图形的位似(1)PPT课件

合集下载

数学九级(上)-ppt课件图形的位似-青岛版-公开课

数学九级(上)-ppt课件图形的位似-青岛版-公开课

C' O
D' B' A'
A
B
D
A
A'
D
C
B B' O D'
C'
C
练一练 如图,△ABC. 根据要求作△A'B'C',使△A' B' C'
∽△ABC,且相似比为 1 : 5. (1) 位似中心在△ABC的一条边AB上;
A
A′
B′
O ●

● ●
C′
B
假设位似中心点 O 为 AB 中点,点 O 位置如图所 示. 根据相似比可确定 A′, B′,C′ 的位置.
5.已知点O在△ABC内,以点O为位似中心画一个三角 形,使它与△ABC位似,且位似比为1:2.
A D
BE
F C
解:画射线OA,OB,OC;在 射线OA,OB,OC上分别取点 D,E,F,使OA = 2OD,OB = 2OE,OC = 2OF;顺序连接 D,E,F,使△DEF与△ABC位 似,位似比为1:2.
归纳: ◑画位似图形的一般步骤:
① 确定位似中心; ② 分别连接并延长位似中心和能代表原图的关
键点; ③ 根据相似比,确定能代表所作的位似图形的
关键点; ④ 顺次连接上述各点,得到放大或缩小的图形.
【名师示范课】数学九级上册-PPT课 件图形 的位似- 青岛版 -公开 课课件 (推荐 )
【名师示范课】数学九级上册-PPT课 件图形 的位似- 青岛版 -公开 课课件 (推荐 )
2. 如图,BC∥ED,下列说法不正确的是
A. 两个三角形是位似图形 B. 点 A 是两个三角形的位似中心 C. B 与 D,C 与 E是对应位似点 E D. AE : AD是相似比

北师大版中学数学九年级上册 图形的位似(第一课时 位似图形及其画法 ) 课件PPT

北师大版中学数学九年级上册 图形的位似(第一课时 位似图形及其画法 )   课件PPT

知识讲解
位似图形的画法
例1:如图,已知△ABC,以点O为位似中心画△DEF, 使其与△ABC位似,且位似比为2.
解:画射线OA,OB,OC;在射
D
线OA,OB,OC上分别取点
D,E,F,使OD = 2OA,OE = 2OB,OF = 2OC;顺序连接
A E
D,E,F,使△DEF与△ABC位
B
似,相似比为2.
下面我们就一起来学习一种把图形放大或缩小的方法。
3
知识讲解
位似图形的定义 通过对这几幅图案的观察你发现了什么?有什么特点?
这些图案虽大小不同,但形状相同且有特殊的位置关系。
4
知识讲解
以上五幅图片是由一组形状相同的图片组成,在图片 ①和图片②上任取一组对应点A,B,直线AB经过镜头中 心点P吗?换其他的对应点试一试,还有类似规律吗?
O
C
F
想一想:你还有其他的画法吗?
知识讲解
画法二:△ABC与△DEF异侧 解:画射线OA,OB,OC;沿着射线OA,OB,OC 反方向上分别取点D,E,F,OD = 2OA,OE = 2OB,OF = 2OC;顺序连接D,E,F,使△DEF与 △ABC位似,相似比为2.
O F
A
B C
E
D
随堂训练
为 7∶4 ;△OAB与 △OA′B′ 是位似图形,位似比为
7∶4 .
2.如图,图中两个四边形是位似图形,它们的位似中
心是( D )
A.点M
B.点N
C.点O
D.点P
第1题图
第2题图
15
当堂检测
3.下列相似图形是否是位似图形?如果是请指出位似中心,如
果不是请说明理由。

图形的位似ppt课件

图形的位似ppt课件

3.四边形ABCD和四边形A’B’C’D’位似,
O为位似中心,若OA:OA’=1:4,那么
S四边形ABCD:S四边形A’B’C’D’=_1_:_1_6 _。
29
A
B
C
30
一、教材分析 二、目标分析
三、过程设计 四、教学反思
31
学科整合,能力提升
在一次成像实验中,已知所成像的大小是 原实物的一半,则像与实物的位置有几种情况? 分析不同位置的像之间的联系? 两种 关于位似中心成中心对称
12
13
一、 教材分析 二、 目标分析 三、 过程设计 四 、教学反思
14
一、教材分析 二、目标分析
已掌握相似多边形的 相关知识及研究图形 的一般方法。
三、过程设计 四五、、教教说学学反设明思计
理解位似的定义与性质,学会 利用位似知识将一个图形进行 放大或缩小。
巩固、深化对相似概念的理解,为后 期的课题学习奠定基础 。
2
探索与思考☞ 观察图形的特点
结 论
1、如果两个相似多边形每组对应顶点所在的直线都经过同 一个点,那么这样的两个多边形叫做位似多边形。
2、这个点叫做位似中心。
3
特征:(1) 是相似多边形 (2) 每组对应点所在的直线 都经过同一个点
判断题:位似多边形是相似多边形(√) 相似多边形是位似多边形(×)
4.8图形的位似(1)
1
• 将点A(1,1),B(2,1),C(3,4) 用线段顺次连接得到△ABC,将这三点的 横坐标、纵坐标都乘2得到△DEF,
1.△ABC与△DEF有什么关系?
2.点A与点D之间的连线是否经过原点O? 点B与E之间的连线是否经过原点O?换 其他的对应点试一试,还有类似的规律 吗?

《图形的位似》PPT精品教学课件

《图形的位似》PPT精品教学课件
身边的友人渐渐地脱单,越来越多的走进婚姻的殿堂,而我依然在殿堂外独自行走,关心自己的人,都在为自己着急,挑选各种各样认为好的女孩,而我却总是无动于衷。我不知道是因为自己对爱情的惧怕,还是对婚姻的恐惧,还是已无力与一个陌生人去从相识开始,也以无心去接受这一切,所以独自逃离的远远地,不提不问不想不念。 我不知道,未来,谁与我并肩看人间烟火。只是,在内心深处,有一股浓浓的思念萦绕心尖,剪不断,理还乱,或许,是一年,或许,是两年,或许,一辈子。刚刚结束了班夫的自驾游,去之前一点没做攻略,除了传说中对美景的盛赞,对那里几乎一无所知。 头一次毫无准备地上路,得益于同行的友人一家,他们已是三顾班夫了,轻车熟路,所以我放心地当了甩手掌柜,从装备到路线、酒店、景点、美食,统统不必操心,乐得轻松自在。 这是一片广袤的天地,无一处不风景,无一眼不风情。 最喜欢峡谷里的瀑布,清凉的冰水摧枯拉朽般从高耸的岩壁奔流而下,无止无休,千年万年,冲刷出今日的残岩断壁。伫立在水边,俯仰之间,山水交融,仿佛看到了久远的一幕,子在川上曰:逝者如斯夫。 而友人一家之所以乐此不疲地到此三游,则是为了一座岛——精灵岛,位于嘉士伯国家公园的马琳湖。 精灵岛已经成了他们心中的一份执念。 第一次慕名而至,临近冬季,一场大雪扑灭了他们通往精灵岛的梦幻之旅。 第二次避开了雪季,却不想又被大雾遮望眼,再一次与精灵岛失之交臂。 此行已是第三次了,虽然沿途的景致百看不厌,却比不上心系精灵岛的一眼。 遗憾的是,又一次天公不作美,明明之前连日的晴空万里,偏偏这一日阴雨绵绵云雾缭绕,注定又要错失梦想中的小岛了。 我的心情还好,因为没有过多的期待,入目皆是美景,撑起雨伞欣赏了一圈雨中湖景朦胧岛影,后来在湖边的礼品店里看到了清晰的精灵岛图片,权当完成了心愿。 友人静静地站在湖边,望着面前的雨幕,一言不发。 我向她提议,“不如我们多呆一天,或许明天就放晴了。” “天气预报说今天下午才有雨,本以为早上赶过来还能来得及看一眼的。”她失落地说。 “那明天呢?”我暗自惭愧,自己连天气预报都没看。 “明天也有雨。”她皱眉道。 “那--”我不知该说什么安慰好了。 “走吧,这就是人生,总要有点遗憾的,就让它永远留在我的心里,偶尔想念一下,作为求而不得的最美风景吧!”她甩甩头,最后看了一眼她的梦想,然后潇洒地往回走了。 她的一番话似乎把所有的不悦都带走了,突然觉得这样的遗憾竟比睛天还美。 风景自在人心,有时候不完美也是一种完美。 于是想起另一个故事。 一次聚会,有个朋友刚从张家界旅游回来,大赞那里风景绝美,堪称人间仙境。 在看过她晒出的自拍后,所有人都开始兴致勃勃地憧憬起来,相约什么时侯有假期可以同行。 只有闺蜜沉默不语。 我后知后觉地记起来,她和初恋男友分手的那年暑假,正是她男友从张家界回来之后不久。 她曾经说过,此生都不会去那个地方,因为在她心里,那是世界上最美的地方,是他曾经承诺要带她一起去看的风景,因为少了他,再美的风景都是泡影。 难道这么多年过去了,她还没能放下? 她看出我的疑惑,淡淡地笑了,“不是因为他,纯粹是不想去。我相信它是最美的,就因为相信,所以不想破坏了它在我心里的那份完美,一旦真正去了,总会有遗憾,现实永远没有想象的完美。” 她把初恋放下了,却放不下他为她描绘的那片风景。还是因为太在意啊,没有期盼,何来遗憾? 人生需要遗憾,因为遗憾,所以真实;因为遗憾,所以美丽。 就象张家界之于闺蜜,精灵岛之于友人一家,每个人的遗憾都源于心中所念。 心有所系,故有所憾。引导语:傻孩子,你记住,可以哭,可以恨,但是不可以不坚强。心若在,梦就在,你必须非常努力,因为后面还有一群人在等着看你的笑话。即便是躺着中枪,也要姿势漂亮! 傻孩子,你记住:我们有许多的梦想,不一定都能实现,有些梦想甚至要摒弃。不要把自己太当回事,也不要把自己太不当回事。好好地呵护自己,对自己好点,就要有好的心态,有了好的心态就会心胸宽广,就会豁达,就会有好的心境。 傻孩子,你记住:爱一个人不容易,忘记一个人更难。是啊,爱一个人是很苦的很苦的事,想一个人是很累的很累的事,等一个人是很傻的很傻的事,为什么我们却不能拒绝这样的相思?为什么我们心甘情愿无怨无悔?为什么我们却如此依然痴迷不悟?

《图形的位似》PPT课件 (共16张PPT)

《图形的位似》PPT课件 (共16张PPT)
1对称图形,中心对称与中心对 称图形):对称轴,对称中心. 平移:平移的方向,平移的距离. 旋转:旋转中心,旋转方向,旋转角度. 相似:相似比.
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
概念与性质 2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。
11.君子藏器于身,待时而动。 ——《周易》
译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。
12.满招损,谦受益。 ——《尚书》
A’
A
B
B’
O
C
C’
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1.在四边形外任选一点O(如图),
2.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D', 使得 OA' OB' OC' OD' 1
OA OB OC OD 2 3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D' 就是所要求的图形.

图形的位似(1)ppt课件

图形的位似(1)ppt课件
(2)等边三角形ABC与等边三 角形A′B′C′.
完整版课件
4
判断下面的正方形是不是位似图形?
完整版课件
5
2、画出下列位似图形的位似中心
o
o
o
完整版课件
6
概念与性质
2. 位似图形的性质
性质:位似图形上任意一 对对应点到位似中心的距 离之比等于相似比.
完整版课件
7
完整版课件
8
2.如图,以点O为位似中心,将五边形ABCDE
图 形 的 位 似
完整版课件
1完整版课件2 概念与性质1.位似图形的概念
如果两个图形不仅相似,而且每
组对应点所在的直线都经过同一
点,对应边互相平行(重合),那么
这样的两个图形叫做位似图形,这
个点叫做位似中完心整版课件 .
3
辨一辨
1. 判断下列各对图形是不是位似图形.
(1)正五边形ABCDE与正五 边形A′B′C′D′E′;
完整版课件
14
如果∆OAB和 ∆OCD是位似图形,那么
AB∥CD吗?为什么? 解:AB∥CD.理由是:
C A
∆OAB和 ∆OCD是位似图形, O
BD
∆OAB∽
∆OCD ∠OAB=∠C
AB∥CD.
完整版课件
15
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
放大后得到五边形A′B′C′D′E′,已知
OA=10cm,OA′=20cm,则
AB:A′B′=
,五边形ABCDE的周
长与五边形A′B′C′D′E′的周长的比值是
完整版课件
9
把图1中的四边形ABCD缩小到原来的 一半.
作法一:如图2 ,在四边形ABCD外 任取一点O;

图形的位似课件ppt

图形的位似课件ppt

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2、观察下列位似图形 下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似
图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连 线有什么特征?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
直角坐标系中图形的位似变化与对应点坐标变化的规律
想一想: 1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性? 2.怎样运用像与原像对应点的坐标关系,画出以原点为位
显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练一练1:判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′;
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(7)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上)
(8)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
(1)从上面练习第 1(1)(4)题图中,我们可以看到,△OAB∽△O A′B′ 则OOAA′ =OBO′B =A′ABB′ .从第 2 题的图中同样可以看到AAFD =AACP =AAEB =EBPC =DFCP

位似(共16张PPT)

位似(共16张PPT)

探索1:
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1:3,把线段AB缩小.
y A′(2,1),B′(2,0)
A
A'
x
o
B'
B
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1:3,把线段AB缩小.
原图的关键点 3、根据相似比,确定能代表所作的位似
图形的关键点 4、顺次连接上述各点,得到放大或缩小
的图形
4、如何把三角形ABC放大为原来的
2倍?
E
B
放大后对应点的坐标分别是多少,你有什么发现?
O C 如图表示△ABC把它缩小后得到的△COD,求它们的相似比
图形才叫做位似图形.三条件缺一不可.
F
A′(2,1),B′(2,0)
放大后对应点的坐标分别是多少,你有什么发现?
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
y
A'
A
C'
B'
C
o
B
x
还有其他办法吗? A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
在平面直角坐标系中, △ABC三个顶点的坐标分别为 A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为 2,将△ABC放大.
复习回顾
1.什么叫位似图形?
如果两个相似图形的每组对应顶点所在的 直线都交于一点,对应边互相平行,那么这 样的两个图形叫做位似图形, 这个交点叫 做位似中心, 这时两个相似图形的相似 比又叫做它们的位似比.

人教版第二学期数学九年级下 27.3 位似第1课时 位似图形的概念及画法课件(共20张PPT)

人教版第二学期数学九年级下 27.3 位似第1课时  位似图形的概念及画法课件(共20张PPT)

E′
D′
D
E
O
A
A′
B
C′
A
C
B′
C′
O
B
C
B′
A′
归纳:
1. 位似图形的对应角相等,对应边成比例,周长比
等于相似比,面积比等于相似比的平方;
2. 位似图形的对应点的连线相交于一点,即经过位似中心;
3. 位似图形的对应边互相平行或在同一条直线上;
4. 位似图形上任意一对对应点到位似中心的距离之比等
于相似比.
例2 如图所示,四边形ABCD 和四边形A′ B′ C′ D′位似,相似比1 = 2,四边
形A′ B′ C′D′和四边形A″ B″ C″D″位似,相似比2 = 1. 则四边形A″ B″ C″ D″
和四边形ABCD 是位似图形吗?如果是,请说明理由并求出相似比.
解:∵ 四边形ABCD 和四边形A′ B′ C′ D′位似,
E
OD;在射线OA、OB、OC、
H
A
OD上分别取点D、E、F,使
D
O
B
C
OE = 2OA , OF = 2OB , OG =
2OC , OH = 2OD;顺次连结E、
F、G、H,使正方形ABCD与
F
G
5.如图所示,四边形ABCD的一个位似图形是四边形A′ B′ C′ D′ ,
且A,B,C,D的对应点分别是A′ ,B′ ,C′ ,D′. 图中给出了AB的对应
似中心的位似图形,且











;五边形ABCDE 与五


边形A′ B′ C′ D′ E′是以点O 为位似中心的位似图形,且′ = ′ =

图形的位似ppt课件

图形的位似ppt课件

一般地,位似图形有以下性质:
位似图形上任意一对对应点到位似中心的距离之比等于位似
比.
完整版课件
12
作位似图形
例: 如图,请以坐标原点O为位似中心,作位似图形, 并把对应的边长放大3倍.
完整版点坐标变化的规律
想一想:
1.所画的两个四边形具有怎样的对称性? 2.怎样运用原图形与位似图形对应点的坐标关系,画出以 原点为位似中心的位似图形?
完整版课件
4
如图,D,E分别AB,AC上的点.
A
(1)如果DE∥BC,那么∆ADE和 D E
∆ABC是位似图形吗?为什么? B
C
解:(1) ∆ADE和 ∆ABC是位似图形.理由是:
因为DE∥BC,所以∆ADE∽ ∆ABC.
又因为 点A是∆ADE和 ∆ABC的公共点,点D和
点B是对应点,点E和点C是对应点,直线BD
与CE交于点A,所以∆ADE和 ∆ABC是位似图
形.
完整版课件
5
如图,D,E分别AB,AC上的点. (1)如果DE∥BC,那么∆ADE和 ∆ABC是位似图形吗?为什么? B
A DE
C
(2)如果∆ADE和 ∆ABC是位似图形,那么 DE∥BC吗?为什么?
解:(2) DE∥BC.理由是:
∆ADE和 ∆ABC是位似图形
(7)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
完整版课件
10
2.如图P,E,F分别是AC,AB,AD的中点,四边 形AEPF与四边形ABCD是位似图形吗?如果是位似图 形,说出位似中心和位似比.
完整版课件
11
位似图形的性质
(1)从上面练习第 1(1)(4)题图中,我们可以看到,△OAB∽△O A′B′, 则OOAA′ =OBO′B =A′ABB′ .从第 2 题的图中同样可以看到AAFD =AACP =AAEB =EBPC =DFCP

北师版九年级数学上册《图形的位似》PPT课件

北师版九年级数学上册《图形的位似》PPT课件

感悟新知
知3-导
第二步;画出图形各顶点与位似中心O的连线; 第三步:按相似比取点; 第四步:顺次连接各点,所得的图形就是所求的图形.
感悟新知
知3-导
2.要点精析: (1)位似中心的选取要使画图方便且符合要求,一般以多边形
的一个顶点为位似中心画图最简便. (2)画位似图形时,要弄清相似比,即分清是已知图形与新图
课堂小结
图形的位似
知识总结
知识方法要点
关键总结
注意事项
每组对应点所在直线交于一 画位似图形时要找准对应点,

点的相似多边形是位似多边 理解相似比.注意位似中心的位
似 多
形; 位似多边形的对应边平 置:①位似中心在多边形的一

行或在一条直线上,多边形 侧;②两个多边形分居在位似

上任意一组对应点到位似中 中心的两侧;③位似中心在两
感悟新知
知识点 3 位似图形的画法
知3-导
1.画位似图形的步骤:
第一步:确定位似中心O(位似中心可以在图形外部,也可以在
图形内部,还可以在图形的边上,还可以在某一个顶点上);
特别提醒: ◆位似中心的选取一般考虑使画图方便且符合要求. ◆以一点为位似中心画位似图形时,符合要求的图形往往
不唯一,一般情况下,同一个位似中心的两侧各有一 个符合要求的图形.
求出AD的长,然后根据△OAD∽△OBG,求出
OB的长,即可确定C点的坐标.
∵正方形BEFG的边长是6,∴BE=EF=6,
∵两正方形的相似比为1∶3. ∴ CB CB 1 .
EF 6 3
∴AB=BC=CD=AD=2.
根据位似图形的性质可知,OA=1,即 OB 2 1 .
OB 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)等边三角形ABC与等边三 角形A′B′C′.
精选ppt
4
判断下面的正方形是不是位似图形?
精选ppt
5
2、画出下列位似图形的位似中心
o
o
o
精选ppt
6
概念与性质
2. 位似图形的性质
性质:位似图形上任意一 对对应点到位似中心的距 离之比等于相似比.
精选ppt
7
精选ppt
8
2.如图,以点O为位似中心,将五边形ABCDE
图 形 的 位 似
精选ppt
1
精选ppt
2
概念与性质
1.位似图形的概念
如果两个图形不仅相似,而且每
组对应点所在的直线都经过同一
点,对应边互相平行(重合),那么
这样的两个图形叫做位似图形,这
个点叫做位似中精心选ppt .
3
辨一辨
1. 判断下列各对图形是不是位似图形.
(1)正五边形ABCDE与正五 边形A′B′C′D′E′;
精选ppt
11
作法三:如图4,在四边形ABCD内任 取一点O;
精选ppt
12
精选ppt
13
课堂小结
位似图形的概念: 如果两个图形不仅形状相同,而且每组对应顶点所 在的直线都经过同一个点,那么这样的两个图形叫 做位似图形,这个点叫做位似中心,这时的相似比又 称为位似比.
位似图形的性质: 1.位似图形上的任意一对对应点到位似中心的距离 之比等于位似比
放大后得到五边形A′B′C′D′E′,已知
OA=10cm,OA′=20cm,则
AB:A′B′=
,五边形ABCDE的周
长与五边形A′B′C′D′E′的周长的比值是
精选ppt
9
把图1中的四边形ABCD缩小到原来的 一半.
作法一:如图2 ,在四边形ABCD外 任取一点O;
精选ppt
10
作法二:如图3,在四边形ABCD外任 Байду номын сангаас一点O;
精选ppt
14
如果∆OAB和 ∆OCD是位似图形,那么
AB∥CD吗?为什么? 解:AB∥CD.理由是:
C A
∆OAB和 ∆OCD是位似图形, O
BD
∆OAB∽
∆OCD ∠OAB=∠C
AB∥CD.
精选ppt
15
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
相关文档
最新文档