midas标准满堂支架计算书
MIDAS连续梁计算书
目录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规范 (1)第2章桥跨总体布置及结构尺寸拟定 (2)2.1尺寸拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截面形式 (2)2.1.3 梁高 (3)2.1.4 细部尺寸 (4)2.15 主要材料及材料性能 (6)2.2模型建立与分析 (7)2.2.1 计算模型 (8)第3章荷载内力计算 (9)3.1荷载工况及荷载组合 (9)3.2作用效应计算 (10)3.2.1 永久作用计算 (10)3.3作用效应组合 (16)第4章预应力钢束的估算与布置 (20)4.1力筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应力钢束的估算 (24)4.2预应力钢束的布置(具体布置图见图纸) (27)第5章预应力损失及有效应力的计算 (29)5.1预应力损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝土的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应力的计算 (32)第6章次内力的计算 (33)6.1徐变次内力的计算 (33)6.2预加力引起的次内力 (33)第7章内力组合 (35)7.1承载能力极限状态下的效应组合 (35)7.2正常使用极限状态下的效应组合 (37)第8章主梁截面验算 (41)8.1正截面抗弯承载力验算 (41)8.2持久状况正常使用极限状态应力验算 (44)8.2.1 正截面抗裂验算(法向拉应力) (44)8.2.2 斜截面抗裂验算(主拉应力) (46)8.2.3混凝土最大压应力验算 (49)8.2.4 预应力钢筋中的拉应力验算 (50)8.3挠度的验算 (51)小结 (53)第1章设计原始资料1.1 设计概况设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。
施工方式采用满堂支架现浇,采用变截面连续箱梁。
满堂支架计算书
满堂支架总体施工方案本工程有现浇梁13联,取代表性3种不同梁高、桥跨进行设计和验算。
B=25.5m、标准跨径(30m+30m+30m)等高斜腹板预应力混凝土连续梁、B=25.5m、标准跨径(30m+45m+45m+30m)变高度斜腹板连续梁、B=25.5m、(35+50+35)m变高度斜腹板连续梁分别进行验算。
采用碗扣式满堂支架施工,支架搭设完成后对其预压,预压用砂袋按箱梁荷载(一期恒载+施工荷载)的1.2倍预压,在预压过程中,消除非弹性变形与基础沉降后即可卸除荷载,调整支撑。
一、B=25.5m、标准跨径(30m+30m+30m)等高斜腹板预应力混凝土连续梁箱体外模一次性立模成型,底模和内模采用1.5cm厚竹胶板,底模纵桥向采用10cm×10cm方木,间距22.5cm,方木下面横桥向为10cm×15cm方木,与支架一起组成现浇梁支撑体系。
侧模采用1.5cm 厚竹胶板和定型钢模板混合使用。
碗口支架作为支撑。
二、构架搭设主线桥工程现浇梁一共13联,以(30m+30m+30m)、(30 m +45 m +45 m +30 m)为标准联,因此验算(30m+30m+30m)、(30 m +45 m +45 m +30 m)为例进行分析。
箱梁模板支架采用碗扣式满堂支架,支架立杆长度分为2.4m、1.2m、0.9m、0.6m、0.3m几种,用以调整不同的高度,步距 1.2m。
支架立杆上下端分别安装可调式顶托和底座。
其单根最大荷载为30KN。
箱梁端(中)横梁纵向3m范围内腹板处按0.6m×0.6m间距布置立杆,跨中纵向24.3m范围内和腹板处按照0.6m ×0.6、0.6m×0.9m m间距布置立杆,翼缘板部分按0.9m×0.9m间距布置立杆。
支架上荷载计算及说明部分参照:《建筑施工碗口式钢管脚手架安全技术规范》JGJ166-2016、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011、《建筑施工模板安全技术规范》JGJ162-2008。
midas支架计算说明
模型计算简要说明
1.模型参数选取
模板支架高度为4.7m,立杆横距为0.6m,纵距为0.9m,立杆竖向步距为1.2m,顶板模板支撑小梁采用10×10cm方木,间距20cm;主梁采用48*3.5钢管支撑,模板采用1.5cm竹胶板。
支架宽度范围为12m,高4.7m,为简化计算,纵向取9m分析。
本模型为考虑剪刀撑,属于偏安全验算。
计算荷载钢筋混凝土容重为26KN/m3,厚度为1m,考虑各种不利因素及结构安全系数,放大系数取1.4。
施加均布荷载: q=26×1×1.4=36.4 KN/m2
计算模型
模型荷载添加立面图
2、模型计算结果如下
(1)支架底部反力
从计算结果可以看出,最小反力为5.1KN,最大反力为19.8KN。
(2)支架应力
中间一排支架应力
应力计算结果
从应力云图上可以看出,支架最大压应力为44Mpa,拉应力仅为5.2 Mpa,小于钢管支架的容许压应力205 Mpa。
满堂支架方案计算书
目录1 工程概况...................................................................................................... -2 -工程概述 (2)槽型梁构造 (2)2 计算依据...................................................................................................... -3 -3 主要材料参数及截面特性 ......................................................................... - 3 -4 荷载计算...................................................................................................... - 3 -5 模板计算...................................................................................................... -6 -侧模面板计算 (6)底模面板计算 (7)侧模横肋计算 (7)底模横肋计算 (8)侧模支撑框架 (9)拉杆计算 (11)6 支架计算.................................................................................................... - 12 -立杆计算 (12)立杆力学特性计算 ............................................................................... - 12 -立杆实际承受的最大轴力 ................................................................... - 12 -立杆强度计算........................................................................................ - 12 -整体稳定性验算 ................................................................................... - 13 -立杆局部稳定性................................................................................. - 14 -顶托和底座强度验算. (15)地基承载力计算 (15)1 工程概况1.1 工程概述1.2 槽型梁构造32m预应力槽型梁跨中梁高3.2m,支点梁高3.7m,上翼缘板为1.2m,梁顶宽度8.96m,梁底宽8.16m;道板床顶面设2%双面人字坡,板厚0.5-1.0m;跨中腹板厚度0.5m,支点截面加厚至0.8m。
满堂支架法施工受力计算书
满堂支架法施工受力计算书一、支架材料(1)第一层木楞:宽100mm,长100mm抗弯强度:13N/mm^2,抗剪强度:1.3N/mm^2,弹性模量:10000N/mm^2(2)第二层木楞:宽150mm,长150mm抗弯强度:13N/mm^2,抗剪强度:1.3N/mm^2,弹性模量:10000N/mm^2(3)48mm×3.2mm 钢管:惯性矩 I=11.36cm^4,截面模量 W=4.732cm^3,截面积 A=4.504cm^2,回转半径 i=1.588cm,钢管自重: 3.54kg/m Q235钢抗拉、抗压和抗弯强度设计值: f=215N/mm^2,弹性模量:E=2.06×10^5N/mm^2。
二、计算荷载1、箱梁混凝土容重26KN/m3。
2、模板自重:外模重量523.6KN,内模重量539.1KN,底模重量267.8KN。
3、施工荷载按2KN/㎡计算。
4、混凝土振捣荷载按2KN/㎡计算。
5、恒载分项系数1.2,活载分项系数1.4。
三、受力计算(一)跨中截面1、计算假设支架横断面构造图如下所示由于箱梁横向不均匀分布,根据箱梁横断面的形状,为了使支架受力比较合理,对称中线的一半横向分为中间部分(宽3.6米)、腹板部分(宽1.8米)和翼板部分(宽2.4米),各部分的宽度内均按照均匀荷载进行假设。
2、第一层木楞检算由于箱梁横向为对称结构,为简化计算可取一半进行木楞计算。
第一层木楞长度为4m,下部支撑为间距0.6m的第二层木楞,故木楞的受力可以简化为受均布荷载作用的多跨连续梁模型计算,计算简图如下。
图中荷载计算如下 箱梁自重荷载:q1=1.2*1.04*0.3*26/2.4=4.06KN/m ;(①部分面积1.04m2) q2=1.2*2.37*0.3*26/1.8=12.32 KN/m ;(②部分面积2.37 m2) q3=1.2*(0.504+0.5688)*0.3*26/1.8=5.4 KN/m ;(③部分面积0.504m2、0.5688 m2)模板自重荷载:侧模:qm1=1.2*523.6/2/32.6/2.4*0.3=1.2KN/m;内模+底模:qm2=1.2*(267.8+539.1)/32.6/5.5*0.3=1.62KN/m; 活荷载:qh=1.4*(2+2)*0.3=1.68 KN/m;由以上计算模型可得,木楞所受最大弯矩 为M Max =0.52KN ·m ,最大剪力为Q Max =5KN 。
midas标准满堂支架计算书
1编制依据⑴“XX桥”相关施工图纸;⑵《公路桥涵施工技术规范》(JTG/ F50-2011);⑶《钢结构设计规范》(GB50017-2003);⑷《木结构设计规范》(GB50005-2003);⑸《建筑施工模板安全技术规范》(JGJ162-2008);⑹《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011);⑺《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008);⑻《路桥施工计算手册》(人民交通出版社2001.5);⑼《Midas Civil 2012 有限元分析软件》;⑽《建筑地基基础设计规范》(GB 50007-2011)。
2工程概况项目工程概况现浇梁概况(文字+梁截面构造图)3支架布置形式支架正面、侧面、平面布置图。
翼板下横向设置100mm×100mm的方木,轴间距600mm;纵向设置150×150mm的方木,轴间距600mm;碗扣式支架横向间距600mm,纵向间距900mm,横杆水平步距1200mm。
底腹板下横向设置100mm×100mm的方木,轴间距400mm;纵向设置150×150mm的方木,腹板区间距600mm,顶底板区间距900mm;碗扣式支架纵向间距900mm,腹板区横向间距600mm,顶底板区横向间距900mm,横杆水平步距1200mm。
基础采用60cm厚C20素混凝土+30cm厚37灰土换填压实。
所有模板均为15mm厚优质竹胶板。
满堂支架其余布置,如天杆、扫地杆、水平剪刀撑、竖向剪刀撑等参考《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)。
4设计参数及材料强度4.1 设计参数表4.1-1 材料设计参数表4.2 材料设计强度表4.2-1 钢材设计强度值(N/mm2)5荷载取值及荷载组合5.1荷载类型①模板、背带自重②新浇筑混凝土自重(取26kN/m3)③施工人员、材料及机具等施工荷载(2.5kPa)④倾倒混凝土产生的冲击荷载(2kPa)⑤振捣混凝土产生的荷载(2kPa)⑥新浇筑混凝土对侧面模板的压力标准值混凝土侧压力按下列两公式计算,并取其中的较小者:F = 0.22γc t0β1β2V(5.1-1)F = γc H (5.1-2)式中:F──新浇筑混凝土对模板的最大侧压力(kPa);h──为有效压头高度(m);υ──混凝土的浇筑速度(m/h),可按实测确定(暂定为2m/h);t0──新浇混凝土的初凝时间(h),可按实测确定(暂定为6小时),当缺乏试验资料时,可采用t0=200/(T+15)计算;T──混凝土的温度(℃);γc──混凝土的容重(kN/m3);β1──外加剂影响修正系数,不掺外加剂时取1.0,掺缓凝作用的2.8外加剂时取1.2;β2──混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
满堂支架计算书
一、工程概况某大桥现浇箱梁为单室结构,梁顶宽为10m,腹板宽为4.89m,梁高为1.8m。
箱梁每跨30m,三跨为一联,采用现浇法施工。
箱梁每跨混凝土为203m3,标准断面面积为6.21m2, 变截面面积为8.05m2。
二、满堂支架的设计和计算参数1、支架主要材料和性能参数施工时采用满堂式碗扣支架,碗扣支架的钢管为3号钢,规格为φ48mm ×3.5mm,其性能见下表1和表2:表1 钢管截面特性表2 钢材的强度设计值与弹性模量2、支架设计布置(1)支架顺桥向立杆间距布置为5×0.6m+25×0.9m+5×0.6m=28.5m。
(2)支架横桥向立杆间距布置为3×0.9m+2×0.6m+3×0.9m+2×0.6m+3×0.9m=10.5m。
(3)水平杆步距为1.20m。
具体布置见满堂式支架设计图。
三、荷载计算1、箱梁荷载:箱梁钢筋砼自重:G=203m3×25KN/m3=5075KN偏安全考虑,取安全系数r=1.2,假设梁体全部重量仅作用于底板区域,计算单位面积压力:F1=G×r÷S=5075KN×1.2÷(5.1m×30m)=39.8KN/m2注:5.1m为横桥向底板范围内两立杆间最大距离。
2、施工荷载:取F2=1.0KN/m23、振捣混凝土产生荷载:取F3=2.0KN/m24、箱梁芯模:取F4=1.5KN/m25、竹胶板:取F5=0.1KN/m26、方木:取F6=7.5KN/m3四、底模强度计算箱梁底模采用高强度竹胶板,板厚t=15mm,竹胶板方木背肋间距为250mm,所以验算模板强度采用宽b=250mm平面竹胶板。
计算断面见下图。
1、模板力学性能(1)弹性模量E=0.1×105MPa。
bh=25×1.53/12=7.03cm4(2)截面惯性矩:I=312bh=25×1.52/6=9.375cm3(3)截面抵抗矩:W=26(4)截面积:A=bh=25×1.5=37.5cm 2 2、模板受力计算(方木布置见下图)(1)底模板均布荷载:F= F1+F2+F3+F4=39.8+1+2.0+1.5=44.3KN/m 2 q=F×b=44.3×0.25=11.08KN/m(2)跨中最大弯矩:M=28ql =11.08×0.252/8=0.087 KN•m(3)弯拉应力:σ=M W =360.087109.37510-⨯⨯=9.28MPa <[σ]=11MPa 竹胶板板弯拉应力满足要求。
满堂支架计算书(调整)
满堂支架 (碗扣式支架) 及模板计算书支撑架的计算依据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。
一、综合说明由于其中模板支撑架高在6~8.5米范围内,按8.5米高计算,为确保施工安全,编制本专项施工方案。
设计范围:现浇梁高按1.5m设计,采用18mm厚竹胶板组拼。
二、搭设方案(一)基本搭设参数模板支架高H为8.5m,立杆步距h(上下水平杆轴线间的距离)取1.2m,立杆纵距l a 取0.9m,横距lb取0.9m。
立杆伸出顶层横向水平杆中心线至模板支撑点的自由长度a取0.1m。
模板底部的水平分配梁采用2[10槽钢,竖向内楞采用10cm×10cm方木,间距拟定300mm。
(二)材料及荷载取值说明本支撑架使用Φ48 ×3.5钢管,钢管上严禁打孔;采用的扣件,不得发生破坏。
模板支架承受的荷载包括模板及支架自重、新浇混凝土自重、钢筋自重,以及施工人员及设备荷载、振捣混凝土时产生的荷载等。
三、板模板支架的强度、刚度及稳定性验算荷载首先作用在板底模板上,按照“底模→底模方木→分配梁→可调托座→立杆→基础”的传力顺序,分别进行强度、刚度和稳定性验算。
其中,取与底模方木平行的方向为纵向。
(一)板底模板的强度和刚度验算(1)荷载计算,按单位宽度折算为线荷载,相关参数如下。
混凝土自重(γc)为26KN/m3,强度等级C50,坍落度为15 3cm,采用汽车泵泵输送入模,浇筑速度为1 m/h,用插入式振捣器振捣。
模板(竹胶板,厚度18mm)力学性能f w=13.5 N/mm2 (抗弯),f v=2.1 N/mm2 (抗剪),f c=10 N/mm2 (抗拉)W= bh2/6 =1000×182/6 = 5.4×104mm2 (截面最大抵抗矩)/每米宽I= bh3/12 =1000×183/12 = 4.86×105mm4 (截面惯性矩)E=8000N/mm2 (弹性模量)[w]=L/400=0.75mm10cm×10cm方木截面特征为:I=bh3/12=1004/12 mm4W=bh2/6=1003/6 mm3E=9000 N/mm2;φ48×3.5钢管材料力学特性:A=489 mm2 f =205 N/mm2I=12.19×104 mm4 W=5.08×103mm2XE=2.06×105 N/mm22 [10槽钢组合截面材料力学特性:A=2549 mm2 f =205 N/mm2=7.932×104mm3I=3.966×106 mm4 WXE=1.96×105 N/mm2模板按三跨连续梁计算,如图所示:=0.3×1 =0.3kN/m;模板自重标准值:x1=1.5×26×1 =39kN/m;新浇混凝土自重标准值:x2=2.5×1 =2.5kN/m;施工人员及设备活荷载标准值:x3振捣混凝土时产生的荷载标准值:x=2×1=2kN/m。
满堂支架计算书
满堂支架计算书支架搭设完成后,在现浇预应力砼箱梁施工前,对支架进行相当于箱梁自重的1.1倍荷载预压,以检验支架的承载能力,减少和消除支架体系的非弹性变形及地基的沉降。
预压材料采用相应重量的砂袋,并按箱梁结构形式合理布置砂袋数量,待消除支架非弹性变形量及压缩稳定后,测出弹性变形值,即完成支架预压施工。
撤除压重砂袋后,如需设置支架施工预留拱度,调整支架底模高程,并开始箱梁施工。
本标段现浇梁施工准备全幅全跨满堂式支架和模板(包括底模和侧模),全幅砼施工一次性浇注完成。
根据施工方案,进行支架施工预拱度设置,具体考虑如下:1、支架材料选用和质量要求(1)、本工程支架为现浇预应力砼连续箱梁承重用,选用钢管满堂式支架,现浇砼箱梁外侧腹板采用定型整体钢模,底模板采用15mm 的竹胶板。
(2)、钢管支架杆件规格为Φ48*3.5mm,为厂家生产定型产品,有出厂合格证,杆件的连接采用扣件铰接,禁止使用质量不合格产品,钢管顶端安装可自动调解的承托。
(3)、所选用的钢管及扣件,应按现有国家标准《钢管脚手架扣件》的规定选用。
2、支架承重情况(1)根据以往的施工经验和参考地基承载参数,取支架下基座沉降值为5mm,(2)钢管支架为目前使用较多的支架形式,其压缩及挠度值(弹性变形)依经验取10mm。
(3)非弹性变形主要表现在底模木方上,因木方及木楔间接触面少,其变形值较小,可通过经验推算,以标准跨计算,取其非弹性变形为10mm。
(4)在预压施工结束后,应调整支架上部顶托,使模板安装位置符合设计。
3、预拱度设置:(1)现浇预应力砼箱梁支架预拱度理论计算与设置序号项目计算及取值备注1支架卸载后由上部构造自重及活载一半产生的竖向挠度F1不计2 支架在荷载作用下的弹性压缩F2=10 通过计算纵梁挠度和立柱压缩值得出3支架在荷载作用下的非弹性压缩变形F3=10主要据底模垫情况4支架基底在荷载作用下的非弹性沉降F4=3地基受力情况计算5 预拱度F=F1+F2+F3+F46 预拱度值设计F x=4F*x*(L-x)/按二次抛物线法L2分配(2)现浇预应力砼箱梁支架预压后预拱度设计序号项目计算及取值备注1支架卸载后由上部构造自重及活载一半产生的竖向挠度f1不计2 支架在荷载作用下的弹性压缩f2压重卸载后底模测量值与压重时测量值之差3支架在荷载作用下的非弹性压缩变形f3压重卸载后支架高程测量与压重前测量值之差,扣除基底沉降值4支架基底在荷载作用下的非弹性沉降f4基座预压前后高差5 预拱度f=f1+f2+f3+f46 预拱度值设置f x=4f*x*(L-x)/L2按二次抛物线法分配(二)、钢管满堂式支架布置形式与验算1、支架材料选用和质量要求(1)、本工程支架为现浇预应力砼连续箱梁承重用,选用满堂式扣件式钢管支架,现浇砼箱梁外侧腹板采用定型整体钢模,底模板采用竹胶板。
(完整版)Midas计算实例
中南大学2010年1月1。
概要 (1)2. 设置操作环境 (2)3. 定义材料和截面 (3)4. 建立结构模型 (7)5。
非预应力钢筋输入 (10)6。
输入荷载 (30)7. 定义施工阶段 (42)8。
输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)1. 概要本桥为80+2*112+2*81+41六跨混凝土预应力连续梁桥。
图1。
分析模型桥梁概况及一般截面桥梁形式:六跨混凝土悬臂梁桥梁长度:L = 80+112+112+80+80+41m施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑1000天收缩徐变.预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1。
5e—006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数:程序计算混凝土收缩变形率: 程序计算2。
MIDAS检算现浇梁支架计算书3-1.1-整体模型
目录1 计算依据 (1)2 工程概况 (1)3 施工方案综述 (2)4 现浇支架计算 (2)4.1 支架设计 (2)4.2 设计参数及材料强度 (3)4.2.1 设计参数 (3)4.2.2 材料设计强度 (4)4.3 荷载分析 (4)4.3.1 荷载类型 (4)4.3.2 荷载组合 (4)4.3.3 箱梁混凝土自重 (5)4.3.4 模板自重 (6)4.3.5 分配梁12.6工字钢自重 (6)4.3.6 单片贝雷梁荷载统计 (6)4.4 建立模型计算分析 (6)4.4.1 模型单元 (6)4.4.2 边界条件 (7)4.4.3 模型荷载 (7)4.4.4 支架体系计算模型 (7)4.4.5 计算结果 (7)5 结论 (11)32.6m简支箱梁现浇支架计算书1 计算依据(1)连续梁相关施工图(2)《钢结构设计规范》GB50017-2003(3)《建筑结构荷载规范》(GB50009-2012)(4)《桥梁临时结构设计》中国铁道出版社(5)《路桥施工计算手册》人民交通出版社(6)《装配式公路钢桥多用途使用手册》(7)Midas设计手册2 工程概况32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。
箱梁正视图、断面图分别如图2.1.1所示。
图2.1.1 简支箱梁正视图图2.1.2 简支箱梁断面图3 施工方案综述简支梁现浇施工工序为施工准备→支架搭设→支架预压→调整模板→绑扎钢筋→安装内模→浇筑混凝土→养护→支架拆除,具体施工流程简图3.1.1所示。
施工准备测量放样支架搭设安装底模及外模支座安装支架预压沉降观测调整模板安装、绑扎钢筋安装内模测量中线及标高检查合格浇筑混凝土及预应力养护支架拆除图3.1.1 简支梁现浇流程图4 现浇支架计算4.1 支架设计现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。
基于midas满堂支架验算报告
目录1 工程概况 .................. 错误!未定义书签。
2 参考资料 .................. 错误!未定义书签。
3 数值模型 .................. 错误!未定义书签。
3.1 模型介绍 .......... 错误!未定义书签。
3.2 荷载及材料参数错误!未定义书签。
3.3 支架受力分析... 错误!未定义书签。
4 分析结果统计 .......... 错误!未定义书签。
5 稳定性验算结果 ...... 错误!未定义书签。
5.1 支架整体稳定性验算错误!未定义书签。
5.2 支架局部稳定性验算:错误!未定义书签。
6 支架基础及地基承载力验算错误!未定义书签。
7 结论与建议 .............. 错误!未定义书签。
1 工程概况某双线特大桥全长1037.95米,于DK45+516.35-DK45+655段跨越绛溪河,20#、21#墩主跨与绛溪河斜交,斜交角度36°,连续梁形式为1-(68+120+68)m连续箱梁,主跨设计长度120m。
0#块梁体为单箱单室、斜腹板、变高度、变截面结构,采用满堂支架现浇施工。
满堂式支架采用碗扣式支架作为现浇连续箱梁的支撑体系。
钢管支架主要由立杆、横杆、剪刀撑和斜撑等组成。
支架搭设形式本现浇段碗扣杆件采用二种组合形式进行纵横向搭设,分别为, 30cm×30cm, 60cm×60cm。
现浇段腹板(7m宽)垂直下方采用采用30cm(纵向)×30cm(横向)、底板、翼缘板及工作平台(4.65m宽)采用60cm(纵向)×60cm (横向),纵向长度14.4m。
横杆步距为60cm。
考虑到支架的整体稳定性,在纵向、横向每3m 设通长剪刀撑1道,并于箱梁腹板外侧设斜撑。
地基处理:对现场20(21)#墩跨下横向16.5米,深0.6米地基进行换填,清除因桥梁下部构造施工造成的软泥。
用砂夹卵石分层填筑;填筑按照客运专线路基填筑方法施工,压实则根据实际情况,先用压路机碾压,压路机不能碾压到位的则利用打夯机具压实,保证填筑的压实度≥90%;同时表层采用10cm厚C25混凝土进行硬化处理。
连续梁满堂支架计算书
一、计算依据及参考资料1、《铁路桥梁钢结构设计规范》(TB10002.2-99)2、《公路桥涵施工技术规范》JTJ041-20003、《钢结构设计规范》GB50017-20034、《建筑施工碗扣式脚手架安全技术》JGJ 166-20085、铁四院设计图纸6、《客运专线铁路桥涵工程施工技术指南》TZ213-2005二、碗扣支架计算为了保障安全,计算采用MIDAS/Civil 软件建立整体模型计算和手工复核的方法。
1、荷载钢筋砼容重取26kN/m3;钢模板重量:双线32.7米单孔两侧模重80t ,底模8.5t ,内模为11t,共重100t ,则每延米按30.6kN/m ;方木容重为7.5kN/m³;施工荷载为2kN/㎡;倾倒砼产生的荷载为2kN/㎡,倾倒混凝土对侧模冲击产生的水平荷载取6.0kPa ;振捣砼产生的荷载取4kN/㎡。
2、碗扣支架钢管手工计算计算方法采用容许应力法,但考虑恒载的荷载系数为1.2,活载的分项系数为1.4。
(1)支架钢管轴向受力计算碗扣支架钢管断面为Φ48×3.5mm,其自由长度为m l 2.10=。
根据受压稳定原理进行承载力计算。
单根钢管回转半径:mm A I i 8.154414822=+==长细比:76/0==i l λ查表得:744.0=φ[][][]kN A P 51)4148(744.022=-⨯⨯==σπφσ即单根立杆在步距为1.2m 的条件下,最大允许承载力为51kN 。
实际计算容许的立杆轴向力采用30kN 。
因箱梁腹板处重量最大,碗扣支架立杆纵向间距60cm ,腹板下横向间距30cm ,水平步距120cm 。
按最不利的受力方式计算:单根立杆承受的重量为60cm×30cm 面积上的砼、模板、方木、施工荷载和振捣荷载以及自身的重量,其大小分别为:箱梁混凝土重:kN q 6.123.06.07.2261=⨯⨯⨯=底模模板重量:kN q 94.036.01/7.32/852=⨯=方木重量:kN q 7.1625.025.06.05.73=⨯⨯⨯⨯=施工荷载及振捣荷载:kN q 16.236.0)42(4=⨯+=作用在箱梁下方单根钢管上的总荷载:KN P KN P 30][3.214.116.22.1)7.194.06.12(==⨯+⨯++=<(2)碗扣支架顶部方木的受力计算碗扣支架顶部的方木大小为15 cm×15 cm ,顺桥向放置,间距与支架立杆间距相同即0.6m,查《桥梁计算手册》得。
midas现浇段满堂支架建模示例超全
满堂支架计算模拟(仅作算例使用)模型简化本例所模拟满堂支架是由钢管、木枋等截面组成。
最终模型如图1单元类型:本例模板应用板单元模拟,混凝土垫层应用8节点实体单元模拟,其他构件均采用梁单元来模拟。
荷载分布:主要荷载类型有:自重荷载(系数-1),腹板荷载,底板荷载,翼缘板荷载,可变荷载,均使用压力荷载来模拟。
图1 最终模型图边界条件:支架混凝土下部采用一般支撑模拟,限制节点空间6个自由度(Dx,Dy,Dz,Rx,Ry,Rz)模拟固定端,立杆横撑两端释放梁段铰约束模拟铰接,立杆顶部节点与与木枋之间的连接应用较大刚度的只受压弹性连接(刚度106kN/m),另外施加(Dx,Dy)的水平约束以及(Rx,Ry,Rz)的转动约束,以防止运算产生奇异,顶面板单元各节点和下层木枋节点之间用弹性连接中的一般连接模拟(刚度都取106kN/m)。
模型建立l设定操作环境1. 首先建立新项目(新项目),以‘满堂支架计算.mcb’为名保存(保存)。
文件/文件 / 保存2. 单位体系1)在新项目选择工具>单位体系2)长度选择‘m’, 力(质量) 选择‘kN’3)点击l定义材料使用Civil数据库中内含的材料来定义材料。
1)点击模型,材料和载面特性2)点击材料(图2)3)点击4)确认一般的材料号为‘1’(参考图3)5)在类型栏中选择‘钢材’6)在钢材的规范栏中选择‘GB03(S)’7)在数据库中选择‘Q235’8)点击图2 图3使用同样的方法建立混凝土材料和木枋材料,相应的材料属性如下图4、图5所示图4 混凝土材料属性图5 木枋属性l定义截面1)模型 / 材料和截面特性 / 截面/添加2)数据库/用户3)截面形状>管形截面4)选定用户5)截面名称>钢管偏心>中心点适用,并用同样的方法建立其他截面形式(图6、图7)。
图6 钢管截面图7 木枋截面l输入节点和单元1)鼠标右键选择节点>建立节点,坐标(0,0,0)2)鼠标右键选择节点>复制和移动>框选刚建立的节点1,方向为z向,间距(0.3,11@1.2,0.3)截面窗口如下图8所示图8 复制节点13)鼠标右键选择单元>建立(选择刚建立的最下到最上部节点建立单元)单元设置窗口如下图9所示。
迈达斯支架模板计算书模板
目录1概述 (1)1.1设计依据 (1)1.2工程概况 (1)1.3支架布置 (1)1.4材料参数 (2)1.5变形控制 (3)2荷载计算 (3)2.1自重荷载 (3)2.2风荷载 (3)2.3其他荷载 (3)2.4荷载工况 (3)2.5荷载组合 (3)3结构计算 (5)3.1边界条件 (5)3.2 主要荷载加载 (6)4结论 (13)1概述1.1设计依据(3)《钢结构设计规范》(GB50017-2003)(4)《钢结构工程施工质量验收规范》(GB 50205‐2001)(5)《钢结构焊接规范》(GB50661-2011)(6)《建筑结构荷载规范》(GB 50009-2012)(7)《钢结构设计标准》GB 50017-2017;(8)《建筑结构可靠性设计统一标准》GB50068-2018;(9)《钢结构焊接规范》(GB50661-2011)(10)《砼结构设计规范》(GB50010-2010)(11)建筑结构静力计算实用手册(第二版)(中国建筑工业出版社/2014)(12)《装配式公路钢桥多用途使用手册》(人民交通出版社/2004)1.2工程概况三江互通收费站—收费大棚工程均采用钢筋混凝土框架结构;筑结构的安全等级:二级。
建筑抗震设防类别:丙类。
框架抗震等级:三级(大于18米跨的框架抗震等级为二级);建筑物耐火等级:二级。
耐火极限:柱2.5h,梁1.5h,楼板1.0h。
1.3支架布置设计支架立柱基础采用混凝土条形基础,预埋锚固钢筋或钢板;支架结构自下而上依次采用直径530mm*10mm钢管立柱,立柱之间采用20a槽钢剪刀撑增强稳定性;立柱顶满焊2I 36a分配梁,分配梁上设置双层321型贝雷梁,贝雷梁上部主梁采用10#槽钢间距45cm,次梁布设10#槽钢间距25cm。
图1.3-1支架平面图图1.3-1支架纵断面图图1.3-2 支架横断面图1.4材料参数各材料参数见下表表1.4-1 支架材料参数表主要受力构件<L/400。