电液比例阀的阀芯微量控制
电液比例控制技术
电液比例方向流量复合阀
是否带 带电反馈的电液比例阀 位移闭 环控制 不带电反馈的电液比例阀
滑阀式 阀芯 结构 锥阀式
类型 插装阀式
4
电液控制技术-电液比例控制技术
电液比例阀
二、电液比例阀的基本类型与组成
电液比例阀通常由E-M(电-机械)转换器、 液压放大器(液压先导阀和功率放大级主阀) 与检测反馈元件三部分组成。
电液控制技术-电液比例控制技术
概述
由于电液伺服器件的制造精度要求很高,价格昂 贵、功率损失(阀压降)较大,特别是对油液污染十 分敏感,系统的使用维护非常苛刻,使伺服技术难以 为更广泛的工业应用所接受。
在此背景下,发展了电液比例控制技术。采用电 液比例控制技术的系统具有价廉、节能、抗油污染能 力强、工作可靠、维护方便、适应大功率控制的特点, 且其响应速度和控制精度也能满足一般工业控制系统 的要求。
磁力对弹簧预压缩,预压缩 控制单元的电控器,构成对动铁位移的
量则决定了溢流压力。
闭环控制,使弹簧得到与输入信号成比
6
例的精确压缩量。
电液控制技术-电液比例控制技术
电液比例阀
三、电液比例压力阀
2、先导式比例溢流阀
1-位移传感器;2-行程控制型比例电磁铁; 3-阀体; 4-弹簧; 5-先导锥阀芯;
6-先导阀座;7-主阀芯;8-节流螺塞; 9-主阀弹簧;10-主阀座(阀套)
流量、位移内反馈和动压反馈及电校正等手段,比例 阀的稳态精度、动态特性和稳定性都有了进一步的提 高;
Ⅳ 推出了电液伺服比例阀;计算机技术与比例元
2
件相结合。
电液控制技术-电液比例控制技术
一、概述
电液比例阀
项目
类别
比例阀
液压比例阀工作原理
液压比例阀工作原理1.电磁比例调节电磁比例阀采用电磁铁驱动的阀芯来控制阀口的开度,从而精确地调节流量、压力和方向。
其工作原理是:当电磁铁受到控制信号激励时,阀芯与阀座间的间隙变小,液压流体通过阀口流过;当电磁铁不受激励时,阀芯回到原位,阀口关闭,液压流体无法通过。
通过改变电磁铁的激励信号,可以实现对阀口开度的调节,从而达到对液压流量和压力的精确控制。
2.电液比例调节电液比例阀利用电液放大器来放大控制信号,并通过驱动柱塞或薄膜来控制阀芯的运动,从而实现对液压流量或压力的调节。
其工作原理是:控制信号经过电液放大器放大后驱动马达或电动薄膜,产生相应的位移。
位移传导给马达或电动薄膜上的传动杆,再传导给阀芯,使阀芯的位置发生变化。
当阀芯位置改变时,阀口的开度也随之改变,从而实现通过调节阀口开度来控制液压流量或压力的目的。
3.机械比例调节机械比例阀通过机械结构来调节阀口的开度,实现对液压流量或压力的调节。
其工作原理是:通过调节阀芯和阀座的间隙来控制阀口的开度,从而调节液压流量或压力。
一般采用螺纹调节或旋转调节的方式,通过旋转手柄或拉动手柄来改变阀口的开度。
机械比例阀调节精度相对较低,一般应用于对精度要求较低的液压系统。
液压比例阀的工作原理主要以下几个方面:1)控制信号:液压比例阀通过接收外部控制信号来调节阀口的开度。
通常采用电信号作为控制信号,控制信号可以是电压、电流、PWM或其他形式。
2)阀芯位置控制:阀芯位置的改变决定了阀口的开度,从而控制了液压流量或压力。
不同类型的液压比例阀采用不同的方式来实现阀芯位置的控制,比如电磁驱动、电液驱动或机械驱动等。
3)阀口开度调节:通过改变阀芯与阀座的间隙来调节阀口的开度。
阀芯和阀座的间隙通常由弹簧或其他力来维持,通过外部力的作用,阀芯相对于阀座的位置发生改变,从而改变阀口的开度。
4)液压流量和压力的调节:液压比例阀通过改变阀口的开度来调节液压系统中的流量和压力,实现对系统的控制。
电液比例阀的工作原理
电液比例阀的工作原理
电液比例阀是一种应用广泛的液压控制元件,它通过电磁铁激励,控制液压系统中的流量和压力,从而实现对液压系统的精确控制。
电液比例阀的工作原理主要涉及到以下几个方面。
一、电磁铁的工作原理
电液比例阀中的电磁铁是控制流量和压力的关键部件,它的工作原理是基于电磁感应现象。
当电流通过电磁铁线圈时,会在铁芯内部产生磁场,这个磁场会将铁芯吸引,从而使得阀芯移动,改变液压系统中的流量和压力。
二、比例阀的结构原理
电液比例阀的结构非常复杂,一般由电磁铁、阀芯、阀座、弹簧等部件组成。
其中,电磁铁通过激励阀芯移动,从而控制液压系统中的流量和压力。
阀芯和阀座之间的间隙会决定液体通过的通道大小,从而实现对系统流量的控制;弹簧的作用则是使阀芯回到原位,避免液压系统出现过度压力。
三、电液比例阀的控制方式
电液比例阀的控制方式有两种,分别是电流控制和电压控制。
电流控制是通过改变电磁铁线圈中的电流大小来控制阀芯的移动,从而
改变液压系统中的流量和压力;电压控制则是通过改变电磁铁线圈的电压大小来控制阀芯的移动,从而达到类似的效果。
四、电液比例阀的优缺点
电液比例阀具有精度高、灵敏度好、响应速度快、可靠性强等优点,可以广泛应用于机械制造、航空航天、冶金、地质勘探等领域。
但是,电液比例阀的价格比较昂贵,维护和调试难度也较大。
电液比例阀的工作原理是基于电磁感应现象,通过改变电磁铁线圈中的电流或电压大小来控制阀芯的移动,从而实现对液压系统的精确控制。
电液比例阀具有优点明显,但也存在一些缺点,需要根据具体应用场景进行选择。
电液比例阀的设计与实验研究
电液比例阀的设计与实验研究
一、引言
随着液压系统技术的发展,电液比例阀的应用越来越广泛,它在高精
度液压系统中起到重要的作用。
电液比例阀是一种能够实现电控制的液压阀,它在自动化操作中可以实现高精度的控制,从而提高了自动化系统的
整体性能。
本文将介绍电液比例阀的设计和实验研究,总结电液比例阀的
应用特点,以及电液比例阀的优缺点。
二、电液比例阀的设计原理
电液比例阀是一种智能控制的液压阀,它的设计基本上与其他液压阀
一样,它也分为阀内部和阀外部两大部分。
电液比例阀的阀内部包括阀体、活塞、活塞杆、活塞杆定位器和活塞密封垫等零件,这些部件组成了电液
比例阀的核心部分;阀外部则由连接管路、电控装置、指示仪表等组成。
电液比例阀的工作原理是:利用电控装置将控制信号转换为有效的液压信号,通过操作活塞控制液压介质的流量大小和方向,实现液压设备的控制
操作。
一般来说,电液比例阀的阀芯结构有金属丝活塞阀、活塞杆阀、隔膜
阀和回路阀等常见类型。
电液阀的工作原理
电液阀的工作原理
电液阀是一种将电信号转换为液压能量的装置,通过控制电流的大小和方向来调节液压油的流动方向和流量。
其工作原理如下:
1. 电磁激励:电液阀的核心部分是电磁铁和阀芯组成的电磁激励系统。
当电液阀通电时,电流流过电磁铁产生磁场,吸引或推动阀芯运动。
2. 阀芯控制:阀芯是电液阀中运动的关键部件,可以通过与电磁铁相连的杆件进行上下运动。
阀芯的运动方向和距离由电磁铁的激磁情况控制。
3. 流体控制:阀芯的位置改变了液压阀内部的油路,使得液压油可以通过特定的通道流动,从而实现液压系统中的不同功能,如流量控制、压力控制、方向控制等。
4. 反馈系统:电液阀中通常会设置有反馈装置,可以监测阀芯的位置,并将其反馈给控制系统。
通过反馈信号的不断调节,可以实现电液阀的自动控制和调节。
总结起来,电液阀的工作原理是通过电磁激励控制阀芯的位置,进而改变液压油的流动通道,实现液压系统中的不同功能。
这种工作方式能够实现精密控制和自动化调节,广泛应用于工业、农业、航空、船舶等领域。
电液比例控制阀概述
电液比例控制阀概述电液比例控制阀(Electric-Hydraulic Proportional Valve)是一种用电信号控制液压流量的装置。
它由一个电磁阀和一个液压阀组成,通过精确控制电流信号来调节液压流量,实现对液压系统的精确控制。
电液比例控制阀主要包括两个部分:电磁阀和液压阀。
电磁阀负责接收控制信号,并将电信号转换为机械运动,控制液压阀的打开和关闭。
液压阀负责调节液压系统的流量和压力,并将其转化为机械力或工作输出。
这两个部分通过连接杆、阀芯、弹簧等机械结构相互配合,形成一个控制系统。
电液比例控制阀的工作原理是基于电液转换技术。
当输入一个电信号时,电磁阀内的线圈产生磁场,使得铁芯被吸引或推动。
吸引或推动铁芯时,通过连接杆的作用,将液压阀的阀芯推动到不同的位置。
阀芯的不同位置决定了溢流口的大小,从而控制了液压系统中的流量。
当电信号的大小发生变化时,液压阀的阀芯位置也会改变,进而改变液压系统的流量和压力。
电液比例控制阀具有多种优点。
首先,由于采用了电信号控制,其控制精度高,可以实现非常精确的流量和压力控制。
其次,由于采用了电信号输入,可以实现远程和自动控制,减少了人工操作的繁琐和工艺参数的调整。
此外,电液比例控制阀响应速度快,动态性能好,适用于对速度和位置等变量要求较高的系统。
另外,电液比例控制阀在工程实践中有着广泛的应用。
它可以用于工业生产中的自动化设备、大型机械工程、航空航天、船舶、冶金、石油、矿山等领域。
例如,在塑料注射成型机上,电液比例控制阀可以控制液压缸的流量,实现对注射过程的精确控制,从而保证产品的质量和稳定性。
在液压机械中,电液比例控制阀可以实现对液压缸运动的精确控制,提高工作效率和产品质量。
在航空航天领域,电液比例控制阀可以用于飞机起落架的液压系统,实现对起落架的顺畅升降。
需要注意的是,电液比例控制阀的使用需要遵循一定的操作规范和维护保养要求。
首先,操作人员需要了解并熟悉控制系统的工作原理和操作规程,正确使用和调整电液比例控制阀。
电液比例控制阀结构及原理
电液比例控制阀结构及原理电液比例控制阀(Electro-hydraulic proportional control valve)是一种通过电信号控制液压工作机构运动的装置。
它将电信号转化为液压信号,通过控制液压系统的液压阀门来调节油液的流量和压力,从而达到对液压系统运动进行精确控制的目的。
首先是电磁比例阀部分,它是通过电磁线圈的磁性效应控制液压阀门的开启和关闭。
电磁比例阀由铁芯、阀芯、阀阀座和电磁线圈等组成。
电磁线圈环绕在铁芯上,在线圈中通电产生磁场时,铁芯会被磁化,吸引阀芯与阀座之间的间隙关闭。
电磁线圈通电后,油液进入阀芯的控制腔,从而控制阀芯的位置和开口大小,进而控制液压油的流量和压力。
当电磁线圈断电时,铁芯失去磁性,阀芯与阀座之间的间隙打开,油液再次流动。
其次是液压比例执行机构部分,它是通过液压油的力学性能将电信号转化为液压信号,并通过调节活塞的位移或液压系统的压力来控制液压工作机构。
液压比例执行机构由油缸、活塞和杆等组成。
当电磁线圈通电时,液压油从阀芯的控制腔进入液压比例执行机构的缸腔,使活塞移动,从而实现对液压工作机构的控制。
当电磁线圈断电时,液压油从液压比例执行机构的缸腔排出,活塞回到初始位置。
整个电液比例控制阀工作的原理是将电信号转化成了液压信号,通过控制液压系统的流量和压力,来精确控制液压工作机构的运动。
通常情况下,电液比例控制阀通过调节电磁比例阀的阀芯位置来控制油液的流量,通过调节液压比例执行机构的液压力来控制油液的压力。
通过不同的电信号输入可以实现对液压工作机构的精确控制,达到所需的运动参数。
先导式电液比例溢流阀工作原理
先导式电液比例溢流阀工作原理
先导式电液比例溢流阀是一种常用的液压控制阀,它可以实现对流量或压力的连续无级调节。
该阀由主阀芯、先导阀芯和电液换向阀组成。
工作原理如下:
1. 静止状态
在静止状态下,电液换向阀处于中位,先导阀芯和主阀芯均处于关闭状态,液压油无法通过,阀口处于闭锁状态。
2. 开启阀门
当向电液换向阀施加电流信号时,它会将先导阀芯打开一个小缝隙。
由于先导阀芯上游和下游的压力差,液压油会从先导阀芯的缝隙中流过,产生一个控制压力作用于主阀芯的控制室。
3. 主阀芯开启
主阀芯受到控制压力的作用而开启,液压油从主阀芯的开口流过,实现了对流量或压力的调节。
主阀芯的开启程度取决于电流信号的大小,即控制压力的大小。
4. 反馈调节
在主阀芯开启后,它的位移会通过反馈系统反馈到先导阀芯,使得先导阀芯的开口度自动调节,从而保持控制压力恒定,使主阀芯保持在设定的开度。
先导式电液比例溢流阀的优点是响应快、调节精确、可实现无级调节。
它广泛应用于工业自动化、航空航天、船舶等领域,用于精确控制液压系统的流量或压力。
电液比例的原理及应用论文
电液比例的原理及应用1. 引言电液比例技术是指利用电信号控制液压执行元件的工作,通过调整电压来改变液压工作室的工作效果,从而实现对液压系统的精确控制。
这种技术由于其高精度、快速响应和可编程性等特点,在各个领域有着广泛的应用。
本文将介绍电液比例技术的基本原理,以及它在工业自动化、机械运动控制和航空航天等领域的应用。
2. 电液比例的基本原理电液比例技术是通过电液比例阀来实现的。
电液比例阀是一种特殊的液压调节阀,它可以根据输入的电压信号来调节液压元件的工作状态。
具体来说,电液比例阀通过改变液压油的流通面积来实现液压元件的运动控制。
在电液比例阀中,通过一个电磁线圈来控制阀芯的位置,从而改变内部通道的开启和关闭程度,进而改变液压油的流通量。
3. 电液比例在工业自动化中的应用电液比例技术在工业自动化领域有着广泛的应用。
它可以用于控制各种液压元件,如液压缸、液压马达等,实现对工业设备的精确控制。
同时,电液比例技术还可以配合传感器和自动控制系统,实现对工业过程参数的实时监测和自动调节。
这种技术不仅提高了生产效率,还提高了产品质量。
在工业自动化中,电液比例技术可以应用于以下方面: - 机床自动控制:通过电液比例技术可以实现机床的自动控制,提高加工精度和生产效率。
- 输送线控制:电液比例技术可以应用于输送线的自动控制,实现对物料的精确输送。
- 机械臂控制:电液比例技术可以用于机械臂的控制,实现对工件的精确抓取和放置。
- 液压振动控制:电液比例技术可以应用于液压振动控制系统,实现对振动频率和振幅的精确控制。
4. 电液比例在机械运动控制中的应用电液比例技术在机械运动控制领域也有着广泛的应用。
在机械运动控制中,通过电液比例技术可以实现对机械传动系统的精确控制,提高机械运动的精度和稳定性。
同时,电液比例技术还可以实现对机械运动过程中的速度、位置和力的控制。
在机械运动控制中,电液比例技术可以应用于以下方面:- 机械传动系统控制:通过电液比例技术可以实现机械传动系统的精确控制,提高运动的精度和平稳性。
电液比例阀
电液比例阀现代工业的不断发展对液压阀在自动化、精度、响应速度方面提出了愈来愈高的要求,传统的开关型或定值控制型液压阀已不能满足要求,电液伺服阀因此而发展起来,其具有控制灵活、精度高、快速性好等优点。
而电液比例阀是在电液伺服技术的基础上,对伺服阀进行简化而发展起来的。
电液比例阀与伺服阀相比虽在性能方面还有一定差距, 但其抗污染能力强,结构简单,形式多样,制造和维护成本都比伺服阀低,因此在液压设备的液压控制系统应用越来越广泛。
今天,一个国家的电液比例技术发展程度将从一个侧面反映该国的液压工业技术水平,因此各发达国家都非常重视发展电液比例技术。
我国在电液比例技术方面,目前已有几十种品种、规格的产品,年生产规模不断扩大,但总的看,我国电液比例技术与国际水平比有较大差距,主要表现在:缺乏主导系列产品,现有产品型号规格杂乱,品种规格不全,并缺乏足够的工业性试验研究,性能水平较低,质量不稳定,可靠性较差,以及存在二次配套件的问题等,都有碍于该项技术进一步地扩大应用,急待尽快提高。
1电液比例阀概述电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。
阀芯位移也可以以机械、液压或电的形式进行反馈。
由于电液比例阀具有形式种类多样、容易组成使用电气及计算机控制的各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,因此应用领域日益拓宽。
近年研发生产的插装式比例阀和比例多路阀充分考虑到工程机械的使用特点,具有先导控制、负载传感和压力补偿等功能。
它的出现对移动式液压机械整体技术水平的提升具有重要意义。
特别是在电控先导操作、无线遥控和有线遥控操作等方面展现了其良好的应用前景。
2电液比例阀的特点与分类比例阀把电的快速性、灵活性等优点与液压传动力量大的优点结合起来,能连续地、按比例地控制液压系统中执行元件运动的力、速度和方向,简化了系统,减少了元件的使用量,并能防止压力或速度变换时的冲击现象。
电液比例控制系统
比例方向控制阀
直动型比例方向控制阀
先导型比例方向控制阀
电液比例换向阀主要发展趋势
⟡ 高精度、高可靠性
电液比例控制技术通常采用电反馈方案提高阀的控制精度。微电子和传感器技术飞速发 展以及机电液一体化集成元器件的不断涌现, 使得高精度和高可靠性仍然是电液比例换向 阀的主要发展方向。
Ⅲ
电液比例控制系统的分类
Ⅳ
电液比例控制系统发展趋势
电液比例控制系统的发展
1967年瑞士Beringer公司开始生产KL 比例复合阀,70年代初日本油研公司 申请压力和流量两项比例阀专利,标 志着比例技术的诞生时期。
70年代后期比例变量泵 和比例执行器相继岀现 ,为大功率系统的节能
奠定了技术基础。
近年来比例阀出现了复合化趋势, 极大地提高了比例阀(电反馈)的 工作频宽。在基础阀的基础上,发
都有了进一步的提高,
电液比例控制系统的组成
◈ 指令元件 ◈ 比较元件 ◈ 比例放大器 ◈ 电机转换器 ◈ 液压放大器 ◈ 液压执行元件 ◈ 检测元件
一 组成
◈ 指令元件。系统的控制信号的产生与输入元件,是信号发生装置或过程控制器。 ◈ 比较元件。把输入信号与反馈信号做比较, 得到偏差信号作为控制器的输入量。比较元
1-位移传感器;2-行程控制型比例电磁铁;3-阀体;4-弹簧;5-锥阀芯; 6-阀座;7-主阀芯;8-节流螺塞;9-主阀弹簧;10-主阀座(阀套)
其恒压能力用于直动式溢流阀,由于其 是二级阀,反应比如直动式溢流阀灵敏
电液比例流量控制阀
比阀;2-比例节流阀;3-单向阀
⟡ 高压小型化
第六章电液比例阀及比例控制回路(2015)详解
电梯举例 – 比例系统
如果采用比例阀来替代电磁换向阀和流量控制阀,那么,电梯速度不仅可由电信号调 节,而且还可以控制电梯的启停。
电梯举例 – 比例系统
比例阀可以非常缓慢地开启,以使电梯平滑加速至最大速度。
电梯举例 – 比例系统
同样,通过将阀芯缓慢移动至中位,也可以控制减加速度。
运动控制
因此,比例阀通常能够完成下列几方面的全运动控制:
电磁换向阀的响应时间
0.025
S
由于复位弹簧力比电磁力低,所以,电磁换
向阀的断电响应时间稍微长一些(一般约为 25ms)。
比例阀的响应时间
S
不过,比例阀阀芯的运动 速度可由输入给比例电磁 铁的电信号确定。通过渐 增或渐降(称之为斜坡) 电信号,可以获得几秒钟 的通电和断电响应时间。
比例阀的响应时间
中位死区
3-10 7/21
25 0.5 ~ 2
1~3 0.5 20 ~ 200 0.05 ~ 5
无
1~3 0.5 1 ~ 30 10 ~ 24
有
25 0.25 ~ 0.5
25 0.25 ~ 0.5
4~7 ±1 1~5 10 ~ 30
有
有
比例控制系统发展
第二次世界大战期间,由于以飞机、火炮等军事装备为对象的控制系统 ,要求快速响应、高精度等高性能指标,在这个背景下迅速发展了电液 伺服控制。
图6-1 电液比例开环控制系统方框图
图6-2 电液比例闭环控制系统方框图
目前,最常用的分类方式是按被控对象(量或参数)来进行分 类。则电液比例控制系统可以分为:
比例流量控制系统 比例压力控制系统 比例流量压力控制系统 比例速度控制系统 比例位置控制系统 比例力控制系统 比例同步控制系统
电液比例阀
3.2.1直动式比例溢流阀直动式比例溢流阀的工作原理及结构见图3-2,。
这是一种带位置电反馈的双弹簧结构的直动式溢流阀。
它于手调式直动溢流阀的功能完全一样。
其主要区别是用比例电磁铁取代了手动弹簧力调节组件。
如图3-2a所示,它主要包括阀体6,带位置传感器1、比例电磁铁2、阀座7、阀芯5及调压弹簧4等主要零件。
当电信号输入时,电磁铁产生相应的电磁力,通过弹簧座3加在调压弹簧4和阀芯上,并对弹簧预压缩。
此预压缩量决定了溢流压力。
而压缩量正比输入电信号,所以溢流压力也正比于输入电信号,实现对压力的比例控制。
弹簧座德实际位置由差动变压器式位移传感器1检测,实际值被反馈到输入端与输入值进行比较,当出现误差就由电控制器产生信号加以纠正。
由图3-2b所示的结构框图可见,利用这种原理,可排除电磁铁摩擦的影响,从而较少迟滞和提高重复精度等因素会影响调压精度。
显然这是一种属于间接检测的反馈方式。
ab图3-2 带位置电反馈的直动式溢流阀a)工作原理及结构b)结构框图1—位移传感器2—比例电磁铁3—弹簧座4—调压弹簧5—阀芯6—阀体7—阀座8—调零螺钉普通溢流阀可以靠不同刚度的调压弹簧来改变压力等级,而比例溢流阀却不能。
由于比例电磁铁的推力是一定的,所以不同的等级要靠改变阀座的孔径来获得。
这就使得不同压力等级时,其允许的最大溢流量也不相同。
根据压力等级不同,最大过流量为2~10L/min。
阀的最大设定压力就是阀的额定工作压力,而设定最低压力与溢流量有关。
这种直动式的溢流阀除在小流量场合下单独作用,作为调节元件外,更多的是作为先导式溢流阀或减压阀的先导阀用。
另外,位于阀底部德调节螺钉8,可在一定范围内,调节溢流阀的工作零位。
3.2.2先导式比例溢流阀1.结构及工作原理图3-3所示为一种先导式比例溢流阀的结构图。
它的上部位先导级6,是一个直动式比例溢流阀。
下部为主阀级11,中部带有一个手调限压阀10,用于防止系统过载。
当比例电磁铁9通有输入信号电流时,它施加一个直接作用在先导阀芯8上。
采煤机电液比例控制调高系统浅析
关键词:采煤机电液比例阀磁致位移传感器油缸引言采煤机的截割过程中,滚筒高度自动调整是实现综采工作面自动化截割的重要组成部分。
目前大部分能够实现滚筒位置自动调整的采煤机均是国外进口的高端设备,国内厂家生产的中低端采煤机均采用人工调整的方式进行调高。
在能见度低、噪声大等环境因素的影响下,采煤机操作人员无法准确判断煤岩界面,而且即使判断准确,电磁阀控制的滚筒调高油缸也存在控制精度低、超调量大的缺点,导致采煤机采煤效率低,还有可能造成瓦斯突出等恶性事故,因此急需研发一种控制精度高、自动化程度高的滚筒调高技术。
电液比例控制技术是一种集机电液为一体的控制技术,其流量和流速与控制信号成比例,用于液压伺服系统中具有独特的优势[1-3]。
本文基于电液比例控制技术,研究了油缸位置测量技术和电液比例控制技术,对采煤机滚筒调高系统具有重要意义。
1电液比例调高系统传统的采煤机调高机构采用电磁换向阀与定量泵控制,电磁换向阀只有开启和关闭两种状态,在滚筒调高控制中能够实现的精度和稳定性不足,在综采工作面上经常出现滚筒调节过高或过低的情况,滚筒调节过高则会导致截齿截割顶板岩石,对截割电机和截齿造成很大的冲击,滚筒调节过低则会导致采煤厚度不足,影响采煤效率。
如图1所示为电液比例调高系统的原理图,采煤机控制器向调高系统发出一个控制信号,位于执行油缸伸缩活塞上的位置传感器将滚筒的位置信息采集并发送回控制器,在控制器内将滚筒高度实际位置与控制信号的给定位置做差,得到误差信号,误差信号经过PID控制器数据处理,生成直接控制电液比例方向阀的控制信号,发送给比例换向阀,电液比例方向阀根据控制信号的正负和数值大小,能够改变流经比例方向阀的液压油方向和流量,电机上电后带动泵,液压油从油箱内被吸出,经过滤器过滤后依次进入泵、比例换向阀、液压闭锁机构后,进入执行油缸内,推动油缸活塞做功,带动摇臂进行动作。
2磁致位移传感器2.1工作原理油缸内安装的位移传感器类型为磁致型,如下页图2所示为磁致位移传感器的原理图。
电液比例方向控制阀
Fs xV K fs
(2)
K fs —稳态液动力弹簧刚度。 式中 Fs —稳态液动力变化量; X V —阀芯位移偏差; 式(2)表明,当稳态液动力增大,阀口会关小,这是液动力超过比例电磁铁驱 动力的结果。 这种单级阀只能在流量不大、压力较小且流量控制精度要求不高的场合使用, 阀芯的位移和阀的功率域分别受到比例电磁铁的有效行程及电磁力的限制。
电液比例方向控制阀
1.电液比例方向控制阀概述
2.举例介绍单级电液比例方向阀
3.比例方向阀的特性分析和选用方法
1.电液比例方向控制阀概述
在电液比例方向控制阀中,与输入电信号成比例的输出量是阀芯的位移 或输出流量,并且该输出量随着输入信号的正负变化而改变运动方向。因 此,电液比例方向控制阀本质上是一个方向流量控制阀。 比例方向阀有以下几种方法: 1)根据阀内是否包含有内部反馈闭环,比例方向阀可以分为带内部反馈闭 环和不带内部反馈闭环两种类型。其中带内部反馈闭环的比例方向阀又有 位移—点反馈、位移—力反馈和直接位置反馈等形式,且以位移—电反馈 型居多。 2)根据对流量的控制方式,可分为节流控制型与流量控制型比例方向阀。 节流控制型比例方向阀与比例节流阀都是控制功率级阀芯的轴向位移 (对应阀口开度),输出流量受负载压力和供油压力变化的影响;流量控 制型比例方向阀与比例流量阀一样,可由节流控制型比例方向阀与定差减 压阀或定差异流量阀组成压差补偿型或压力适应型比例方向流量阀,或由 流量检测反馈装置构成带内部反馈闭环的流量控制型比例方向阀,其受控 流量由输入信号决定,与供油压力或负载压力的变化无关。 3)根据阀芯的结构的形式,比例方向阀可分为滑阀式(滑阀结构)和插装 式(锥阀结构)。 4)按照阀内液压功率放大的级数,比例方向阀可以分为单级阀、二级阀、 三级阀。
电液比例阀的工作原理
电液比例阀的工作原理电液比例阀是一种常用的控制元件,它可以将电信号转换为液压信号,从而实现对液压系统的精确控制。
本文将从电液比例阀的工作原理、结构组成、应用领域等方面进行详细介绍。
电液比例阀的工作原理是利用电磁铁的磁场作用,控制阀芯的运动,从而调节液压系统的流量和压力。
具体来说,电液比例阀由电磁铁、阀芯、弹簧、阀体等组成。
当电磁铁通电时,产生磁场,使阀芯受到磁力作用,向开口方向移动,从而改变阀口的大小,调节液压系统的流量和压力。
当电磁铁断电时,弹簧的作用下,阀芯回到原位,阀口关闭,液压系统停止工作。
二、电液比例阀的结构组成电液比例阀的结构组成主要包括电磁铁、阀芯、弹簧、阀体等部分。
其中,电磁铁是电液比例阀的核心部件,它通过电流控制阀芯的运动,从而实现对液压系统的精确控制。
阀芯是电液比例阀的关键部件,它的运动状态直接影响液压系统的流量和压力。
弹簧是电液比例阀的辅助部件,它的作用是使阀芯回到原位,保证液压系统的正常工作。
阀体是电液比例阀的外壳部分,它起到固定和保护阀芯等内部部件的作用。
三、电液比例阀的应用领域电液比例阀广泛应用于各种液压系统中,如机床、冶金、船舶、航空、军工等领域。
具体来说,电液比例阀可以用于控制液压缸的速度、位置和力量,实现对机械运动的精确控制。
此外,电液比例阀还可以用于控制液压泵的流量和压力,保证液压系统的稳定性和安全性。
在现代工业生产中,电液比例阀已成为不可或缺的重要控制元件。
电液比例阀是一种重要的液压控制元件,它通过电磁铁的磁场作用,控制阀芯的运动,从而实现对液压系统的精确控制。
电液比例阀具有结构简单、控制精度高、响应速度快等优点,广泛应用于各种液压系统中,为现代工业生产提供了重要的技术支持。
电液比例控制阀
第三章电液比例控制阀3.1 概述电液比例控制阀由于能与电子控制装置组合在一起,可以十分方便的对各种输入、输出信号进行运算和处理,实现复杂的控制功能。
同时它又具有抗污染、低成本以及响应较快的优点,在液压控制工程中获得越来越广泛的应用。
比例控制元件的种类繁多,性能各异,有多种不同的分类方法。
最常见的分类方法是按其控制功能来分类,可以分为比例压力控制阀、比例流量控制阀、比例方向阀和比例复合阀。
前两者为单参数控制阀,后两者为多参数控制阀。
按压力放大级的级数来分,又可以分为直动式和先导式。
直动式是由电—机械转换元件直接推动液压功率级,由于转换元件的限制,它的控制流量都在15L/min以下。
先导控制式比例阀由一直动式比例阀与能输出较大功率的主阀级构成,流量可达到500L/min,插装式更可以达到1600L/min。
按比例控制阀的内含的级间反馈参数或反馈物理量的形式可以分为带反馈或不带反馈型。
反馈型又可以分为流量反馈、位移反馈和力反馈。
比例阀按其主阀芯的型式来分,又可以分为滑阀式和插装式。
图3-1 闭环的电液比例控制系统及比例阀框图上图所示框图为一个闭环比例系统框图,红色方框内为电液比例阀的组成部分。
从图中可以看出比例阀在系统中所处的地位以及与电控器、液压执行其之间的关系。
从电液比例阀的原理框图中可以看出,它主要有以下几部分组成:1)电—机械转换元件;2)液压先导级;3)液压功率放大级;4)检测反馈元件。
3.2比例压力控制阀比例压力控制阀应用最多的有比例溢流阀和比例减压阀,有直动型和先导两种。
3.2.1 直动型比例溢流阀直动型比例溢流阀结构及工作原理如图3-2所示。
它是双弹簧结构的直动型溢流阀,与手调式直动型溢流阀功能完全相同。
其主要区别是用比例电磁铁取代了手动的弹簧力调节组件。
图3-2 直动式比例溢流阀1.比例电磁铁;2.弹簧;3.阀芯;4.阀座;5.调零螺塞;6.阀体图3-3 带位置反馈的直动溢流阀1. 位移传感器;2. 传感器插头;3.放气螺钉;4.比例电磁铁;5.线圈插头;6. 弹簧座;7.调压弹簧;8.防振弹簧;9.锥阀芯;10.阀体;11.阀座;12.调节螺塞它包括力控制型比例电磁铁4以及由阀体10、阀座11、锥阀芯9、弹簧7等组成的液压阀本体。
电液比例阀及比例控制回路
(1) 电—机械转换元件
电磁铁是一种依靠电磁系统产生的电磁吸力,使衔铁对外做功的一种电 动装置。其基本特性可表示为衔铁在运动中所受到的电磁力 Fm 与它的 行程x之间的关系,即Fm =f(x) 。这个关系称为吸力特性。对比例电磁 铁,要求它具有水平的吸力特性。(吸合区不能用采用限位片隔离)
力
时间
力控制
在机器工作循环末段,对 许多过程来说,压力下降 速率也是非常关键的。
力
时间
力控制
因此,采用比例阀可以实 现运动和力控制,且在有 些场合,同一种比例阀既 可用于运动控制,也可用 于力控制。这通常涉及到 “PQ”控制,如控制压力 (P)和流量(Q) 。
此外,所有这些控制功能 都可通过将电信号输入到 比例阀上来实现,而比例 阀具有与机器控制器相连 接的简单接口。
比例压力控制
在一台机器中,若使用比 例方向阀和比例压力阀, 则表明这台机器的液压功 能(运动和作用力)可由 电信号控制。
电磁换向阀的响应时间
比例阀的最大优势就在于其电控能力, 即通过电信号可无级控制其阀芯运动速 度。
电磁换向阀的响应时间
0.015
S
根据电磁换向阀的通径大小和电源电压,其 通电响应时间约为15ms。
距离
位置
减速度
速度
加速度
时间
力控制
比例阀也可以通过控制施加 于执行元件中的压力来控制 执行元件的输出力(例如在 压机或注塑机中)。
力
时间
力控制
在这种情况下,不仅需要控 制执行元件的最大压力,而 且还需控制施加或消除压力 的速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
! "#$$% &$’()$% *’ (+, "-.%% /.’0, $1 (+, 2%$3 /.(, $1 4%,5()$6789).:%*5 ;)$#$)(*$’.% <.%=,
>$’0 ?*.’06@*’0, A.’0 B,69$’0, C$: D$
(哈尔滨理工大学, 黑龙江 哈尔滨 EFGGHG)
图!
响应曲线图
有较好地跟踪基准输入, 而当使用了观测器进行补偿 后, 液压马达角位移响应也有了较大的改善。然而, 马 达的转动可较为理想地跟踪阀芯的运动, 但相对十分 小的流量, 马达的转动也相应的受到影响, 所以, 尽管 流量比较小,得到阀芯精确位移对此项实验结果是非 常重要的。 !"# 实验结论 $%& 数字式扰动观测器应用到普通液压比例阀阀 芯微动控制实验, 其实验结论如下: 但欠稳定, 特 ! 阀芯的位移输出特性得到改善,
[E P M] 阀 。
文献标识码: (NGGM) D 文章编号: EGGG6MHFH GK6GGOE6GK 变化和运动部件摩擦力的扰动观测器, 并且利用扰动 观测器来改善原有比例阀的输出特性。 " 比例阀基础方程式 实验采用的比例阀基本结构示意图如图 N 所示。 组成的部件主要由比例阀阀芯, 控制线圈, 用于检测阀 芯位移的 Q<BA (差动变压器) 和平衡弹簧组成。
别是当输入信号非常微小的时候位移特别明显; " 系统扰动可以被检测和推定; 系统的名义值和固有值, 对 # 通过研究和分析, 阀芯位移的影响可以被消除; 为开发实用型 $ $%& 扰动观测器的应用实验, 状态观测控制器有很高的参考价值。 $%&
参考文献: [’] () *+,-./, 01 23) 4 ,5663 7681963 /8 1+0 ,.233 928:0 6; 1+0 ;36< [ @] 9210 6; 2 +=>92-3/7 5965691/6823 ?23?0 ) 第五届流体传动与 控制国际会议文集 ) 北京: 万国学术出版社, ABB’ ) ’C—AA )
本文读者也读过(10条) 1. 许杏文.邱仰伟 电液比例阀的优化控制[期刊论文]-机床与液压2001(3) 2. 吴文军 比例阀和伺服阀的污染故障及对策[期刊论文]-液压气动与密封2004(5) 3. 薛阳.彭光正.范萌.伍清河 气动位置伺服系统的带α因子的非对称模糊PID控制[期刊论文]-北京理工大学学报 2003,23(1) 4. 胡勇.方庆琯.Hu Yong.Fang Qingguan 基于力平衡原理的比例阀主阀流量特性研究[期刊论文]-流体传动与控制 2011(3) 5. 吴水康.符寒光 比例阀控液压缸的制动分析[期刊论文]-液压气动与密封2001(6) 6. 刘亚欣.陈立国.孙立宁.荣伟彬.LIU Yaxin.CHEN Liguo.SUN Lining.RONG Weibin 高粘性液体试剂的自动化微量分配 系统[期刊论文]-机械工程学报2009,45(2) 7. 秦昶 移液管用简易吸器的制作[期刊论文]-生物学通报2004,39(10) 8. 李忠培.孙立.郭文静 应用光电比色法校准微量移液器[期刊论文]-医疗装备2001,14(1) 9. 肖世耀 比例阀的维修方法[期刊论文]-工程机械与维修2010(2) 10. 吕云嵩.LV Yun-song 液压自由活塞发动机的惯性负载与热效率研究[期刊论文]-南京理工大学学报(自然科学版) 2007,31(6)
NGGM 年第 K 期
液压与气动
OE
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
电液比例阀的阀芯微量控制
由于自身结构品质特性, 可动部件的摩擦特性和 控制线圈的滞环特性等, 都是造成比例阀芯不能获得 精确微量位移的主要因素。为了比较直观了解比例阀 的缺陷, 在一个位置控制伺服机构上采用差动变压器 来测量标准比例阀的阀芯的位移, 其比例阀的阀芯位 移实验输出特性曲线如图 E 所示。图中 ! ),1 为基准参 考输入正弦波形标准信号, ! 为输出阀芯位移信号。 从图中很清晰看到 ! 没有获得较好的跟踪微小参考 输入 ! ),1。
收稿日期: NGGK6EG6NO 作者简介: 孔祥冰 ( ERFM—) , 男, 哈尔滨市人, 讲师, 硕士, 主要从事流体控制方面的科研和教学工作。
图!
比例阀的阀芯位移曲线
为了提高阀芯位移控制精确度和抗干扰能力, 在 本文所使用标准比例阀的基础上, 开发能够推测负载 万方数据
>-
液压与气动
下式
-<<. 年第 , 期
ABB! 年第 # 期
液压与气动
G#
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "!!!!!!!!!!!!!!!!!!!!!!!!!
佛山市三景工业器材贸易公司
地址: 佛山市松风路 !# 号松风大厦 CB# 室 电话: BDED F CA’#’BG’、 CA’#’BGB 传真: BDED F CA’#’BGB 广 ’B 广 ’B 广 ’’ 广 ’’ 广 ’A 广 ’A 广 ’# 广 ’# 广 ’! 广 ’! 广 ’E 广 ’E 佛山门市部: 佛山市工业大道液压市场 @ 座 A’ 铺 电话: BDED F CACAEEGB HI.2/3: ;,,28J/8:K ’G# ) 801 广 ’G 广 ’G 广 ’D 广 ’D 广 ’C 广 ’C 广 ’L 广 ’L 邮编: EACBBB 网址: <<<) ;,,28J/8: ) 76. 广 AB 广 AB
( ") ( ")/ % /0# ! * ! !"1 2.# 扰动观测器的名义值相当于系统的固定值, 如果 (5) 中非常小, 则 * )!"完全可以被补偿。 ! 在式
图! 实验装置示意图
其中 ! !"为控制线圈电流、 吸力转换系数, ! #" 为阀芯位 移、 吸力转换系数, " $ 为阀芯的质量, ! % 为阀芯位移、 %&’( 转换系数, # $ 为排量系数, $ ) 为扰动, !$ 为平衡 弹簧刚度系数, ! * 为 % & ’ 放大器的增益, " 为拉普拉 斯演算符 () + ) ( ) 。 根据图 , 和式 ( $) 进行分析, 输出 ) ( ") 受到扰动 瞬间变化的影响有直接关系, 并且直接影响比例 *( ) ") 阀的输出稳定性。 ! 扰动观测器的设计 # .6$ 中的 ! #" 是一个难于确定的参数, 其系 由于式 ($) 统的扰动 * )!" ( ") 定义为: ( ")+ * ) , ! #" ( ") * )!" (-)
图# 重构系统的传递方框图
实验结果及结论 实验装置
本文实验所使用的控制器 7,8’9: 是进口的。控 制主板含有 $ 个 ’93 ( (;9,-<7,$) 和 - 个 = + ’、 ’+= 转 换器。两个输入和 ’93 电路加到图 , 所示的系统实验 装 置 中。 另 外,由 信 号 发 生 器,’93 主 控 制 器 (9&$$->5) 和阀芯位移检测分析器 ( ??() , 由这些仪器 构成了所有的实验装置。 .6实验结果 图 5@ 是阀芯位移响应实验曲线图。输入参考值 是一个三角波形, 频率为 $6< AB, 阀芯位移得到微小位 移量为 <6<< C 5 DD, 其相当于制造厂家已给定极限值 的 <65E 。在这个状态下 (条件) 响应曲线在没有使用 观测器的情况下, 反应出来的真正输出曲线, 没有获得 完全的三角波形, 然而, 使用观测器后得到了完整的三 角波形。 图 5F 是相当幅值基准 <65E 时的频率响应曲线。 降低观测器时间常数 ! 的数值, 就能获得了良好的输 出特性。 图 5G 是当输入 ) /0# 矩形波形时, 阀芯位移输出响 应曲线。在没有使用观测器进行补偿时, 阀芯没有较 好地跟踪基准输入。而当使用了观测器进行补偿后, 阀芯位移响应有了较大的改善。 图 5) 是当输入 ) /0# 矩形波形时, 液压马达角位移 的输出响应曲线。在没有使用观测器时,液压马达没
摘
要: 提出了既能有效地发挥普通电液比例阀在制造成本低, 抗污染能力强优点, 又能适应现代控制
技术, 提高普通电液比例阀控制精确度的扰动数字观测器补偿处理方法。为实现该方法, 利用扰动数字观测 器来推定负载和惯性变化的扰动量, 重构状态反馈闭环控制系统, 通过调制和补偿, 能够把普通电液比例阀 阀芯的位移量控制精确到产品标准值的 GIFJ 范围内 (相当于 F ! 。 - 的位移等级) 关键词: 电液比例阀; 阀芯位移; 扰动; 数字观测器; B"; 中图分类号: A7EKLIF ! 引言 电液比列阀是一种性能介于普通液压控制阀和电 液伺服阀之间的新阀种, 它既可以根据输入电信号大 小连续地成比例对液压系统的参量 (压力, 流量及方 向) 实现远距离控制, 计算机控制, 又在制造成本, 抗污 染等方面优于电液伺服阀, 因此, 广泛用于控制性能低 于电液伺服阀, 要求不是很高的一般工业部门。在实 际应用中, 经常采用改进的比例阀来替代电液 伺 服