2010年全国考研数学一真题及答案.doc

合集下载

2010年考研数一试题及答案

2010年考研数一试题及答案

2010年全国硕士研究生入学统一考试数学(一)试题及参考答案一、选择题:1~8小题,每小题4分,共32分。

1、222ln 1()()()()lim lime lime()()xx x xx x a x b x a x b x x x xx a x b ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞⎛⎫==⎪-+⎝⎭()()2()()()()limelime a b x ab a b x abxx x a x b x a x b x x -+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞==ea b-=方法二22()()lim lim 1()()()()xxx x x x x a x b x a x b x a x b →∞→∞⎛⎫⎛⎫--+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()()()()()()()()lim 1lim 1()()()()x a x b a b x abxxa b x ab x a x b x x a b x ab a b x ab x a x b x a x b -+-+⋅-+-+→∞→∞⎛⎫⎛⎫-+-+=+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()lim()()()ee x a b x abxa b x a x b →∞-+--+==(2)等式两边求全微分得:12d d 0y z F F x x ⎛⎫⎛⎫''⋅+⋅= ⎪ ⎪⎝⎭⎝⎭, 即 1222d d dz d 0x y y x x z xF F x x --''+=12(d d )(dz d )0F x y y x F x z x ''⇒⋅-+⋅-= 12122dz d d yF zF F x y xF F '''+∴=-'' 所以有,1212222yF zF F zF z z xy x y z u y xF F F ''''+∂∂+=-==∂∂'''(3)、【解析与点评】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mnx x -=-等价于221(1)mm nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n⇒->-),故收敛;对于)的瑕点1x =,当1(1,1)(02x δδ∈-<<12122ln (1)2(1)n m n m x x <-<-,而2112(1)m x x -⎰显然收敛,故收敛。

2010年考研数学一真题及答案详解

2010年考研数学一真题及答案详解
2010 年全国硕士研究生入学统一考试 数学(一)试卷
一、选择题(1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号内.)
x2 (1)极限 lim = x ( x a )( x b)
(A)1 (C) e a b (B) e (D) eb a
T
第 3 页 共 18 页
列为 (
2 2 T , 0, ) . 2 2
(1)求 A. (2)证明 A E 为正定矩阵,其中 E 为 3 阶单位矩阵. (22)(本题满分 11 分) 设 二 维
2




(X Y)






f ( x, y ) A e 2 x
2 xy y 2
, x , y , 求常数及 A 条件概率密度 fY | X ( y | x).
0
(7)设随机变量 X 的分布函数 F ( x)
1 1 (B) 1 0 1 1 (D) 1 0
x0 1 0 x 1, 则 P{ X 1} = 2 1 e x x 2
(B)1 (D) 1 e 1
2
0
x cos xdy =
(11)已知曲线 L 的方程为 y 1 x {x [ 1,1]}, 起点是 (1, 0), 终点是 (1, 0), 则曲线积分

L
xydx x 2 dy =
2 2
. .
(12)设 {( x, y, z) | x y z 1}, 则 的形心的竖坐标 z =

2010年全国硕士研究生入学统一考试数学一试题解析

2010年全国硕士研究生入学统一考试数学一试题解析

2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) 1. (10年,4分) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A ) 1. (B ) e . (C ) a be -. (D ) b ae-.【考查分析】“1∞”型极限的计算. 【详解】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).2. (10年,4分) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A ) x . (B ) z . (C ) x -. (D ) z -. 【考查分析】隐函数偏导数的计算. 【详解】122212122221x z y z y zF F F F F yF zF z x x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''.选(B ). 3. (10年,4分) 设,m n 是正整数,则反常积分()20ln 1mnx dx x-⎰的收敛性 ( )(A ) 仅与m 的取值有关. (B )仅与n 的取值有关.(C ) 与,m n 取值都有关. (D ) 与,m n 取值都无关. 【考查分析】判断反常积分的敛散性. 【详解】0x =与1x =都是瑕点.应分成()()()22211212ln 1ln 1ln 1mm mnnnx x x xxx---=+⎰⎰,用比较判别法的极限形式,对于()2120ln 1m nx x-,由于121012[ln (1)]lim 1mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim m x nx x+→-存在,此时()2120ln 1m n x x -实际上不是反常积分,故收敛. 故不论,m n 是什么正整数,dx 总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).【评注】(1)当210m m-≥时,⎰是定积分.(2) 0,0αβ∀>>,有lim ln 00x x x βα+=→. 4. (10年,4分) ()()2211limnnn i j nn i n j →∞===++∑∑ ( ) (A )()()120111xdx dy x y ++⎰⎰. (B ) ()()100111x dx dy x y ++⎰⎰. (C )()()11111dx dy x y ++⎰⎰. (D ) ()()1120111dx dy x y ++⎰⎰. 【考查分析】利用积分和式求极限. 【详解】()()222211111()nnnn i j i j n nn i n jn i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. 【评注】本题易认为是二重积分或误认为逐次极限.实际上,对i 求和时与j 无关,对j 求和时与i 无关,所以这是一道两个和得乘积的极限题.5. (10年,4分) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A ) 秩()r A m =,秩()r B m =. (B ) 秩()r A m =,秩()r B n =. (C ) 秩()r A n =,秩()r B m =. (D ) 秩()r A n =,秩()r B n =. 【详解】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A .6. (10年,4分) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A ) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B ) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭. (C ) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D ) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 【考查分析】对称矩阵相似于对角矩阵.【详解】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0.由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. 【评注】看清题目,说清每个已知条件的作用.即可得出结论.7. (10年,4分) 设随机变量X 的分布函数0,01(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A ) 0. (B )12. (C ) 112e --. (D ) 11e --. 【考查分析】本题主要考查分布函数的概念及随机事件概率的计算.已知分布函数,【详解】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C). 【评注】已知分布函数,求随机事件的概率是基本题,但需注意题中的随机变量既不是离散型也不是连续型.由于分布函数在1x =处不连续,故利用{1}(1)(10)P X F F ==--来计算.8. (10年,4分) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A ) 234a b +=. (B ) 324a b +=. (C ) 1a b +=. (D ) 2a b +=. 【详解】根据题意知,()2212x f x e π-=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰所以整理得到234a b +=,故本题应选(A).二、填空题(9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) 9. (10年,4分) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == . 【详解】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx == 10. (10年,4分)2π=⎰.【考查分析】用变量变换与分部计算定积分.【详解】t =,2x t =,2dx tdt =,利用分部积分法,原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰.11. (10年,4分) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.【详解】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122x x dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭12. (10年,4分) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .【详解】()2221221211000211212021r rrz d rdr zdxdydz d rdr zdzdxdydz d rdr dzd r rdrππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r drπθπ⎛⎫- ⎪⎝⎭=⎰⎰126204122r r d πθ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰. 13. (10年,4分) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = . 【详解】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.14. (10年,4分) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k = ,则()2E X = . 【考查分析】随机变量的数学期望,方差.泊松分布的期望,方差. 【详解】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦. 【评注】22()EX DX EX =+,所以应求X 的期望与方差,而X 的分布{},0,1,2,!CP X k k k === 的C 是待定常数.不难看出这是一个泊松分布. 三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.) 15. (10年,10分)(本题满分10分)求微分方程322x y y y xe '''-+=的通解. 【考查分析】求常系数线性非齐次微分方程的通解. 【详解】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()x y x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x x x c y y y C e C e x x e =+=+-+. 16. (10年,10分)(本题满分10分)求函数()()2221x t f x x t e dt -=-⎰的单调区间与极值.【考查分析】对变限求导数,划分单调区间,求极值. 【详解】 因为22222222111()()x x x t t t f x x t e dt x e dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt ----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e--''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .【评注】(1)求()f x 的单调性区间就是求()f x '的正负号区间.增减或增减区间的分界点就是极值点.上述方法就是求出()f x ',然后分出()f x '的正负号区间,从而得到()f x 的增减区间,相应地得到()f x 的极值点.这里就不必去求驻点处得()f x ''.(2)若题目只要求()f x 的极值,我们也可以221()2x t f x x e dt -'=⎰后,解得驻点0x =,1x =±,然后再求驻点处的二阶导数.由于201(0)20t f e dt -''=<⎰,⇒11(0)(1)2f e -=-为极大值.由于1(1)40f e -''±=>,⇒(1)0f ±=为极小值.17. (10年,10分)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. 【详解】(I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()1111001ln ln ln 1nnn t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.18. (10年,10分)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.【考查分析】求幂级数的收敛域及和函数. 【详解】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++,所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-. (II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-,故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.【评注】幂函数在收敛域上可以逐项积分,但逐项求导只能先在收敛区间进行.在逐项求导后,在另行讨论端点处是否成立。

2010年考研数一试题及答案

2010年考研数一试题及答案

2010年全国硕士研究生入学统一考试数学(一)试题及参考答案一、选择题:1~8小题,每小题4分,共32分。

(1)、极限2lim ()()xx x x a x b →∞⎛⎫= ⎪-+⎝⎭( C ) A 、1 B 、e C 、e a b- D 、eb a-【解析与点评】方法一222ln 1()()()()lim lime lime()()xx x xx x a x b x a x b x x x xx a x b ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞⎛⎫== ⎪-+⎝⎭()()2()()()()limelime a b x ab a b x abxx x a x b x a x b x x -+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞==e a b -=方法二22()()lim lim 1()()()()x xx x x x x a x b x a x b x a x b →∞→∞⎛⎫⎛⎫--+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()()()()()()()()lim 1lim 1()()()()x a x b a b x abxxa b x ab x a x b x x a b x ab a b x ab x a x b x a x b -+-+⋅-+-+→∞→∞⎛⎫⎛⎫-+-+=+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()lim()()()ee x a b x abxa b x a x b →∞-+--+==考点:第二个重要极限,初等函数运算,复合函数极限运算法则,极限运算,无穷小量替换 (2)、设函数(,)z z x y =,由方程(,)0y z F x x=确定,其中F 为可微函数,且20F '≠,则z zxy u y∂∂+=∂∂( B ) A 、x B 、z C 、x - D 、z -【解析与点评】 等式两边求全微分得:12d d 0y z F F x x ⎛⎫⎛⎫''⋅+⋅= ⎪ ⎪⎝⎭⎝⎭,即 1222d d dz d 0x y y x x z xF F x x --''+=12(d d )(dz d )0F x y y x F x z x ''⇒⋅-+⋅-= 12122dz d d yF zF F x y xF F '''+∴=-''所以有,1212222yF zF F zF z z xy x y z u y xF F F ''''+∂∂+=-==∂∂'''(3)、设,m n是正整数,则反常积分x ⎰的收敛性( D )A 、仅与m 的取值有关B 、仅与n 的取值有关C 、与,m n 的取值都有关D 、与,m n 的取值都无关 【解析与点评】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mnx x -=-等价于221(1)mm nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故收敛;对于)的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2(1)nmnmx x <-<-,而2112(1)mxd x-⎰显然收敛,故收敛。

2010年考研数一试题及答案

2010年考研数一试题及答案

2010年全国硕士研究生入学统一考试数学(一)试题及参考答案一、选择题:1~8小题,每小题4分,共32分。

1、222ln 1()()()()lim lime lime()()xx x xx x a x b x a x b x x x xx a x b ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞⎛⎫==⎪-+⎝⎭()()2()()()()lim elim e a b x ab a b x abxx x a x b x a x b x x -+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞==e a b -=方法二22()()lim lim 1()()()()xxx x x x x a x b x a x b x a x b →∞→∞⎛⎫⎛⎫--+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()()()()()()()()lim 1lim 1()()()()x a x b a b x abxxa b x ab x a x b x x a b x ab a b x ab x a x b x a x b -+-+⋅-+-+→∞→∞⎛⎫⎛⎫-+-+=+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()lim()()()ee x a b x abxa b x a x b →∞-+--+==(2)等式两边求全微分得:12d d 0y z F F x x ⎛⎫⎛⎫''⋅+⋅= ⎪ ⎪⎝⎭⎝⎭, 即 1222d d dz d 0x y y x x z xF F x x --''+=12(d d )(dz d )0F x y y x F x z x ''⇒⋅-+⋅-= 12122dz d d yF zF F x y xF F '''+∴=-'' 所以有,1212222yF zF F zF z z xy x y z u y xF F F ''''+∂∂+=-==∂∂'''(3)、【解析与点评】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mnx x -=-等价于221(1)mm nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n⇒->-),故收敛;对于的瑕点1x =,当1(1,1)(0)2x δδ∈-<<12122ln (1)2(1)n m n mx x <-<-,而2112(1)m x dx -⎰显然收敛,故收敛。

2010年全国硕士研究生入学统一考试(数一)试题及答案

2010年全国硕士研究生入学统一考试(数一)试题及答案

2010年全国硕士研究生入学统一考试数一试题一、选择题(1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一项符合题目要求的,把所选项前的字母填在答题纸指定的位置上)(1)极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A )1 (B )e (C ) a b e - (D )b a e -(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠。

则z zx y x y∂∂+=∂∂( ) (A )x (B )z (C )x - (D )z - (3)设m 、n为正整数,则反常积分0⎰的收敛性( )(A )仅与m 有关 (B )仅与n 有关 (C )与 m 、n 都有关 (D )与 m 、n 都无关 (4)2211lim ()()nnn i j nn i n j →∞===++∑∑( ) (A )1201(1)(1)x dx dy x y ++⎰⎰(B )11001(1)(1)dx dy x y ++⎰⎰ (C )101(1)(1)x dx dy x y ++⎰⎰(D )112001(1)(1)dx dy x y ++⎰⎰(5)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且AB E =,其中E 为m 阶单位矩阵,则( )(A )()()R A R B m == (B )()R A m =,()R B n = (C )()R A n =,()R B m = (D )()()R A R B n ==(6)设A 是4阶实对称矩阵,且2A A O +=,若()3R A =,则A 相似于( )(A )1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ (B )1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭ (C )1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ (D )1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(7)设随机变量X 的分布函数为0,011(),02211,2x x F x x e x -⎧⎪<⎪⎪=≤<⎨⎪⎪-≥⎪⎩,则{1}P X ==( )(A )0 (B )12 (C )112e -- (D )11e -- (8)设1()f x 为标准正态分布的概率密度函数,2()f x 为[1,3]-上均匀分布的概率密度函数,若12(),0()(),0af x x f x bf x x ≤⎧⎪=⎨>⎪⎩(0a >,0b >),则a ,b 满足( )(A )234a b += (B )324a b += (C )1a b += (D )2a b +=二、填空题(9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上)(9)设20ln(1)ttx e y u du -⎧=⎪⎨=+⎪⎩⎰,则220t d y dx ==(10)0π=⎰(11)已知曲线L 的方程为1y x =-(11x -≤≤),起点为(1,0)-,终点为(1,0),则2Lxydx x dy +=⎰(12)设22{(,,)1}x y z x y z Ω=+≤≤,则Ω的形心坐标z =(13)若11210α⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭,21102α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3211a α⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,若由123,,ααα形成的向量组的秩为2,则a =(14)设随机变量X 的分布为{}!CP X k k ==(0,1,2,...k =),则2EX = 三、解答题(15~23小题,共94分,请将解答写在答题纸指定的位置上。

2010考研数学一真题答案

2010考研数学一真题答案

2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a b e -,所以应该选择(C). (2)【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z xy z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成=+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnn n i j i j n n n i n j n i n j =====++++∑∑∑∑22111()()n nj i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n →∞→∞====+++∑∑⎰ 1011111lim lim ,11()n n n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j →∞==+∑1(lim )nn i nn i→∞=+∑1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即AΛ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x e-=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰ 所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx ==. (10)【答案】 4π-.t =,2x t =,2dx tdt =,利用分部积分法, 原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰. (11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122xx dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】 ()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθπ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰.(13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦.三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()xy x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x x x c y y y C e C e x x e =+=+-+. (16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e-''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞-,()f x 的单调递增区间为(1,0)(1,)-+∞.(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nn t t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n =.(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令 12111(1)()21n n n S x xn -∞-=-=⋅-∑()1,1x ∈-, 所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-, 故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z zy --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由 dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫ ⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭ 当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-.方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫ ⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为22T ⎛ ⎝⎭,所以A 对应于30λ=的特征向量为22T⎛ ⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,即13022x x +=. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()12302,,10002Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1T Q Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭. ( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx edx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---==-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n =31a n=.所以统计量 ()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ-,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。

2010年考研数学一真题及参考答案

2010年考研数学一真题及参考答案

2010考研数学(一)真题及参考答案一、选择题(1)、极限2lim ()()x x x x a x b ®¥æö=ç÷-+èø( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x x x x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bx e e x a x b ee eæöæö-ç÷ç÷ç÷ç÷-+-+èøèø®¥®¥®¥-+æö-+ç÷ç÷-+-+èø®¥®¥-æö==ç÷-+èø===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F ¢¹,则z zx y u y¶¶+=¶¶( B )A 、xB 、zC 、x -D z -【详解】【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ¢¢¢¢¢¢+++++=, 所以有,1212x x z z F u F v z x F u F v ¢¢+¶=-¢¢¶+,1212yy z z Fu F v z y Fu F v ¢¢+¶=-¢¢¶+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x=,代入即可。

2010年考研数学一真题和参考答案

2010年考研数学一真题和参考答案

2010考研数学(一)真题和参考答案一、选择题 (1)、极限2lim ()()xx xx a x b →∞⎛⎫=⎪-+⎝⎭( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x xx x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bxe ex a x b ee e ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞-+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞-⎛⎫== ⎪-+⎝⎭===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F '≠,则z z xy u y∂∂+=∂∂( B )A 、xB 、zC 、x -D z -【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ''''''+++++=,所以有,1212xx z z Fu F v z x Fu F v ''+∂=-''∂+,1212y yz zFu F v z y Fu F v ''+∂=-''∂+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x =,代入即可。

(3)、设,m n 是正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性( D )(A)仅与m 的取值有关 (B)仅与n 有关(C)与,m n 都有关 (D)都无关 【详解】:显然0,1x x ==是两个瑕点,有222111212ln (1)ln (1)ln (1)mmmnnnx x x dx dx dx xxx---=+⎰⎰⎰对于2120ln (1)m nx dx x-⎰的瑕点0x =,当0x +→时212ln (1)ln (1)mmn nx x x x--=-等价于221(1)m m nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故2120ln (1)mn x dx x -⎰收敛;对于2112ln (1)m n x dx x -⎰的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2ln (1)2(1)m n m n m n x x x x -<-<-,而2112(1)m x d x -⎰显然收敛,故2112ln (1)mnx dx x-⎰收敛。

2010年全国考研数学一真题及答案.doc

2010年全国考研数学一真题及答案.doc

2010年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限(A)1 (B)(C)(D)【考点】C。

【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换)则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。

(A)(B)(C)(D)【答案】B。

【解析】因为,所以综上所述,本题正确答案是(B)。

【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3)设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】D。

【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。

由于,已知反常积分收敛,则也收敛。

在反常积分中,被积函数只在时无界,由于(洛必达法则) 且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。

综上所述,本题正确答案是D。

【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)【答案】D。

【解析】因为综上所述,本题正确答案是C。

【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】A。

【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。

【考点】线性代数—矩阵—矩阵的秩(6)设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。

【解析】由知,那么对于推出来所以的特征值只能是、再由是实对称矩阵必有,而是的特征值,那么由,可知D正确综上所述,本题正确答案是D。

2010年考研数学一真题及解析

2010年考研数学一真题及解析

2010年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)极限2lim ( )()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦(A)1 (B)e(C)a be-(D)b ae-答案:C 详解:2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦=2233221ln ()()()()lim lim lim xxx x bx abxx x x a x b a bx a x b x ax bx abx x x e e ee⎛⎫-+-- ⎪⋅ ⎪-+--+⎝⎭-+-→∞→∞→∞===(2)设函数(),z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '=,则x z x y u y ∂∂+∂∂=( ) (A)x (B)z (C)x - (D)z -答案:B详解:12221222,1x z y z y zF F F F F z x x x x x F F F x⎛⎫⎛⎫''-+-''⋅+⋅⎪ ⎪'∂⎝⎭⎝⎭=-=-=''∂'⋅112211y x F F F z x xF F F x'⋅''∂=-=-=-''∂'⋅1212222yF zF yF F z z z xyz xxF F F ''''+⋅∂∂+=-=='''∂∂(3)设,m n是正整数,则反常积分0⎰的收敛性(A)仅与m 的取值有关 (B)仅与n 取值有关 (C)与,m n 取值都有关 (D)与,m n 取值都无关 答案:C 详解:11222111111111ln 1(ln (1))1111mmn mm np p p nnx p p m dx p x p np -∞∞∞⋅⋅⋅⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪-⎛⎫⎝⎭⎝⎭⎝⎭==-= ⎪⎛⎫⎝⎭⎛⎫ ⎪ ⎪⎝⎭⎝⎭∑∑∑⎰⎰2121121n mm np n m m nn m p m n -∞--⎧>⎪⎛⎫⎪=⎨⎪-⎝⎭⎪≤⎪⎩∑收敛,发散, (4)()()2211limnnx i j nn i n j→∞--=++∑∑(A)()()12111x dx dy x y++⎰⎰(B)()()10111x dx dy x y ++⎰⎰(C)()()1100111dx dy x y ++⎰⎰(D)()()112111dx dy x y++⎰⎰答案:D详解:()()22211112limlim11nnnnx x i j i j nnn i nji j n n n n →∞→∞----=⎛⎫++⎛⎫⎛⎫+⋅⋅+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑2211111lim11n nx i j inj n n →∞--=⋅⋅⎛⎫++ ⎪⎝⎭∑∑()()112111dx dy x y=++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,E 为m 阶单位矩阵,若AB =E ,则( ) (A)秩(),r A m =秩()r B m =(B)秩(),r A m =秩()r B n = (C)秩(),r A n =秩()r B m = (D)秩(),r A n =秩()r B n =答案:A解析:由于A B E =,故()()r A B r E m ==,又由于()(),()()r A B r A r A B r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A 。

2010考研数学一真题及解析

2010考研数学一真题及解析

2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A) 1. (B) e . (C) a be -. (D) b ae-.(2) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(3) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B)仅与n 的取值有关. (C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (4) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()()1120111dx dy x y ++⎰⎰. (5) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A) 秩()r A m =,秩()r B m =. (B) 秩()r A m =,秩()r B n =. (C) 秩()r A n =,秩()r B m =. (D) 秩()r A n =,秩()r B n =. (6) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫⎪⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭.(C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (7) 设随机变量X 的分布函数0,1(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A) 0. (B)12. (C) 112e --. (D) 11e --.(8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A) 234a b +=. (B) 324a b +=. (C) 1a b +=. (D) 2a b +=.二、填空题(9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == .(10)2π=⎰ .(11) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.(12) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .(13) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = .(14) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k =L ,则()2E X = .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)求微分方程322xy y y xe '''-+=的通解. (16)(本题满分10分)求函数()()2221x t f x xt e dt -=-⎰的单调区间与极值.(17)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n =L 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n =L ,求极限lim n n u →∞. (18)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分2x y zI ∑-=,其中∑是椭球面S 位于曲线C 上方的部分. (20)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (21)(本题满分11 分)已知二次型123(,,)T f x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第三列为T . ( I ) 求矩阵A ;( II ) 证明A E +为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,)xxy y f x y Ae -+-=,x -∞<<+∞,y -∞<<+∞,求常数A 及条件概率密度|(|)Y X f y x .设总体X其中参数()0,1θ∈未知,以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31iii T a N ==∑为θ的无偏估计量,并求T 的方差.2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦()()2ln lim x x x a x b x e ⋅-+→∞=()()2lim ln x x x x a x b e →∞⋅-+=, 其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).(2)【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF z x x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅,112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成=+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,dx 总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以dx 收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnn ni j i j n nn i n jn i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j →∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ:,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭:. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x e -=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1ttt dy t e dx e-+==-+-, ()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以2200t d y dx ==. (10)【答案】 4π-.x t =,2x t =,2dx tdt =,利用分部积分法,原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰. (11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰ ()()0122122xx dx x x dx -=++-⎰⎰01322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθπ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰. (13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦. 三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x xc y C e C e =+.设原方程的一个特解为*()xy x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--.故方程的通解为*212(2)x x xc y y y C e C e x x e =+=+-+.(16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e--''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞-U ,()f x 的单调递增区间为(1,0)(1,)-+∞U .(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nn t t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n =L .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令 12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-, 从而有 12211()1()1S x x x '==--+ ()1,1x ∈-,故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z z y --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由 dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫ ⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭ 当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-.方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫⎪⎛⎫ ⎪⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为22T ⎛⎫ ⎪ ⎪⎝⎭,所以A 对应于30λ=的特征向量为,0,22T⎛⎫⎪ ⎪⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,130x x +=. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()12302,,1000Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1TQ Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭.( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx e dx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---===-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n =31a n=.所以统计量 ()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ-:,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。

2010年考研数学一真题及答案

2010年考研数学一真题及答案

精心整理2010年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限(C)这是一个“”型极限【方法二】原式而(等价无穷小代换)则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。

设函数由方程确定,其中,则。

(A)(B)(C)(D)【答案】B。

【解析】因为,所以设为正整数,则反常积分的收敛性仅与(B)仅与的取值有关与的取值都有关与的取值都无关和时无界在反常积分中,被积函数只在时无界。

由于,已知反常积分收敛,则也收敛。

在反常积分中,被积函数只在时无界,由于(洛必达法则)取任何正整数,反常积分收敛。

综上所述,本题正确答案是(4)(A)(C)(D)【答案】D。

综上所述,本题正确答案是C。

【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】A。

因为为阶单位矩阵,知另一方面,为矩阵,为矩阵,又有可得秩秩设为且若则(A)(C)(D)【答案】D。

【解析】由知,那么对于推出来所以的特征值只能是再由是实对称矩阵必有,而是的特征值,那么由,可知D正确设随机变量的分布函数,则(B)(C)(D)【答案】C综上所述,本题正确答案是C。

【考点】概率论与数理统计—随机变量及其分布—随机变量分布函数的概念及其性质(8)设为标准正太分布的概率密度,为上均匀分布得概率密度,若为概率密度,则应满足(A)(B)(C)(D)【答案】A。

【解析】为标准正态分布的概率密度,其对称中心在处,故为上均匀分布的概率密度函数,即所以,可得综上所述,本题正确答案是A。

【考点】概率论与数理统计—随机变量及其分布—连续型随机变量的概率密度,常见随机变量的分布二、填空题(914小题,每小题4分,共24分。

)(9)设,则。

2010年考研数学一真题及答案

2010年考研数学一真题及答案

2010年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限(A)1 (B)(C)(D)【考点】C。

【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换)则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。

(A)(B)(C)(D)【答案】B。

【解析】因为,所以综上所述,本题正确答案是(B)。

【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3)设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】D。

【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。

由于,已知反常积分收敛,则也收敛。

在反常积分中,被积函数只在时无界,由于(洛必达法则)且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。

综上所述,本题正确答案是D。

【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)【答案】D。

【解析】因为综上所述,本题正确答案是C。

【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】A。

【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。

【考点】线性代数—矩阵—矩阵的秩(6)设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。

【解析】由知,那么对于推出来所以的特征值只能是再由是实对称矩阵必有,而是的特征值,那么由,可知D正确综上所述,本题正确答案是D。

2010数学一真题及答案

2010数学一真题及答案

2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A) 1. (B) e . (C) a be -. (D) b ae-.(2) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(3) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B)仅与n 的取值有关. (C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (4) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()()1120111dx dy x y ++⎰⎰. (5) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A) 秩()r A m =,秩()r B m =. (B) 秩()r A m =,秩()r B n =. (C) 秩()r A n =,秩()r B m =. (D) 秩()r A n =,秩()r B n =. (6) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭.(C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (7) 设随机变量X 的分布函数0,1(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A) 0. (B)12. (C) 112e --. (D) 11e --. (8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A) 234a b +=. (B) 324a b +=. (C) 1a b +=. (D) 2a b +=.二、填空题(9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == .(10)2π=⎰.(11) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.(12) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .(13) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = .(14) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k = ,则()2E X = .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)求微分方程322x y y y xe '''-+=的通解. (16)(本题满分10分)求函数()()2221x t f x xt e dt -=-⎰的单调区间与极值.(17)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. (18)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分2x y zI ∑-=,其中∑是椭球面S 位于曲线C 上方的部分.(20)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (21)(本题满分11 分)已知二次型123(,,)T f x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第三列为T. ( I ) 求矩阵A ;( II ) 证明A E +为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,)x xy y f x y Ae -+-=,x -∞<<+∞,y -∞<<+∞,求常数A 及条件概率密度|(|)Y X f y x .设总体X其中参数()0,1θ∈未知,以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31iii T a N ==∑为θ的无偏估计量,并求T 的方差.2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).(2)【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z xy z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成dx dx =+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,121211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnnn i j i j n nn i n j n i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x e -=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰ 所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx ==. (10)【答案】 4π-.t =,2x t =,2dx tdt =,利用分部积分法, 原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰.(11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122xx dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】 ()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθπ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰.(13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦.三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()x y x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x xx c y y y C e C e x x e =+=+-+.(16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22tt f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-, 故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z zy --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭ 当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-. 方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫ ⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为,0,22T ⎛ ⎝⎭,所以A 对应于30λ=的特征向量为22T⎛ ⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,即13022x x +=. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()12302,,10002Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1TQ Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭. ( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx edx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---==-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n = 31a n=.所以统计量()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ- ,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。

2010年全国硕士研究生入学统一考试数学一试题参考答案

2010年全国硕士研究生入学统一考试数学一试题参考答案
矩阵秩的重要公式:
1)
2)
3)
4)
5)若A可逆,则
6)若 , 是 矩阵,则
7)若 则
在本题中,
由于 ,故 .又由于 ,故

由于 为 矩阵, 为 矩阵,故

由①、②可得 ,故选A.
(6)设 为4阶实对称矩阵,且 ,若 的秩为3,则 相似于( )
(A) .(B) .
(C) .(D) .
【答案】D
【考点】矩阵的特征值和特征向量;相似对角矩阵
【难易度】★★
【详解】本题涉及到的主要知识点:
(i) 与对角矩阵相似的充分条件:① 有 个不同的特征值;② 是实对称矩阵
(ii) 与对角矩阵相似的充要条件:对于矩阵 的每一个 重特征值 ,其线性无关的特征向量的个数恰好等于该特征值的重根数 ,即秩 .
在本题中,
设 为 的特征值,由于 ,所以 ,即 ,这样 的特征值为-1或0.由于 为实对称矩阵,故 可相似对角化,即 , ,因此, ,即 .
夹逼定理:设 ,若 ,则 。
在本题中,
当 时, ,所以 与
均为定积分,故
(I)当 时 ,
故 ,所以
(II)
故由 ,
根据夹逼定理得
故 .
(18)(本题满分10分)
求幂级数 的收敛域及和函数.
【考点】幂级数的收敛域及和函数
【难易度】★★★
【详解】本题涉及到的主要知识点:
幂级数 的收敛域的定义及求法,分三种情况:

则 的体积
在这种情形要确定上、下曲面及投影区域。
在本题中,
(13)设 ,若由 形成的向量空间
维数是2,则 = .
【答案】
【考点】向量空间维数的概念

2010数学一参考真题答案

2010数学一参考真题答案

2010年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。

(1)极限()()2lim xx x x a x b →∞⎡⎤⎢=⎢−+⎢⎥⎣⎦() (A )1 (B )(C )(D )e a b e −b a e −[ C ](2)设函数(),z z x y =,由方程,y z F x x ⎛⎞⎜=⎜⎜⎝0确定,其中为可微函数,且,则F '20F ≠z zxyu y∂∂+∂∂=() (A )x(B )(C )z x −(D )z −[ B ](3)设是正整数,则反常积分,m n∫的收敛性(A )仅与的取值有关 (B )仅与有关 m n (C )与取值都有关(D )与取值都无关,m n ,m n [ B ](4)()()2211lim nnn i j nn i n j →∞===++∑∑(A )()1211(1)xdx dy x y ++∫∫(B )()111(1)xdx dy x y ++∫∫(C )()1111(1)dx dy x y ++∫∫(D )()11211(1)dx dy x y ++∫∫[ D ](5)设A 为m 型矩阵,n ×B 为型矩阵,n m ×E 为阶单位矩阵,若m AB E =,则()(A )秩()r A m =,秩()r B m = (B )秩()r A m =,秩()r B n = (C )秩()r A n =,秩()r B m =(D )秩()r A n =,秩()r B n =[ A ](6)设A 为4阶对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于()(A )(B ) 1110⎛⎞⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎟⎜⎟⎜⎟⎜⎟⎜⎝⎠1110⎛⎞⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎟⎜⎟⎜⎟⎜⎟⎜⎝⎠(C )(D ) 1110⎛⎞⎟⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟⎜⎟−⎟⎜⎟⎜⎟⎜⎟⎜⎝⎠1110⎛⎞−⎟⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟⎜⎟−⎟⎜⎟⎜⎟⎜⎟⎜⎝⎠[ D ](7)设随机变量X 的分布函数()00101211x x F x x e x −⎧<⎪⎪⎪⎪⎪=≤⎨⎪⎪⎪⎪−≥⎪⎩<,则(){}1P X ==(A )0 (B )12(C )112e −−(D )11e −− [ C ](8)设()1f x 为标准正态分布的概率密度,()2f x 为[上均匀分布的概率密度,若]1,3−()()()(1200,00af x x f x a b bf x x ⎧≤⎪⎪=>⎨⎪>⎪⎩)>44为概率密度,则应满足() ,a b (A ) (B ) 23a b +=32a b +=(C ) (D ) 1a b +=2a b +=[ A ] 二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上。

2010年考研数学一真题与答案

2010年考研数学一真题与答案

2010年考研数学一真题一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限limx→∞[x2(x−a)(x+b)]x=(A)1 (B)e (C)e a−b(D)e b−a 【考点】C。

【解析】【方法一】这是一个“1∞”型极限lim x→∞[x2(x−a)(x+b)]x=limx→∞{[1+(a−b)x+ab(x−a)(x+b)](x−a)(x+b)(a−b)x+ab}(a−b)x+ab(x−a)(x+b)x=e a−b【方法二】原式=limx→∞e xlnx2(x−a)(x+b)而limx→∞ xln x2(x−a)(x+b)=limx→∞xln(1+(a−b)x+ab(x−a)(x+b))=limx→∞x∙(a−b)x+ab(x−a)(x+b)(等价无穷小代换) =a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法三】对于“1∞”型极限可利用基本结论:若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限由于limx→∞α(x)β(x)=limx→∞x2−(x−a)(x+b)(x−a)(x+b)∙x=limx→∞(a−b)x2+abx(x−a)(x+b)=a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法四】lim x→∞[x2(x−a)(x+b)]x=limx→∞[(x−a)(x+b)x2]−x=limx→∞(1−ax)−x∙limx→∞(1+bx)−x=e a∙e−b=e a−b综上所述,本题正确答案是C。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数z=z(x,y)由方程F(yx ,zx)=0确定,其中F为可微函数,且f′′2≠0,则xðzðx +yðzðy=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限(A)1 (B)(C)(D)【考点】C。

【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换)则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。

(A)(B)(C)(D)【答案】B。

【解析】因为,所以综上所述,本题正确答案是(B)。

【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3)设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】D。

【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。

由于,已知反常积分收敛,则也收敛。

在反常积分中,被积函数只在时无界,由于(洛必达法则) 且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。

综上所述,本题正确答案是D。

【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)【答案】D。

【解析】因为综上所述,本题正确答案是C。

【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】A。

【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。

【考点】线性代数—矩阵—矩阵的秩(6)设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。

【解析】由知,那么对于推出来所以的特征值只能是、再由是实对称矩阵必有,而是的特征值,那么由,可知D正确综上所述,本题正确答案是D。

【考点】线性代数—特征值与特征向量—实对称矩阵的特征值、特征向量及其相似对角矩阵(7)设随机变量的分布函数,则(A)0 (B)(C)(D)【答案】C。

【解析】综上所述,本题正确答案是C。

【考点】概率论与数理统计—随机变量及其分布—随机变量分布函数的概念及其性质(8)设为标准正太分布的概率密度,为上均匀分布得概率密度,若为概率密度,则应满足(A)(B)(C)(D)【答案】A。

【解析】根据密度函数的性质为标准正态分布的概率密度,其对称中心在处,故为上均匀分布的概率密度函数,即,,其他所以,可得综上所述,本题正确答案是A。

【考点】概率论与数理统计—随机变量及其分布—连续型随机变量的概率密度,常见随机变量的分布二、填空题(914小题,每小题4分,共24分。

)(9)设,则。

【答案】。

【解析】【方法一】则,【方法二】由参数方程求导公式知,代入上式可得。

【方法三】由得,,则当时,则综上所述,本题正确答案是。

【考点】高等数学—一元函数微分学—基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法(10)。

【答案】。

【解析】令,则综上所述,本题正确答案是。

【考点】高等数学—一元函数积分学—基本积分公式,不定积分和定积分的换元积分法与分部积分法(11)已知曲线的方程为起点是终点是,则曲线积分。

【答案】。

【解析】如图所示,其中,所以综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—两类曲线积分的概念、性质及计算(12)设,则的形心坐标。

【答案】。

【解析】综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(13)设,若由生成的向量空间的维数为,则。

【答案】6。

【解析】生成的向量空间的维数为,所以可知,所以可得综上所述,本题正确答案是。

【考点】线性代数—向量—向量组的秩,向量组的秩与矩阵的秩之间的关系,向量空间及其相关概念(14)设随机变量的概率分布为,则。

【答案】。

【解析】泊松分布的概率分布为,随机变量的概率分布为对比可以看出所以而综上所述,本题正确答案是。

【考点】概率论与数理统计—随机变量及其分布—常见随机变量的分布;概率论与数理统计—随机变量的数字特征—随机变量的数学期望(均值)、方差、标准差及其性质三、解答题:小题,共94分。

解答应写出文字说明、证明过程或演算步骤。

(15)求微分方程的通解【解析】由齐次微分方程的特征方程,所以,齐次微分方程的通解为设微分方程的特解为则代入原方程,解得故特解为所以原方程的通解为【考点】高等数学—常微分方程—二阶常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程(16)求函数的单调区间与极值【解析】函数的定义域为,令,得,列表如下由上可知,的单调增区间为和;的单调减区间为和,极小值为极大值为【考点】高等数学—一元函数微分学—基本初等函数的导数,函数单调性的判别函数的极值高等数学—一元函数积分学—基本积分公式,积分上限的函数及其导数(17)(I)比较与的大小,说明理由;(II)记,求极限。

【解析】(I)当时,因,所以所以有(II)【方法一】由上可知,所以由夹逼定理可得【方法二】由于为单增函数,则当时,,从而有又,由夹逼定理知【方法三】已知因为,且在上连续,则在上有界,从而存在使得则由及夹逼定理知【考点】高等数学—函数、极限、连续—极限存在的两个准则:单调有界准则和夹逼准则高等数学—一元函数积分学—定积分的概念和基本性质(18)求幂级数的收敛域及和函数。

【解析】即时,原幂级数绝对收敛时,级数为,由莱布尼茨判别法显然收敛,故原幂级数的收敛域为。

又令则所以由于,所以所以所以幂级数的收敛域为,和函数为。

【考点】高等数学—无穷级数—幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,简单幂级数的和函数的求法,初等函数的幂级数展开式(19)设为椭球面上的动点,若在点处的切线平面与面垂直,求点的轨迹,并计算曲面积分,其中是椭圆球面位于曲线上方的部分。

【解析】求轨迹令,故动点的切平面的法向量为由切平面垂直面,得又已知为椭球面上的动点,所以为的轨迹再计算曲面积分因为曲线在面的投影为又对方程两边分别对求导可得解之得于是【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(20)设.已知线性方程组存在2个不同的解(I)求;(II)求方程组的通解。

【解析】(I)因为已知线性方程组存在2个不同的解,所以故知当时,,显然,此时方程组无解,舍去,当时,因为有解,所以即,,(II),时,已知所以的通解为其中为任意常数。

【考点】线性代数—线性方程组—非齐次线性方程组有解的充分必要条件,非齐次线性方程组的通解(21)已知二次型在正交变换下的标准形为,且的第三列为(I)求矩阵;(II)证明为正定矩阵,其中为3阶单位矩阵。

【解析】(I)二次型在正交变换下的标准形为,可知二次型矩阵的特征值是。

又因为的第三列为,可知是矩阵在特征值的特征向量。

根据实对称矩阵,特征值不同特征向量相互正交,设关于的特征向量为,则,即取(II)由于矩阵的特征值是,那么的特征值为,因为的特征值全大于,所以正定。

【考点】线性代数—二次型—二次型及其矩阵表示,二次型的秩,二次型的标准形和规范形,二次型及其矩阵的正定性(22)设二维随机变量的概率密度为求常数及条件概率密度。

【解析】又即当,等价于时,【考点】概率论与数理统计—多维随机变量及其分布—二维连续型随机变量的概率密度、边缘概率密度和条件密度,常用二维随机变量的分布(23)设总体的概率分布为其中参数未知,以表示来自总体的简单随机样本(样本容量为)中等于的个数,试求常数使为的无偏估计量,并求的方差。

【解析】记,则故要令为的无偏估计量,则有可得,,此时为的无偏估计量此时,,由于故因为,,所以【考点】概率论与数理统计—参数估计—估计量的评选标准,区间估计的概念,单个正态总体的均值和方差的区间估计赠送以下资料考研英语作文模板(英语一)大作文考研英语大作文一般是看图写作,从一幅图分析含义及意义,所以只需要几个好的模板,根据题目套上去就行了。

题目反映的意义无非三种:积极,消极和中性。

所以我准备了三个不同类型的模板,到时候大家根据题目自己分析一个写作方向,再结合模板,把内容填进模板就好了。

模板只是保证文章结构不过于混乱,具体的写作还希望大家多背历年写作真题和资料书上的作文,总结出自己喜欢的句子背下来,背熟之后根据原文的中文意义用自己的语言再把文章写出来,这样才能得到更好的效果。

切记:模板只能起到应急和保证结构的作用,真正写好作文拿高分还需要自己不断地背诵和练习,祝大家考试顺利!模板一:积极(图画反映了什么积极现象,我们应提倡…)………(开头:为了避免跟大部分模板有重复之嫌,我们可以在第一句写一句跟作文话题有关的句子,俗语和谚语皆可,也可以是一句关于话题的感悟。

如果实在写不出可以不写)……….,The picture above symbolically/subtly illustrate/demonstrate that ……(描述图画)……。

Below the drawing,there is a caption which indicates……(图片下的标题)………..。

或者:【on the drawing,there are huge Chinese characters reads :……(图片上的中文字)…….】Undoubtedly,we can deduce from the cartoon that the painter is trying to show us that ......(主旨)...........。

To begin with, (I)addition,…………..。

………(小结)………..。

As far as I am concerned ,it is high time that we highlighted the significance of ………and cultivated the citizens’awareness that ……….is essential to us 。

only by enforcing these measures into practice ,can our society be more harmonious,oureconomy be more prosperous and we,as individuals ,embrace more promisingprospect。

模板二:消极(图画反映了什么消极现象,我们应采取行动改变…)………(开头:为了避免跟大部分模板有重复之嫌,我们可以在第一句写一句跟作文话题有关的句子,俗语和谚语皆可,也可以是一句关于话题的感悟。

相关文档
最新文档