知识汇总,文档

(完整版),北师大版七年级数学上册丰富图形世界重点知识汇总,文档

北师大版七年级上册第一章丰富的图形世界一、几何体的分类:圆柱柱体直棱柱棱柱三棱柱、四棱柱、五棱柱斜棱柱圆锥几何体椎体棱锥三棱锥、四棱锥、五棱锥圆球球体椭球1. n 棱柱有两个底面,n 个侧面,共〔 n+2〕个面; 3n 条棱, n 条侧棱; 2n 个极点,底面是 n 边形且大小形状完满相同.2. n 棱椎有一个底面,n 个侧面,共〔 n+1〕个面; 2n 条棱, n 条侧棱;〔n+1 〕个极点,底面是 n 边形 .3.棱柱的侧棱长均相等,直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形,棱锥的侧面是三角形 .4.点、线、面的关系:点动成线、线动成面、面动成体。

面与面订交获取线,线与线订交获取点.二、张开与折叠1、正方体的张开图形1-4-1 型共6种2-3-1 型共3种2-2型1种3-3型1种注意:常有的易错图形一线超四型:田凹型:2、圆柱的平面张开图3、三棱锥柱的平面张开图4、圆锥的平面张开图5、三棱柱锥的平面张开图6、长方体的平面张开图7、五棱柱的平面张开图8、四棱锥的平面张开图三、图形的切割1、正方体的切割注意:可能出现的:锐角三角型、等边三角形、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形.不能能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形2、圆柱的切割3、圆锥的切割四、三视图1、三视图主视图:从正面看到的图形.左视图:从左面看到的图形.俯视图:从上面看到的图形.原那么: 1.地址:主视图左视图俯视图2.大小:长对正,高平齐,宽相等.3.虚实:在画图时,看得见局部的轮廓平时画成实现,看不见局部的轮廓线平时画成虚线 .2、常有几何体的三视图:圆柱主视图左视图俯视图圆锥主视图左视图俯视图正方体主视图左视图俯视图三棱柱主视图左视图俯视图四棱柱主视图左视图俯视图球体主视图左视图俯视图3、小立方块搭成几何体的三视图第一章丰富的图形世界经典练习一、选择题1. 以下说法中,正确的个数是〔〕.①柱体的两个底面相同大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体必然是柱体;⑤棱柱的侧面必然是长方形.〔 A〕2个〔B〕3个〔C〕4个〔D〕5个2.下面几何体截面必然是圆的是〔〕( A) 圆柱(B)圆锥〔C〕球(D)圆台3. 如图绕虚线旋转获取的几何体是〔〕.〔 A 〕〔 B 〕〔 C 〕〔 D 〕4. 某物体的三视图是以以下图的三个图形,那么该物体的形状是〔〕〔 A〕长方体〔 B 〕圆锥体〔 C〕立方体〔D〕圆柱体5.如图,其主视图是〔〕6.如图,是一个几何体的主视图、左视图和俯视图,那么这个几何体是〔〕7.以下各个平面图形中,属于圆锥的表面张开图的是( )〔A〕〔B〕〔C〕〔D〕8.如图是由一些相同的小正方体组成的立体图形的三种视图:组成这个立体图形的小正方体的个数是〔〕.A.5B.6C.7D.89.下面每个图形都是由 6 个全等的正方形组成的,其中是正方体的张开图的是〔〕A B C D10.如图,是一个正方体纸盒张开图,按虚线折成正方体后,假设使相对面上的两数互为相反数,那么A、 B、C 表示的数依次是〔〕〔 A〕5、3(B)3、、5、22〔 C〕5、3 、(D)5、、322第 10题二、填空题11.正方体与长方体的相同点是_________________,不相同点是 _______________ 。

北师大版七年级上册数学[丰富的图形世界(基础版)知识点整理及重点题型梳理]

北师大版七年级上册数学[丰富的图形世界(基础版)知识点整理及重点题型梳理]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习丰富的图形世界(基础)知识讲解【学习目标】1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类,并能从组合图形中分离出基本几何体;2.认识点、线、面、体的基本含义,了解点、线、面、体之间的关系;3.能辨认和画出从不同方向观察立方体及其简单组合体得到的形状图;4.了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.【要点梳理】要点一、立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.要点诠释:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)要点诠释:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.要点二、展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点三、截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.要点四、从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)【典型例题】类型一、立体图形1.(2014秋•天津期末)下列图形不是立体图形的是()A. 球B. 圆柱C. 圆锥D. 圆【答案】D【总结升华】图形的各部分不都在同一平面内,这样的图形就是立体图形.类型二、点、线、面、体2.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).3.如图所示的平面图形绕轴旋转一周,可以得出下面相对应的立体图形,把有对应关系的平面图形与立体图形连接起来.【答案与解析】【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】(2014•长沙一模)如图,直角三角形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】C解:将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,类型三、展开与折叠4.(2016•徐州)下列图形中,不可以作为一个正方体的展开图的是()A.B. C.D.【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【答案】C【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:故选:C.【总结升华】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.举一反三:【变式】说出下列四个图形(如图所示)分别是由哪个立体图形展开得到的?【答案】 (1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.类型四、截一个几何体5.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是;(2)截面是;(3)截面是;(4)截面是.【思路点拨】根据正方体的形状及截面的角度和方向判断即可.【答案与解析】解:(1)竖截正方体,截面平行于侧面,那么截面应该是个正方形;(2)横截正方体,截面平行于两底,那么截面应该是个正方形;(3)(4)沿对边截正方体,截面应该都是个长方形.故答案为:正方形;正方形;长方形;长方形.【总结升华】本题考查正方体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.举一反三:【变式】用一个平面去截一个正方体,则截面的形状不可能为()A.四边形 B.七边形 C.六边形 D.三角形【答案】B类型五、从三个方向看物体的形状6.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式】画出下列几何体从正面、左面、上面观察所得到的图形.【答案】从正面看从左面看从上面看。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级上册数学
重难点突破
知识点梳理及重点题型巩固练习
丰富的图形世界(基础)知识讲解
【学习目标】
1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类,并能从组合图形中分离出基本几何体;
2.认识点、线、面、体的基本含义,了解点、线、面、体之间的关系;
3.能辨认和画出从不同方向观察立方体及其简单组合体得到的形状图;4.了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.
【要点梳理】要点一、立体图形
1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.
要点诠释:
常见的立体图形有两种分类方法:
2.棱柱的相关概念:
在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱⋯⋯它们底面图形的形状
分别为三角
要点诠释:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.
(2)长方体、正方体都是四棱柱.
(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.
3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体, 几何体也简称体;包围着体的是面, 面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.
要点二、展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.
要点三、截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.
要点四、从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)
【典型例题】
类型一、立体图形
1.(2014 秋?天津期末)下列图形不是立体图形的是()
A. 球
B. 圆柱
C. 圆锥
D. 圆
【答案】D
【总结升华】图形的各部分不都在同一平面内,这样的图形就是立体图形. 类型二、点、线、面、体
2.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形
成的点各有多少个? 如图所示.
【答案与解析】
解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3)9 个面,16条线,9个顶点.
【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).
3.如图所示的平面图形绕轴旋转一周,可以得出下面相对应的立体图形,把有对应关系的平面图形与立体图形连接起来.
【总结升华】“面动成体” ,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】(2014?长沙一模)如图,直角三角形绕直线l 旋转一周,得到的立体图形是
()
故选: C .
【总结升华】 本题考查了正方体的展开图,熟记展开图的 11 种形式是解题的关键,利用不 是正方体展开图的“一线不过四、 田凹应弃之” (即不能出现同一行有多于 4 个正方形的情 况,不能出现田字形、凹字形的情况)判断也可.
举一反三:
【变式】说出下列四个图形 (如图所示 ) 分别是由哪个立体图形展开得到的 ? B.
解:将如图所示的直角三角形绕直线
列图形中,不可以作为一个正方体的展开图的是(
【思路点拨】 利用不能出现同一行有多于 况进行判断也可. 【答案】 C
【解析】 正方体沿着不同棱展开,把各种展开图分类,可以总结为
如下 4 个正方形的情况,
不能出现田字形、 凹字形的情 11 种情况:
类型三、展开与折

C .
【答案】(1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.类型四、截一个几何体
5.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是;(2)截面是;
(3)截面是;(4)截面是.
【思路点拨】根据正方体的形状及截面的角度和方向判断即可.
【答案与解析】
解:(1)竖截正方体,截面平行于侧面,那么截面应该是个正方形;
(2)横截正方体,截面平行于两底,那么截面应该是个正方形;
(3)(4)沿对边截正方体,截面应该都是个长方形.故答案为:正方形;正方形;长方形;长方形.
【总结升华】本题考查正方体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.
举一反三:
【变式】用一个平面去截一个正方体,则截面的形状不可能为()
A.四边形 B .七边形C .六边形D .三角形
【答案】B 类型五、从三个方向看物体的形状
6.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.
【思路点拨】注意观察的角度和方向.
【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.
总结升华】 若要画出从不同方向观察物体所得的图形, 同方向观察得到的图形往往不同.
左面、上面观察所得到的图形 举一反三:
【变式】画出下列几何体从正面、
答案】
从正面看
方向、角度一定要选准. 因为从不。

相关文档
最新文档