高一数学必修一知识点总结及经典例题分析

合集下载

高一数学必修一知识点梳理五篇分享

高一数学必修一知识点梳理五篇分享

高一数学必修一知识点梳理五篇分享学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个知识点,这样也方便同学们日后的复习。

下面就是给大家带来的高一数学必修一知识点总结,希望能帮助到大家!高一数学必修一知识点总结1(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高一数学必修一知识点总结2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

高中一年级数学必修一_第一章_知识点与习题讲解

高中一年级数学必修一_第一章_知识点与习题讲解

..下载可编辑..必修1第一章集合与函数基础知识点整理第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈. 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合. 解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程212x a x +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是 △=0,得94a =-,此时的解为12x =,合.2A BB A A B A B A . B .C .D .⑵方程有一解为2,而另一解不是2-:将2x =代入得2a =-,此时另一解12x =-,合. ⑶方程有一解为2-,而另一解不是2:将2x =-代入得2a =,此时另一解为21x =+,合. 综上可知,9{,2,2}4A =--.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲 §1.1.2 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =I ,则A B ⊆;若A B A =U ,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,. 【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅, 易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-. 点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值...下载可编辑..解:若22a b ax a b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去. 若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-. 经检验,此时A =B 成立. 综上所述12x =-. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到 并集 交集 补集概念由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(union set ) 由属于集合A 且属于集合B 的元素所组成的集合,称为集合A 与B 的交集(intersection set ) 对于集合A,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集(complementary set )记号A B U (读作“A 并B ”) A B I (读作“A 交B ”) U A ð(读作“A 的补集”) 符号 {|,}A B x x A x B =∈∈U 或 {|,}A B x x A x B =∈∈I 且{|,}U A x x U x A =∈∉且ð图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()U R A x x B x x A B A B ==-≤≤=<<I U 求ð. 解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤I ,(){|1,9}U C A B x x x =<-≥U 或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C I I ; (2)()A A B C I U ð. 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------Q . (1)又{}3B C =Q I ,∴()A B C =I I {}3; (2)又{}1,2,3,4,5,6B C =Q U , 得{}()6,5,4,3,2,1,0A C B C =------U . ∴ ()A A C B C I U {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =I ,求实数m 的取值范围. 解:由A B A =I ,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.UA-2 4 m xB AA BB A I4点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B U ,()U C A B I ,()()U U C A C B I , ()()U U C A C B U ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =U ,则(){6,7,9}U C A B =U . 由{5,8}A B =I ,则(){1,2,3,4,6,7,9}U C A B =I 由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B =I ,()(){1,2,3,4,6,7,9}U U C A C B =U .由计算结果可以知道,()()()U U U C A C B C A B =U I ,()()()U U U C A C B C A B =I U .另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B =U I 与()()()U U U C A C B C A B =I U ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =I U ,()()()U U U C A B C A C B =U I .2. 集合元素个数公式:()()()()n A B n A n B n A B =+-U I .3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =I ,求实数a 的值. 解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9A B =I ,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B U , A B I .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =U ,A B =∅I ; 当1a =时,{1,3}A =,则{1,3,4}A B =U ,{1}A B =I ; 当4a =时,{3,4}A =,则{1,3,4}A B =U ,{4}A B =I ;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =U ,A B =∅I .点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A I B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A I B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;..下载可编辑..当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉U 且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B I .第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞U U .(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞U .【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.6(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞. 【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1xf x x-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32.又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3)..下载可编辑..(2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12bx x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a -∞-上单调递增. 同理可得()f x 在[,)2ba-+∞上单调递减.【例3】求下列函数的单调区间:8(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例4】已知31()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55()322x f x x x +--==+++, ∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -g 件,所赚得的利润为(8)[10010(10)]y x x =---g g ...下载可编辑..即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-.所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §1.3.2 函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数.(2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数. 【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .10解:∵ ()f x 是奇函数,()g x 是偶函数, ∴ ()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩.两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2). ∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一致, ∴ 0x <时,22()2(1)224f x x x x =-++=--.点评:此题中的函数实质就是224||y x x =-+. 注意两抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-,所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减. 又 ∵ ()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.∵ 22(33)(32)f a a f a a +-<-,∴ 223332a a a a +->-,解得1a >. 点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )M N A M N B N M C M N D....下载可编辑..5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B. 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A B YB. B A IC. B C A C U U ID. B C A C U U Y11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________. 14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.1219. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.....下载可编辑..必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3). 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.20. Θ二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. .。

高一数学知识点归纳总结加例题

高一数学知识点归纳总结加例题

高一数学知识点归纳总结加例题高一是数学学科基础扎实的阶段,学生们开始接触更加复杂和抽象的数学知识。

为了帮助同学们更好地掌握高一数学知识,下面将对高一数学涉及的主要知识点进行归纳总结,并配以例题进行说明和讲解。

一、函数与方程1. 函数的基本概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。

函数的定义域、值域以及函数图像的特点是我们研究函数的关键。

例题:给定函数 f(x) = 2x + 3,求函数图像在坐标系中的表达。

2. 一次函数与方程一次函数的表达式为 y = kx + b,其中 k 和 b 分别为常数。

一次方程是一次函数的表达式等于一个常数。

例题:已知直线 y = 3x + 1 与直线 y = 2x - 2 相交于点 A,求点 A 的坐标。

3. 二次函数与方程二次函数的标准形式为 y = ax^2 + bx + c,其中 a、b 和 c 是常数,且a ≠ 0。

例题:求解方程 x^2 + 4x + 3 = 0 的根。

二、平面向量与解析几何1. 平面向量的基本概念平面向量是具有大小和方向的量,我们可以用有向线段表示它。

平面向量的模、共线、平行以及平面向量的加减法是需要我们掌握的基本概念。

例题:已知向量 a = (2, 3) 和向量 b = (-1, 4),求向量 a 和向量 b 的和。

2. 解析几何的基本思想解析几何是利用代数方法研究几何的一个分支。

通过建立坐标系,我们可以通过代数运算来解决几何问题。

例题:在平面直角坐标系中,求点 A(3, 4) 和点 B(5, -2) 的中点坐标。

三、三角函数与三角恒等式1. 三角函数的基本概念正弦函数、余弦函数和正切函数是我们在高一学习的三角函数。

我们需要了解三角函数在单位圆上的定义和性质,并能够根据角度关系求出三角函数的值。

例题:已知角 A 的终边落在单位圆上的坐标为 (3/5, -4/5),求角 A的正切值。

2. 重要的三角恒等式三角恒等式是三角函数的基本性质之一,可以帮助我们简化和转化复杂的三角函数表达式。

高一数学必修一知识点总结归纳

高一数学必修一知识点总结归纳

高一数学必修一知识点总结归纳高一数学必修一知识点总结归纳1反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k分别为正和负(2和—2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)高一数学必修一知识点总结归纳2知识点1、集合与元素一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的知识点2、解集合问题的关键解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合,比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等高一数学必修一知识点总结归纳3一、集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。

构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。

不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可以分为有限集和无限集。

有限集包含有限个元素,无限集包含无限个元素。

知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。

列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。

描述法是用集合所含元素的共同属性来表示集合的方法。

知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。

如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。

空集是任何集合的子集,任何集合都是其本身的子集。

如果A是B的子集,B是C的子集,则A是C的子集。

如果A是B的真子集,B是C的真子集,则A是C的真子集。

集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。

知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。

并集是指两个集合中所有元素构成的集合,记作A∪B。

1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。

2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。

简单的分段函数(1知识点+8题型+强化训练)(教师版)2024-2025学年高一数学上学期必修第一册

简单的分段函数(1知识点+8题型+强化训练)(教师版)2024-2025学年高一数学上学期必修第一册

3.1.3 简单的分段函数课程标准学习目标(1)通过具体实例, 了解简单的分段函数, 并能简单应用。

(1)了解分段函数的概念;(2) 会求分段函数的解析式或函数值;(3)分段函数的性质与应用.(难点)知识点01 分段函数定义:有些函数在其定义域中,对于自变量x 的不同取值范围,对应关系不同,这样的函数通常称为分段函数.Eg f(x)=|x|=x, x ≥0―x, x <0,f(x)=(―1)x =―1, x 为奇数1, x 为偶数(x ∈N).【即学即练1】湛江市自来水公司鼓励企业节约用水,按下表规定收取水费,用水量单价(元/吨)不超过40吨的部分 1.8超过40吨的部分2.2求用水量与水费之间的函数关系,并求用水30吨和50吨的水费.解析 设用水量为x 吨,水费为y 元,依题意知当x ≤40时,y =1.8x 元;当x >40时,y =2.2(x ―40)+1.8×40=2.2x ―16元,故用水量与水费之间的函数关系为f (x )= 1.8x , x ≤402.2x ―1.6, x >40,所以f (30)=54,f (50)=109.4,即用水30吨和50吨的水费分别为54元、109.4元.【题型一:求分段函数的函数值】例1.已知函数f (x )=f (x +2),x ≤0x 2―3x +4,x >0,则f (f (―6))=( )A .6B .4C .2D .0【答案】C 【分析】通过函数表达式即可得出f (f (―6))的值.【详解】由题意,在f (x )=f (x +2),x ≤0x 2―3x +4,x >0中,f (f (―6))=f (f (―4))=f (f (―2))=f (f (0))=f (f (2))=f (22―3×2+4)=f (2)=22―3×2+4=2,故选:C.变式1-1.已知函数f (x )=x ―1, x >0x, x =0x+1, x <0那么f(f(3))的值是( )A .1B .2C .3D .5【答案】A【分析】先计算f (3)=3―1=2,从而f [f (3)]=f (2),由此能求出结果.【详解】解:∵函数f (x )=x ―1,x >0x,x =0x +1,x <0,∴f (3)=3―1=2,f [f (3)]=f (2)=2―1=1.故选:A.变式1-2.已知函数f (x )=f (x ―2),x ≥02x 2―3x,x <0,则f(1)=( )A .14B .5C .1D .-1【答案】B【分析】根据分段函数解析式代入计算可得.【详解】因为f (x )=f (x ―2),x ≥02x 2―3x,x <0,所以f (1)=f (―1)=2×(―1)2―3×(―1)=5.故选:B变式1-3.定义:|a bc d |=ad ―bc .若f(x)=|ax ―3xx |,x ≥0f(x +3),x <0,f(1)=4,则f(―2020)=( )A .10B .9C .8D .7【答案】A【分析】依题意可得f(x)=ax 2+3x,x ≥0f(x +3),x <0,由f(1)=4求出a 的值,从而得到f (x )的解析式,再根据f(―2020)=f(―2020+673×3)=f(―1)=f(2)代入计算可得.【详解】依题意可得|ax―3xx |=ax 2+3x ,所以f(x)=|ax ―3x x |,x ≥0f(x +3),x <0=ax 2+3x,x ≥0f(x +3),x <0 ,因为f(1)=4,所以f(1)=a +3=4,所以a =1,所以f(x)=x 2+3x,x ≥0f(x +3),x <0,所以f(―2020)=f(―2020+673×3)=f(―1)=f(2)=4+6=10.故选:A .【方法技巧与总结】根据分段函数求函数值,要注意分段函数中的每段函数中自变量的取值范围.【题型二:根据分段函数求解不等式】例2.设函数f(x)={|x ―1|+1,x ≤11,x >1,则满足f(x +1)<f(2x)的 x 的取值范围是( )A .(―∞ , ―12]B .(―∞,12)C .(―12 , 0)D .(―12 , +∞)【答案】B【分析】化简函数解析式,分区间讨论化简不等式f(x +1)<f(2x)求其解.变式2-1.已知f(x)=1,x⩾0,0,x<0,则不等式xf(x)+x⩽2的解集为()A.[0,1]B.[0,2]C.(―∞,1]D.(―∞,2]【答案】C【解析】分别讨论x≥0与x<0的情况,进而求解即可【详解】当x≥0时,原不等式可化为x⋅1+x≤2,解得0≤x≤1;当x<0时.原不等式可化为x≤2,所以x<0;综上,原不等式的解集为(―∞,1]故选:C【点睛】本题考查分段函数,考查解不等式,考查分类讨论思想变式2-2.设函数f(x)=x2―4x+6,x≥0x+6,x<0,则不等式f(x)>f(1)的解集是()A.(―3,1)∪(2,+∞)B.(―3,1)∪(3,+∞)C.(―1,1)∪(3,+∞)D.(―∞,―3)∪(1,3)【答案】B【分析】首先求出f(1),再结合函数解析式分两段得到不等式组,解得即可.【详解】因为f(x)=x2―4x+6,x≥0x+6,x<0,所以f(1)=12―4+6=3,不等式f(x)>f(1)等价于x≥0x2―4x+6>3或x+6>3x<0,解得0≤x<1或x>3或―3<x<0,所以不等式f (x )>f (1)的解集为(―3,1)∪(3,+∞).故选:B变式2-3.设函数f (x )=x 2+2x,x ≥0―x 2+2x,x <0,若f (f (a ))≥3,则实数a 的取值范围是( )A .―1,+∞)B .(―∞,――1]C .[―3,1]D .[1,+∞)【方法技巧与总结】根据分段函数求解不等式,要注意好分类讨论,找准分类讨论的标准,做到不重不漏.【题型三:根据分段函数所得方程求参数或自变量】例3.已知函数f (x )=(x ―1)2,0<x <22(x ―2),x ≥2,若f (a )=f (a +2),则f (a +=( )A .0B .C .0或D .4―变式3-1.已知函数f(x)=x,x<02x,x≥0,若f(m)=―f(1),则m=()A.―2B.―1C.―4D.2【答案】A【分析】先求出f(1)=2,然后分类讨论代入函数解析式列式求解即可.【详解】由题意可得f(1)=2.当m≥0时,f(m)=2m=―f(1)=―2,解得m=―1,舍去;当m<0时,f(m)=m=―f(1)=―2,解得m=―2,满足题意.所以m=―2.故选:A变式3-2.设f(x)=<x<11),x>1,若f(a)=f(a+1),则=()A.2B.4C.6D.8变式3-3.已知函数f(x)=x2+x,0<x<2―2x+8,x≥2,若f(a)=f(a+2),a∈(0,+∞),则=()A.2B.516C.6D.172【答案】A【分析】根据分段函数,分0<a<2,a≥2,由f(a)=f(a+2)求解.【详解】因为函数f(x)=x2+x,0<x<2―2x+8,x≥2,且f(a)=f(a+2),a∈(0,+∞),【方法技巧与总结】根据分段函数的函数值所得的方程求其中的参数或自变量,要注意变量的取值范围,作好分类讨论.【题型四:求分段函数的解析式】例4.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0≤t≤2)左侧的图形的面积为f (t).则函数y=f(t)的图象大致为()A.B.C.D.变式4-1.已知边长为1的正方形ABCD 中,E 为CD 的中点,动点P 在正方形ABCD 边上沿A→B→C→E 运动.设点P 经过的路程为x .△APE 的面积为y .则y 与x 的函数图象大致为图中的( )A .B .C .D .变式4-2.在同一平面直角坐标系中,函数y =f (x )和y =g (x )的图象关于直线y =x 对称.现将y =g (x )的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线(如图所示),则函数f (x )的表达式为( )A .f (x )=2x +2,―1≤x ≤0x 2+2,0<x ≤2B .f (x )=2x ―2,―1≤x ≤0x 2―2,0<x ≤2C .f (x )=2x ―2,1≤x ≤2x 2+1,2<x ≤4D .f (x )=2x ―6,1≤x ≤2x 2―3,2<x ≤4故选:A【方法技巧与总结】求分段函数的解析式,要抓好分段自变量的临界点以及对应的区间范围!【题型五:画具体分段函数的图象】例5.将函数y =|―x 2+1|+2向左、向下分别平移2个、3个单位长度,所得图像为( )A .B .C .D .【答案】C【分析】根据题意,将函数化为分段函数的形式,得到其大致图像,即可判断平移之后的函数图像.【详解】因为y =3―x 2,x ∈[―1,1]x 2+1,x ∈(―∞,―1)∪(1,+∞),可得函数的大致图像如图所示,将其向左、向下分别平移2个、3个单位长度,所得函数图像为C 选项中的图像.故选:C变式5-1.已知f(x)={x +1,x ∈[―1,0)x 2+1,x ∈[0,1],则函数y =f(―x)的图象是( )A .B .C .D .【答案】A【分析】先画函数f(x)的图象,再根据函数f(x)的图象与f(―x)的图象关于y 轴对称,即可选出正确选项.【详解】先画函数f(x)={x +1,x ∈[―1,0)x 2+1,x ∈[0,1]的图象,如下图:因为函数f(x)的图象与f(―x)的图象关于y 轴对称,只有A 选项的图象符合.故选:A.【点睛】本题主要考查分段函数的画法,同时考查函数有关对称性的知识,解题的关键是把原函数的图象画出,那么对称函数的图象随之可得.变式5-2.函数f (x )=x|x |―1的图象大致形状是( )A .B .C .D .变式5-3.设函数f (x )=|x ―1|―2|x +1|.(1)作出函数f (x )的图象;(2)若f (x )的最大值为m ,正实数a,b,c 满足ab +2b 2+3ac +6bc =m ,求a +3b +3c 的最小值.(2)由(1)可知:当x =―1时,∴ab +2b 2+3ac +6bc =2,即∴a +3b +3c =(a +2b )+(b +a +b =3c 时等号成立),∴(a +3b +3c )min =22.【方法技巧与总结】画含绝对值的函数图象,可以利用|x |=x,x ≥0―x,x <0,把函数转化为分段函数,再把分段函数画出.【题型六:与分段函数有关的值域问题】例6.已知函数f (x )=―1x,x <c x 2―x,c ≤x ≤2,若f (x )值域为―14,2,则实数c 的取值范围是( )A .[―1,0]B .―12,0C .―1,―D .―∞,变式6-1.已知函数f (x )=(3a ―1)x +4a,x <2x +1,x ≥2的值域为R ,则a 的取值范围是( )AB+∞C .―∞D +∞变式6-2.已知函数f (x )=(1―2a )x +3a,x <1x ―1x,x ≥1的值域为R ,那么a 的取值范围是( )A .(―∞,―1]B .―C .―D .(0,1)变式6-3.已知函数f (x )=1―x,―1≤x <0|x ―1|,0≤x ≤a的值域是[0,2],则实数a 的取值范围是( )A .(0,1]B .[1,3]C .[1,2]D .[2,3]【答案】B【分析】先求出当―1≤x <0时,f (x )的值域为(1,2].由题意可知,当0≤x ≤a 时,f (x )=|x ―1|=0有解,此时x =1,所以1∈[0,a ],故a ≥1,然后根据f (x )=|x ―1|的单调性对a 分1≤a ≤2和a >2两种情况进行讨论即可求解.【详解】解:由题意,当―1≤x <0时,f (x )=1―x ∈(1,2],又函数f (x )=1―x,―1≤x <0|x ―1|,0≤x ≤a的值域是[0,2],当0≤x ≤a 时,f (x )=|x ―1|=0有解,此时x =1,所以1∈[0,a ],所以a ≥1,当a ≥1时,f (x )=|x ―1|=1―x,0≤x ≤1x ―1,1<x ≤a在[0,1]上单调递减,在[1,a ]上单调递增,又f (0)=1,f (1)=0,f (a )=|a ―1|,①若1≤a ≤2,则|a ―1|≤1,所以f (x )∈[0,1],此时[0,1]∪(1,2]=[0,2],符合题意;②若a >2,则|a ―1|>1,所以f (x )∈[0,|a ―1|],要使[0,|a ―1|]∪(1,2]=[0,2],只须|a ―1|≤2,即2<a ≤3;综上,1≤a ≤3.故选:B.【方法技巧与总结】1 处理与分段函数有关的值域问题,往往可以采取数形结合或分离讨论的方法,在其中函数的单调性往往很重要.2 对于分段函数的值域,应该是两段的值域并到一起,定义域也是两段并到一起,单调区间也是两段的区间总和.二次函数找最值一般情况要和对称轴比较,讨论轴和区间的关系.【题型七:与分段函数的最值问题】例7.已知函数f(x)=x 2―2ax ―2,x ≤2,x +36x―6a,x >2,若f(x)的最小值为f(2),则实数a 的取值范围为( )A .[2,5]B .[2,+∞)C .[2,6]D .(―∞,5]当x ≤2时,f(x)=x 2―2ax ―2,要使得函数f(x)的最小值为f(2),则满足a ≥2,f(2)=2―4a ≤12―6a,解得2≤a ≤5.故选:A .变式7-1.函数f (x )=(1―x )|x ―3|在(―∞,t )上取得最小值―1,则实数t 的取值范围是A .(―∞,2)B .[2―C .[2,2D .[2,+∞)【点睛】本题考查零点分段法得分段函数,以及图象法解决函数最值问题变式7-2.设f (x )=(x -a )2,x ≤0x +1x+a +4,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A .[0,3]B .(0,3)C .(0,3]D .[0,3)【答案】A【分析】利用基本不等式可求得f 得出实数a 的取值范围.因此,实数a 的取值范围是[0,3].故选:A.变式7-3.已知f (x )=1―|x +1|,x <0x 2―2x,x ≥0,若实数m ∈[―2,0],则|f (x )―f 在区间[m,m +1]上的最大值的取值范围是( )A B C D 因为f ―12=1―|―12+1因为m ∈[―2,0],所以[m,m |f (x )―f―12|表示函数f (由图可知,当x =1时,|f (x 当m ∈[―2,―1]时,―1∈【方法技巧与总结】1 处理与分段函数有关的最值问题,往往可以采取数形结合或分离讨论的方法,在其中函数的单调性往往很重要;2 结合分段函数的图象的话,要把问题进行等价转化,注意如何才能使得图象取到最值或在哪里取到等.【题型八:其他分段函数的性质及应用】例8.定义max a,b=a,a≥bb,a<b,若函数f(x)=max―x2+3x,|x―3|,若f(x)在区间[m,n]上的值域3,则区间[m,n]长度的最大值为()A.6B.52C.72D.74变式8-1.已知函数f(x)=x2―8x+8,x≥02x+4,x<0.若互不相等的实根x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的范围是()A.(2,8)B.(―8,4)C.(―6,0)D.(―6,8)【答案】A【分析】根据函数图象有三个实数根的函数值在(―8,4)之间,第一段函数关于x =4对称,即可求出x 2+x 3=8,再根据图象得到x 1的取值范围,即可得到答案.【详解】根据函数的解析式可得如下图象若互不相等的实根x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),根据图象可得x 2与x 3关于x =4,则x 2+x 3=8,当2x 1+4=―8时,则x 1=―6是满足题意的x 1的最小值,且x 1满足―6<x 1<0,则x 1+x 2+x 3的范围是(2,8).故选:A.变式8-2.德国数学家狄利克雷在数学领域成就显著,以其名命名函数y =D (x )=1,x 为有理数0,x 为无理数,该函数被称为狄利克雷函数,关于狄利克雷函数有如下四个命题:①D (D (x ))=0;②对任意x ∈R ,恒有D (x )=D (―x )成立;③任取一个不为零的有理数T ,D (x +T )=D (x )对任意实数x 均成立;④存在三个点A (x 1,D (x 1)),B (x 2,D (x 2)),C (x 3,D (x 3)),使得△ABC 为等边三角形;其中正确的序号为( )A .①②③B .②③④C .②④D .①②③【答案】B【分析】根据狄利克雷函数的定义分别验证x 为无理数和为有理数两种情况,判断①②③;结合狄利克雷函数的定义找特殊点验证④.【详解】对①,当x 为无理数时,D (x )=0,所以D (D (x ))=D (0)=1,当x 为有理数时,D (x )=1,所以D (D (x ))=D (1)=1,所以对任意x ∈R ,恒由D (D (x ))=1,所以①错误;对②,当x 为无理数时,―x 为无理数,所以D (x )=D (―x )=0,当x 为有理数时,―x 为有理数,所以 D (x )=D (―x )=1,所以②正确;对③,任取一个不为零的有理数T ,当x 为无理数时,则x +T 为无理数,变式8-3.已知函数f(x)=ax2―x,x≥―1,―x+a,x<―1.若∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.所以函数在―∞,12a上单调递减,在所以∃x1,x2∈R,且x1≠x当a<0时:当x≥―1时,函数的开口下,对称轴①当―1<1<0,即a<―由此可知∃x 1,x 2∈R ,且②当12a ≤―1时,即―12≤此时函数的大致图象如图所示:易知函数在R 上单调递减,所以不存在x 1,x 2∈R ,且x 综上,a 的取值范围为:故答案为:―∞,―1∪(0,【方法技巧与总结】处理与分段函数有关的函数性质问题,往往可以采取数形结合或分离讨论的方法,在其中掌握函数的单调性是关键.一、单选题1.已知函数f(x)=2x ,x >0f(x +2),x ≤0,则f (―3)=( )A .1B .2C .4D .8【答案】B【分析】根据分段函数解析式,代入求值即可.【详解】由函数可得,f(―3)=f(―1)=f(1)=21=2.故选:B.2.已知f(x)=―x 2+2x,x≥0x2+2x,x<0,满足f(a)<f(―a),则a的取值范围是()A.(―∞,―2)∪(0,2)B.(―∞,―2)∪(2,+∞)C.(―2,0)∪(0,2)D.(―2,0)∪(2,+∞)A.―1B.―2C.―3D.―4所以a≥0⇒f(a)=|a―1|=所以f(―2a)=f(―1)=―2.故选:B4.如图所示,在直角坐标系的第一象限内,个三角形可得位于此直线左方的图象的面积为f(t),则函数y=f(t)的图象大致是()A .B .C .D .5.已知函数f (x )=x 2―1,x >1,若n >m ,且f (n )=f (m ),设t =n ―m ,则t 的最大值为( )A .1912B ―1C .1712D .43【答案】C【分析】借助分段函数f(x)图象得出m,n 的范围,由m,n 的关系,化t =n ―m 为关于n 的二次函数,由此可得最大值.【详解】作出函数f (x )=3x +1,x ≤1x 2―1,x >1的图象如下图,f(1)=4,令f(x)=4,解得若n>m,且f(n)=f(m可得3m+1=n2―1,可得则t=n―m=n―13(n2对称轴为n=32,3()A.∀x∈[0,+∞),f(x―2)>f(x)B.∀x∈[1,+∞),f(x―2)>f(x)C.∀x∈R,f(f(x))≤f(x)D.∀x∈R,f(f(x))>f(x)【答案】C【分析】分别画出y=|x―2|,y=x2,y=|x+2|的图象,分别判断四个选项,结合图象即可选出正确选项.【详解】解:如图所示:由题意可得A中,f(x)=x2,x∈[0,1]|x―2|,x∈(1,+∞).B中,当1≤x≤2时,﹣1≤x﹣2≤0,f(x―2)=f(2―x)≤2―x=f(x).当2<x≤3时,0<x―2≤1,f(x―2)≤x―2=f(x).当3<x≤4时,1<x―2≤2,f(x―2)=2―(x―2)=4―x≤x―2=f(x).当x≤4,x―2≥2,恒有f(x―2)<f(x),所以B不正确,A也不正确;C中,从图象上看,x∈[0,+∞),f(x)≤x.令t=f(x),则t≥0所以f(t)≤t,即f(f(x))≤f(x),故C正确,D不正确.故选:C.【点睛】本题考查了函数图象的应用,考查了分段函数.本题关键是分别画出三个函数的图象.在画y=|f(x)|的函数图象时,一般地,先画出y=f(x)的图象,再将x轴下方的图象向上翻折即可.7.设函数f(x)=(x―a)2,x≤0x2―2x+3+a,x>0,若f(0)是函数f(x)的最小值,则实数a的取值范围是() A.[﹣1,2]B.(―1,2)C.[0,2)D.[0,2]【答案】D【分析】通过分类讨论a的取值范围,并利用一元二次函数的性质即可求解.【详解】由题意,不妨设g(x)=(x―a)2,ℎ(x)=x2―2x+3+a,①当a<0时,由一元二次函数的性质可知,g(x)=(x―a)2在[a,0]上单调递增,故对于∀x∈[a,0],f(x)=g(x)<g(0)=f(0),这与f(0)是函数f(x)的最小值矛盾;②当a=0时,g(x)=x2,ℎ(x)=x2―2x+3=(x―1)2+2,由一元二次函数的性质可知,g(x)=x2在(―∞,0]单调递减,故对于∀x∈(―∞,0],f(x)=g(x)>g(0)=f(0)=0,当x>0时,f(x)=ℎ(x)=x2―2x+3=(x―1)2+2在x=1时取得最小值2,从而当a=0时,满足f(0)是函数f(x)的最小值;③当a>0时,由一元二次函数性质,g(x)=(x―a)2在(―∞,0]上单调递减,故对于∀x∈(―∞,0],f(x)=g(x)>g(0)=f(0)=a2,当x>0时,f(x)=ℎ(x)=x2―2x+3=(x―1)2+2+a在x=1时取得最小值2+a,若使f(0)是函数f(x)的最小值,只需a2≤2+a且a>0,解得,0<a≤2.综上所述,实数a的取值范围是[0,2].故选:D.8.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义f p(x)=f(x),f(x)>pp,f(x)≤p则称函数y=f p(x)为y=f(x)的“p下界函数”.若给定f(x)=x2―2x―1,p=2,则下列结论不正确的是()A.f p(f(0))>f f p(0)B.f p(f(1))>f f p(1)C.f(f(2))=f p f p(2)D.f(f(3))>f p f p(3)【答案】D【分析】根据已知条件求出f2(x)的解析式,再分别求函数值即可得正确选项.【详解】因为f(x)=x2―2x―1,p=2,由f(x)>p即x2―2x―1>2,可得x2―2x―3>0,解得:x<―1或x>3,由f(x)<p即x2―2x―1<2,可得x2―2x―3<0,解得:―1<x<3,所以f2(x)=x2―2x―1,x∈(―∞,―1)∪(3,+∞)2,x∈[―1,3]对于A:f(0)=―1,f2(f(0))=f2(―1)=2,f2(0)=2,f f p(0)=f(2)=―1,所以f p(f(0))>f f p(0)成立,对于B:f(1)=―2,f2(f(1))=f2(―2)=(―2)2―2×(―2)―1=7,f2(1)=2,f(f2(1))=f(2)=22―2×2―1=―1,所以f p(f(1))>f f p(1)成立,对于C:f(2)=22―2×2―1=―1,f(f(2))=f(―1)=(―1)2―2×(―1)―1=2,f2(2)=2,f2(f2(2))=f2(2)=2,所以f(f(2))=f p f p(2)成立,对于D:f(3)=32―2×3―1=2,f(f(3))=f(2)=―1,f2(3)=2,f2(f2(3))=f2(2)=2,所以f(f(3))>f p f p(3)不成立,所以选项D不正确,故选:D.二、多选题9.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费办法如下表:每户每月用水量x(m3)水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3则下列说法正确的是()A.若某户居民某月用水量为10m3,则该用户应缴纳水费30元B.若某户居民某月用水量为16m3,则该用户应缴纳水费96元C.若某户居民某月缴纳水费54元,则该用户该月用水量为15m3D.若甲、乙两户居民某月共缴纳水费93元,且甲户该月用水量未超过12m3,乙户该月用水量未超过18m3,则该月甲户用水量为9m3(甲,乙两户的月用水量均为整数)【答案】AC【分析】根据表格中的“阶梯水价”,逐一选项进行计算并判断正误即可【详解】对于A选项,居民用水量未超过12m3,则按3元/m3计算,故应缴水费为3×10=30元,故A 选项正确;对于B选项,居民用水量超过12m3,但未超过18m3,因此其中12m3,按3元/m3计算;剩余的4m3,按6元/m3计算;故应缴水费为3×12+4×6=60元,故B选项错误;对于C选项,根据居民所缴水费,可以判断居民用水量超过12m3,但未超过18m3,设居民用水量为x,则有3×12+6×(x―12)=54,解得:x=15,故C选项正确;对于D选项,根据题意,设甲居民用水量为x,乙居民用水量为y,则根据已知条件可得:3x+3×12+6 (y―12)=93,整理可得:x+2y=43.通过方程无法确定甲居民用水量一定为9m3,故D选项错误.故选:AC10.已知函数f(x)=2x 2,x≥1f(x+1),x<1,则下列正确的是()A.f[f(0)]=8B.f[f(1)]D.f(x)的值域为C.f=81211.已知全集为R,对于给定数集A,定义函数f(x)=1,x0,x∉A为集合A的特征函数,若函数f(x)是数集A 的特征函数,函数g(x)是数集B的特征函数,则()A.y=f(x)g(x)是数集A∩B的特征函数B.y=f(x)+g(x)―f(x)g(x)是数集A∪B的特征函数C.y=f(x)―f(x)g(x)是数集A∩(∁R B)的特征函数D.y=f(x)+g(x)―2f(x)g(x)是集合∁R(A∩B)的特征函数【答案】ABC【分析】根据特征函数的定义,一一验证选项中的函数是否满足特征函数的定义,即可判断出答案.【详解】对于A,由集合A的特征函数的定义可知A不为空集,则A∩B不为空集,如图示:Ⅰ部分表示A∩B,Ⅱ表示A∩(∁R B),Ⅲ表示表示B∩(∁R A),Ⅳ表示(∁R A)∩(∁R B),,当x∈A∩B时,f(x)=1,g(x)=1,故f(x)g(x)=1,当x∉A∩B时,f(x),g(x)中至少有一个为0,,此时f(x)g(x)=0,符合特征函数的定义,即y=f(x)g(x)是数集A∩B的特征函数,A正确;对于B,当x∈A∪B时,如上图,若x取值在Ⅰ部分,则f(x)=1,g(x)=1,则f(x)+g(x)―f(x)g(x)=1;若x取值在Ⅱ部分,则f(x)=1,g(x)=0,则f(x)+g(x)―f(x)g(x)=1;若x取值在Ⅲ部分,则f(x)=0,g(x)=1,则f(x)+g(x)―f(x)g(x)=1,当x ∉A ∪B 时,f (x )=0,g (x )=0,则f (x )+g (x )―f (x )g (x )=0,符合特征函数的定义,即y =f (x )+g (x )―f (x )g (x )是数集A ∪B 的特征函数,B 正确;对于C ,当x ∈A ∩(∁R B )时,f (x )=1,g (x )=0,则f(x)―f(x)g(x)=1;当x ∉A ∩(∁R B )时,即x 取值在Ⅰ、Ⅲ、Ⅳ部分,若x 取值在Ⅰ部分,f (x )=1,g (x )=1,则f(x)―f(x)g(x)=0,若x 取值在Ⅲ部分,f (x )=0,g (x )=1,则f(x)―f(x)g(x)=0,若x 取值在Ⅳ部分,f (x )=0,g (x )=0,则f(x)―f(x)g(x)=0,故此时符合特征函数的定义,即y =f(x)―f(x)g(x)是数集A ∩(∁R B )的特征函数,C 正确;对于D ,当x ∈∁R (A ∩B )时,即x 取值在Ⅱ、Ⅲ、Ⅳ部分,当x 取值在上图中Ⅳ部分时,此时f (x )=0,g (x )=0,则f(x)+g(x)―2f(x)g(x)=0,不符合特征函数定义,故y =f(x)+g(x)―2f(x)g(x)不是集合∁R (A ∩B)的特征函数,D 错误,故选:ABC【点睛】关键点睛:解答本题的关键在于要理解集合A 的特征函数的定义,明确其含义,从而结合定义去判断一个函数是否为一个数集的特征函数.三、填空题12.已知f (x )=2x 2+3,x ∈[―6,―1)1x,x ∈[―1,1)x,x ∈[1,6]则f = .min {f (x ),g (x )},则M (x )的最大值为 .【答案】3【分析】作出函数f (x ),g (x )的图象,根据定义作出M (x )的图象,求出交点B 的坐标即可得解.【详解】作出函数f (x ),g (x )的图象如图:根据定义可得M (x )的图象如图:由y =x +2y =4―x 2解得x =―2y =0 或x =1y =3,得B (1,3),所以M (x )的最大值为3.故答案为:314.已知关于实数t (―1≤t ≤1)的方程|t ―t 1|+|t ―t 2|=m 和|t ―t 1|―|t ―t 2|=n 对任意t 1,t 2 (―1≤t 2≤t 1≤1)有解,则m +n 的值的集合为 .【答案】{2}【分析】构造函数g (t )=|t ―t 1|+|t ―t 2|与ℎ(t )=|t ―t 1|―|t ―t 2|,分类讨论t 的取值范围,分别作出g (t ),ℎ(t )的图像,分析它们的值域,从而确定m,n 的值,由此得解.【详解】因为―1≤t 2≤t 1≤1,则0≤t 1―t 2≤2,令g (t )=|t ―t 1|+|t ―t 2|=―2t +t 1+t 2,―1≤t ≤t 2t 1―t 2,t 2<t <t 12t ―t 1―t 2,t 1≤t ≤1,其图象如图所示,其值域为[t 1―t 2,max {―2t +t 1+t 2,2t ―t 1―t 2}],由t 1―t 2∈[0,2]可知m ≥2;由(―2t +t 1+t 2)max ≥2或(2t ―t 1―t 2)max ≥2可知m ≤2;所以m =2.令ℎ(t )=|t ―t 1|―|t ―t 2|=t 1―t 2,―1≤t ≤t 2t 1+t 2―2t,t 2<t <t 1t 2―t 1,t 1≤t ≤1,其图象如图所示,其值域为[t 2―t 1,t 1―t 2],由t 2―t 1≤0可知n ≥0;由t 1―t 2≥0可知n ≤0;所以n =0.综上:m =2,n =0,m +n =2,故答案为:{2}.四、解答题15.已知函数f (x )的解析式为f (x )=3x +5,x ≤0x +5,0<x ≤1―2x +8,x >1.(1)求 f (―1)的值;(2)画出这个函数的图象;在函数y =3x +5的图象上截取在函数y =x +5的图象上截取在函数y =―2x +8的图象上截取图中实线组成的图形就是函数16.已知函数f(x)=2|x―2|+|x+1|.(2)请根据f(x)的图像直接写出f(x)>4的解集(无需说明理由)..(2)由题得,当x<―1时,当―1≤x≤2时,―x+5>当x>2时,3x―3>4,解得综上,f(x)>4的解集为x|x17.水培植物需要一种植物专用营养液,已知每投放浓度y(克/升)随着时间x(天)变化的函数关系式近似为y =af(x),其中f(x)=2+x6―x ,x ∈[0,4]5―12x ,x ∈(4,10] ,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.(1)若只投放一次4个单位的营养液,则有效时间最多可能持续几天?(2)若先投放2个单位的营养液,6天后再投放m 个单位的营养液,要使接下来的4天中,营养液能够持续有效,试求m 的最小值.(x )[0,1](x )(x )0<m <1),存在x 0∈[0,1―m ],使得f (x 0)=f (x 0+m ),则称f (x )具有性质P (m ).(1)已知函数f (x )=x ,x ∈[0,1],判断f (x )是否具有性质(2)已知函数f(x)=―4x+1,0≤x≤144x―1,14<x<34―4x+5,34≤x≤1,若f(x)具有性质P(m),求m的最大值.19.已知集合A为数集,定义f A(x)=1,x∈A0,x∈A.若A,B⊆{x|x≤8,x∈N∗},定义:d(A,B)=|f A(1)―f B(1)| +|f A(2)―f B(2)|+⋅⋅⋅+|f A(8)―f B(8)|.(1)已知集合A={1,2},直接写出f A(1),f A(2)及f A(8)的值;(2)已知集合A={1,2,3},B={2,3,4},C=∅,求d(A,B),d(A,C)的值;(3)若A,B,C⊆{x∣x≤8,x∈N*}.求证:d(A,B)+d(A,C)≥d(B,C).【答案】(1)f A(1)=1,f A(2)=1,f A(8)=0;(2)d(A,B)=2,d(A,C)=3;(3)详见解析【分析】(1)利用题给f A(x)=1,x∈A0,x∈A定义即可求得f A(1),f A(2)及f A(8)的值;(2)利用题给d(A,B)定义即可求得d(A,B),d(A,C)的值;(3)先转化d(A,B)的含义,再利用文氏图即可证得d(A,B)+d(A,C)≥d(B,C)成立.【详解】(1)集合A={1,2},f A(x)=1,x∈A 0,x∈A则f A(1)=1,f A(2)=1,f A(8)=0(2)集合A={1,2,3},B={2,3,4},C=∅,d(A,B)=|f A(1)―f B(1)|+|f A(2)―f B(2)|+⋅⋅⋅+|f A(8)―f B(8)|=|1―0|+|1―1|+|1―1|+|0―1|+|0―0|+|0―0|+|0―0|+|0―0|=2 d(A,C)=|f A(1)―f C(1)|+|f A(2)―f C(2)|+⋅⋅⋅+|f A(8)―f C(8)|=|1―0|+|1―0|+|1―0|+|0―0|+|0―0|+|0―0|+|0―0|+|0―0|=3(3)由d(A,B)=|f A(1)―f B(1)|+|f A(2)―f B(2)|+⋅⋅⋅+|f A(8)―f B(8)|,可得d(A,B)的值即为两集合A,B中相异元素个数,定义Card(A)为集合A中元素个数,则d(A,B)=Card({x|x∈A∪B,x∉A∩B})令M,N,P,Q,R,S,T⊆{x|x≤8,x∈N∗},M∩N∩P∩Q∩R∩S∩T=∅,A=M∪N∪R∪S,B=N∪P∪Q∪R,C=Q∪R∪S∪T,则d(A,B)=Card(M)+Card(P)+Card(Q)+Card(S)d(A,C)=Card(M)+Card(N)+Card(Q)+Card(T)d(B,C)=Card(N)+Card(P)+Card(S)+Card(T)则d(A,B)+d(A,C)=2Card(M)+Card(N)+Card(P)+2Card(Q)+Card(S)+Card(T)d(A,B)+d(A,C)―d(B,C)=2Card(M)+2Card(Q)≥0,故有d(A,B)+d(A,C)≥d(B,C).。

高一数学知识点带例题解析

高一数学知识点带例题解析

高一数学知识点带例题解析高一的数学学习是数学知识的开端,是构建数学基础的重要阶段。

在这个阶段,学生需要掌握一些基本的数学知识点,并通过例题的解析来加深对这些知识点的理解和应用能力。

本篇文章将带你逐一了解高一数学的一些重要知识点,并附上例题解析。

希望对你的数学学习有所帮助。

1. 一次函数一次函数是高一数学中的重要知识点之一。

它的标准形式为y = kx + b,其中k为斜率,b为截距。

例题如下:例题1:已知直线y = 2x + 1,求其与x轴和y轴的交点坐标。

解析:与x轴相交时,y = 0,可得0 = 2x + 1,解得x = -0.5;与y轴相交时,x = 0,可得y = 1。

因此,与x轴的交点坐标为(-0.5, 0),与y轴的交点坐标为(0, 1)。

2. 二次函数二次函数是高一数学中的另一个重要知识点。

它的标准形式为y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

例题如下:例题2:已知二次函数y = x^2 + x - 2,求其顶点坐标和与x轴的交点坐标。

解析:二次函数的顶点坐标为(-b/2a, -Δ/4a),其中Δ表示判别式,Δ = b^2 - 4ac。

代入a = 1,b = 1,c = -2,可得顶点坐标为(-0.5, -2.25);与x轴相交时,令y = 0,可得x^2 + x - 2 = 0,解得x₁ = -2,x₂ = 1。

因此,与x轴的交点坐标为(-2, 0)和(1, 0)。

3. 平面几何平面几何是高一数学中的一大难点,需要通过理论和实践相结合来掌握。

其中,直线和三角形是平面几何的重点内容。

例题如下:例题3:已知平面上直线l₁:2x - y + 3 = 0和直线l₂:x + y - 5 = 0,求两直线的交点坐标及l₁与x轴、y轴成的夹角。

解析:将两直线联立,解方程组2x - y + 3 = 0和x + y - 5 = 0可得交点坐标为(1, 4);由直线l₁与x轴的夹角θ₁满足tanθ₁ = |k₁|(k₁为l₁的斜率),计算可得θ₁ ≈ 0.322 radians;同理,由直线l₁与y轴的夹角θ₂满足tanθ₂ = |1/k₁|,计算可得θ₂ ≈ 1.25 radians。

高一数学必修一常考知识题型及解题思路总结

高一数学必修一常考知识题型及解题思路总结

高一数学必修一常考知识题型及解题思路总结制卷入:王众冠1、集合常考知识交集(取两个集合相同的部分且重复的取一次)、并集(取两个集合的所有元素且相同的取一次)、补集以及理解端点的取舍,能知道任意一个集合的子集个数设集合A={1,2,3},则集合A中子集个数为(2n)个;真子集个数(2n−1)个;非空子集(2n−1);非空真子集(2n−2);其中n代表集合中的元素个数题型一:解题步骤<1>必须掌握用数轴来表示各个集合间的关系<2>关键是在数轴上能表示满足A∩C≠∅或者A∩C=∅的情况<3>理解常数a能否取得等于号1、已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.2、函数常考知识的分函数的定义域、单调性、奇偶性、最值、值域。

求定义域掌握几个规则:遇见形如cx+dax+b数形式,一律使(ax+b≠0)分母不等零;含偶次根式的一律使根式里的数大于等于零,如:√ax+b直接令ax+b≥0,直接令ax+b>0;遇到对数直接令对数的真数大于零,√ax+b如:log a(x+3)直接令x+3>0.指数运算公式:a r a s=a r+s, (a r)s=a rs,(ab)r=a r a s,a0=1,(a>0且a≠1,r,s∈Q)指数函数性质:形如f(x)=a x(a>0且a≠1)<1>所有指数函数都经过(0,1)<2>所有指数函数的y值都大于0,即值域y∈(0,+∞),定义域x∈R<3>当指数函数中的0<a<1时,指数函数是减函数;当指数函数中的a>1时,指数函数是增函数。

对数运算公式:log a MN=log a M+log a N,=log a M−log a N,log a MNlog a b,log a m b n=nmlog a b=log c b(换底公式),log c alog a1=0,log a a=1(a>0且a≠1,c>0且c≠1,M,N,m,n>0)对数函数性质:形如f(x)=log a x (a>0且a≠1,x>0)<1>所有的对数函数经过(1,0)<2>所有对数函数必须满足定义域x∈(0,+∞),值域y∈R<3> 当对数函数中0<a<1时,对数函数是减函数;当对数函数中的a>1时,对数函数是增函数。

高一数学必修一知识点总结及经典例题分析

高一数学必修一知识点总结及经典例题分析

高一数学必修11.知识点总结一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系 1.‚包含关系—子集注意:B包含A有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A不属于B或B不属于A2.相等‛关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} ‚元素相同则两集合相等‛即:①即任何一个集合是它本身的子集。

②真子集:如果A属于B,且A不属于B那就说集合A是集合B的真子集。

③如果 A属于B, B属于C ,那么 A属于C④如果A属于B 同时 B属于A ,那么A=B3. 不含任何元素的集合叫做空集,记为Φ1.规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

2.特点有n个元素的集合,含有2n个子集,2n-1个真子集2.函数基本知识点总结1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

高一数学必修一知识点总结人教(3篇)

高一数学必修一知识点总结人教(3篇)

高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。

比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。

美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。

数学地思考,是数学学习的更高目标。

数学学习过程中所倡导的思考方式是具有学科特点的。

看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。

这种量化、精确化的思考方式是数学教学最根本的目标价值所在。

高一数学必修一1.1《集合的概念》典型例题分析(人教版)

高一数学必修一1.1《集合的概念》典型例题分析(人教版)

16
4.已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A, 试求实数 a 的值.
[解] ∵-3∈A,∴-3=a-3 或-3=2a-1, 若-3=a-3,则 a=0, 此时集合 A 中含有两个元素-3,-1,符合题意; 若-3=2a-1,则 a=-1, 此时集合 A 中含有两个元素-4,-3,符合题意. 综上所述,a=0 或 a=-1.
解析:0,1,2 ∵3-6 x∈N,∴3-x=1 或 2 或 3 或 6, 即 x=2 或 1 或 0 或-3. 又 x∈N,故 x=0 或 1 或 2. 即集合 A 中的元素为 0,1,2.
集合中元素的特性及应用 1.已知集合 A 含有两个元素 1 和 a2,若 a∈A,求实数 a 的值. [思路点拨] A 中含有元素:1 和 a2 ―a∈―A→ a=1 或 a2=a 求―a―的→值 检验集合中元素的互异性
(3)CBA 中得分前五位的球员;
(4)CBA 中比较高的球员.
解:(1)CBA的所有队伍是确定的,所以可以构成一个集合. (2)“比较著名”没有衡量的标准,对象不确定,所以不能构成一个集合. (3)“得分前五位”是确定的,所以可以构成一个集合. (4)“比较高”没有衡量的标准,对象不确定,所以不能构成一个集合.
2.元素与集合的关系 关系 属于 不属于
语言描述 a 是集合 A 中的元素 a 不是集合 A 中的元素
记法
读法
a∈A
a 属于集合 A
aA
a 不属于集合 A
对元素和集合之间关系的两点说明 (1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素 a 与一个集合 A 而言,只有“a∈A”与“a∉A”这两种结果. (2)∈和∉具有方向性,左边是元素,右边是集合,形如 R∈0 是错误的.

高一数学题及解析和知识点

高一数学题及解析和知识点

高一数学题及解析和知识点高中数学是一门重要的学科,也是学生进一步发展数学思维和解决问题能力的基础。

在高一数学的学习中,不可避免地会遇到各种各样的数学题目。

本文将就几个典型的高一数学题目进行解析,并介绍相关的知识点。

1. 题目:已知函数f(x) = x^2 + 2x + 3,求f(3)的值。

解析:要求f(3)的值,只需将x的值代入函数f(x)中计算即可。

将x = 3代入f(x)得到f(3) = 3^2 + 2×3 + 3 = 9 + 6 + 3 = 18。

所以f(3)的值为18。

知识点:这是一个代入运算的题目,要求在给定函数中将特定数值代入并计算结果。

理解函数的定义和运算规则是解决这类题目的关键。

2. 题目:已知直角三角形ABC,∠C = 90°,AC = 8 cm,BC = 6 cm,求AB的长。

解析:根据直角三角形的定义,我们可以利用勾股定理求解边长。

勾股定理表示:直角三角形斜边的平方等于两个直角边的平方和。

即AB^2 = AC^2 + BC^2 = 8^2 + 6^2 = 64 + 36 = 100。

因此,AB的长为10 cm。

知识点:勾股定理是解决直角三角形问题的基本定理,要熟练掌握及灵活运用。

3. 题目:已知函数f(x) = 2x + 1,g(x) = x^2 + 3x,计算f(g(2))的值。

解析:首先计算g(2)的值,将x = 2代入g(x)得到g(2) = 2^2 + 3×2 = 4 + 6 = 10。

然后将g(2)的值代入函数f(x)中计算f(g(2))的值,即f(10) = 2×10 + 1 = 20 + 1 = 21。

所以f(g(2))的值为21。

知识点:这是一个函数的复合运算题目,通过先求出g(2)再代入f(x)的方式计算f(g(2))的值。

理解函数的复合运算和顺序计算的规则是解决这类题目的关键。

4. 题目:若a + b + c = 15,a^2 + b^2 + c^2 = 85,求ab + ac + bc的值。

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

高一数学知识点大全带例题

高一数学知识点大全带例题

高一数学知识点大全带例题高一是数学学习的重要时期,这一年我们将接触到许多新的数学知识点。

本文将为大家整理高一数学的主要知识点,并附带例题,希望能够帮助大家更好地理解和掌握这些知识。

一、函数与方程1. 函数的定义与性质函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。

函数有定义域、值域和图像等性质。

例如,给定函数 f(x) = x^2 + 1,其中 x 是实数,则它的定义域为全体实数,值域为大于等于 1 的所有实数。

示例题:已知函数 f(x) = 2x + 3,求 f(4) 的值。

2. 一次函数与二次函数一次函数的标准形式为 y = kx + b,其中 k 和 b 是常数。

二次函数的标准形式为 y = ax^2 + bx + c,其中 a、b、c 都是常数。

示例题:已知一次函数 y = 3x - 2 和二次函数 y = x^2 + x + 1,求它们的零点分别是多少?3. 指数函数与对数函数指数函数是以 a 为底的 x 的幂,形如 y = a^x。

对数函数是指数函数的反函数,以 a 为底 x 的对数记作logₐx。

示例题:已知指数函数 y = 2^x,求解方程 2^x = 8。

二、集合与概率1. 集合的基本概念集合是由一些确定的事物组成的整体。

集合的基本运算有交集、并集和补集等。

示例题:设 A = {1, 2, 3},B = {2, 3, 4},求集合 A 和集合 B的交集与并集。

2. 概率与事件概率是事件发生的可能性大小的度量。

事件是指一个特定的结果或一组结果。

示例题:一枚硬币抛掷两次,已知第一次出现正面,求第二次也出现正面的概率。

三、解析几何1. 直线与曲线直线是由无数个点连成的连续图形,用一次函数的方程进行描述。

曲线是由一次以上函数的方程进行描述。

示例题:已知直线的方程为 y = 2x + 1,点 P(1, 3) 在直线上,求点 P 到直线的距离。

2. 平面与空间几何平面是由无数个点连成的连续图形,用二次函数的方程进行描述。

高一上数学必修一第二章《2.2.4 均值不等式及其应用》知识点梳理

高一上数学必修一第二章《2.2.4 均值不等式及其应用》知识点梳理
高一上必修一第二章《等式与不等式》知识点梳理
2.2.4 均值不等式及其应用
【学习目标】 1、学会推导并掌握均值不等式定理. 2、能够简单应用定理求最值. 重点: 对均值不等式的推导、理解及初步应用。 难点: 对均值不等式的理解。
一、新课讲解: (一)相关概念: 1.给定两个正数 a, b,数 a b 称为 a, b 的算术平均数,数 ab 称为 a,b 的几何平均数。
三、归纳总结:
1.算术平均值和几何平均值
2.均值不等式(又称基本不等式)以及均值不等式的几何意义
3.用均值不等式解题的格式要求
3/3
2 证明:教材 P73 页。 (四)深度分析: 【均值不等式】——又称基本不等式 1.基本不等式中的 还可以是零,其实质是:两个正实数的算术平均值不小于它们的几何平均值。 2.均值不等式有什么几何意义呢?
研究: 将均值不等式两边平方得, a b 2 ab ,可以得出:均值不等式的一个几何意义: 2
2 2.多个正数的算术平均值和几何平均值的定义。 (二)学生活动 1: 完成教材 P72“尝试与发现” ,解决下列问题: 1.算术平均数的几何意义?几何平均值的几何意义? 2.它们的大小关系如何呢? (三)均值不等式:
1/3
1.语言表述:两个正数的算术平均值大于或等于它们的几何平均值。 2.数学表达:如果 a,b 都是正数,那么 a b ab ,当且仅当 a = b 时,等号成立。
所有周长一定的矩形中,正方形的面积最大。
二、典型例题: 例 1 已知 x >0,求 y = x+ 1 的最小值,并说明 x 为何值时 y 取得最小值。
x
解:因为 x >0,所以根据均值不等式有 x 1 2 x 1 2 ,其中等号成立当且仅当 x 1 ,

高一数学必修一知识点总结(优秀4篇)

高一数学必修一知识点总结(优秀4篇)

高一数学必修一知识点总结(优秀4篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!高一数学必修一知识点总结(优秀4篇)上学期间,看到知识点,都是先收藏再说吧!知识点就是一些常考的内容,或者考试经常出题的地方。

高一必修一数学知识点例题

高一必修一数学知识点例题

高一必修一数学知识点例题第1节:函数1. 函数的概念函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

数学上常用f(x)表示函数。

例题1:设函数f(x) = 2x - 3,求f(4)的值。

解析:将x = 4代入函数表达式f(x) = 2x - 3中,得到f(4) = 2(4) - 3 = 5。

2. 函数的性质函数具有以下性质:- 定义域:函数的自变量x的取值范围。

- 值域:函数的因变量f(x)的取值范围。

- 奇偶性:当函数满足f(-x) = -f(x)时,称其为奇函数;当函数满足f(-x) = f(x)时,称其为偶函数。

- 单调性:当函数满足f(x1) ≤ f(x2) (x1 < x2),则称其为递增函数;当函数满足f(x1) ≥ f(x2) (x1 < x2),则称其为递减函数。

例题2:判断函数f(x) = x^3 - 2x^2 + x是否是奇函数还是偶函数。

解析:对于函数f(x)来说,有f(-x) = (-x)^3 - 2(-x)^2 + (-x) = -x^3 - 2x^2 - x = -f(x),所以该函数是奇函数。

第2节:二次函数1. 二次函数的特征二次函数是具有形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

二次函数的图像为抛物线。

2. 二次函数图像的性质- 开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 零点:二次函数的零点为方程ax^2 + bx + c = 0的解。

- 极值点:当抛物线开口向上时,函数的极小值点为顶点;当抛物线开口向下时,函数的极大值点为顶点。

例题3:已知二次函数f(x) = x^2 - 2x + 1,求函数的零点和极值点。

解析:首先令f(x) = 0,得到x^2 - 2x + 1 = 0。

通过求解该方程,可以得到函数的零点。

再通过求导函数得到导函数f'(x),令f'(x) = 0,求解方程得到函数的极值点。

人教版高一数学必修一第一章 集合与函数概念知识点+经典例题+巩固练习

人教版高一数学必修一第一章 集合与函数概念知识点+经典例题+巩固练习

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA性 质A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修11.知识点总结一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系 1.‚包含关系—子集注意:B包含A有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A不属于B或B不属于A2.相等‛关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} ‚元素相同则两集合相等‛即:①即任何一个集合是它本身的子集。

②真子集:如果A属于B,且A不属于B那就说集合A是集合B的真子集。

③如果 A属于B, B属于C ,那么 A属于C④如果A属于B 同时 B属于A ,那么A=B3. 不含任何元素的集合叫做空集,记为Φ1.规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

2.特点有n个元素的集合,含有2n个子集,2n-1个真子集2.函数基本知识点总结1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)换元法3.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f(对应关系):A(原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。

4.函数的奇偶性(整体性质)(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x)= 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定5、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);6.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.例题:1.求下列函数的定义域:⑴y =⑵y =2.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ 3.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x = 5.求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈(3)y x =y 6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式 7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

8.设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =()f x 在R 上的解析式为 9.求下列函数的单调区间:⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 10.判断函数13+-=x y 的单调性并证明你的结论.11.设函数2211)(x x x f -+=判断它的奇偶性并且求证:)()1(x f xf -=.3.基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)r a ·sr r a a += ),,0(R s r a ∈>; (2)rs s r a a =)(),,0(R s r a ∈>;(3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x=⇔=log ;○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数对数 (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a(log ·=)N M a log +N a log ;○2 =NMalog M a log -N a log ; ○3 n aM log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论(1)b m nb a n a mlog log =;(2)a b ba log 1log =.(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

相关文档
最新文档