欧几里得空间精品PPT课件

合集下载

大学数学(高数微积分)第九章欧几里得空间第七节(课堂讲义)PPT课件

大学数学(高数微积分)第九章欧几里得空间第七节(课堂讲义)PPT课件

一条直线)上所有点的距离以垂线最短.
下面可以证
明一个固定向量和一个子空间中各向量的距离也是
以“垂线最短” .
先设一个子空间 W,它是由向量 1, 2, …, k
所生成,即 W = L(1, 2, …, k) .
说一个向量 垂
直于子空间 W,就是指向量 垂直于 W 中任何一
个向量. 容易验证 垂直于 W 的充分必要条件是
我们想找出 y 对 x 的一个近似公式.
解 把表中数值画出图来看,发现它的变化
趋势近于一条直线.
因此我们决定选取 x 的一次式
ax + b 来表达 .
当然最好能选到适当的 a , b 使得
下面的等式
3.6a + b - 1.00 = 0 , 3.7a + b - 0.9 = 0 ,
9
3.8a + b - 0.9 = 0 , 3.9a + b - 0.81 = 0 , 4.0a + b - 0.60 = 0 , 4.1a + b - 0.56 = 0 , 4.2a + b - 0.35 = 0
都成立. 实际上是不可能的.
任何 a , b 代入上面
各式都会发生些误差.
于是想找 a , b 使得上面各
式的误差的平方和最小,即找 a , b 使
10
(3.6a + b - 1.00 )2 + (3.7a + b - 0.9 )2 + (3.8a + b - 0.9 )2 + (3.9a + b - 0.81 )2 + (4.0a + b - 0.60 )2 + (4.1a + b - 0.56 )2 + (4.2a + b - 0.35 )2 最小. 这里讨论的是误差的平方即二乘方,故称为 最小二乘法. 现在转向一般的最小二乘法问题.

欧几里德空间知识点总结PPT共26页

欧几里德空间知识点总结PPT共26页
谢谢!
ห้องสมุดไป่ตู้
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
欧几里德空间知识点总结
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

高等数学(高教版)第九章欧几里得空间第六节课件

高等数学(高教版)第九章欧几里得空间第六节课件
第六节
实对称矩阵的标准形
主要内容
问题的提出 正交矩阵的求法
实对称矩阵的性质
主要结论
举例
正交的线性替换
一、问题的提出
在第五章我们得到,任意一个对称矩阵都合同
于一个对角矩阵,
使
换句话说,都有一个可逆矩阵 C
CTAC
成对角形. 在这一节,我们将利用欧氏空间的理论
把第五章中关于实对称矩阵的结果进行加强,这就 是这一节要解决的主要问题:
下的矩阵就是 A .
(2)
引理 2
设 A 是实对称矩阵,A 的定义如上
则对任意的 , Rn , 有 (A , ) = ( , A ) , 或 (3)
T ( A ) = TA .
证明
只要证明后一等式即可.
实际上 = ( A )T
T ( A )
= TAT = T( A ) .
1 6 1 6 2 6 0
1 12 1 12 1 12 3 12
1 2 1 2 . 1 2 1 2
TTAT = diag(1, 1, 1, -3) .
例2 设
3 A 2 0
2 2 2
0 2 1
x1 x2 x n
满足
A = 0 . 令
x1 x2 , x n
其中
xi 是 xi 的共轭复数,则
考察等式
A = 0 .
T (A )
= TAT
= (A )T
T 是一个正交矩阵,而
T-1AT = TTAT 就是对角形. 根据上面的讨论,求正交矩阵 T 的步骤如下: STEP 1 求出 A 的特征值. 设 1 , …, r 是 A

第八章 欧几里得空间 第三节 同构课件ppt

第八章 欧几里得空间 第三节 同构课件ppt

3) ( ( ) , ( ) ) = ( , ) ,
这里 , V , k R,这样的映射 称为 V 到 V
的同构映射.
由定义可以看出,如果 是欧氏空间 V 到 V 的一个同构映射,那么 也是 V 到 V 作为线性空 间的同构映射. 因此,同构的欧氏空间必有相同的 维数.
定理 3 两个有限维欧氏空间同构的充分必要
条件是它们的维数相同.
这个定理说明,从抽象的观点看,欧氏空间的 结构完全被它的维数决定.
设 V 是一个 n 维欧氏空间,在 V 中取一组标准
正交基 1 , 2 , … , n . 在这组基下,V 中每个向量
都可表示为 = x11 + x22 + … + xnn .

()= (x1 , x2 , … , xn ) Rn .
我们知道,这是 V 到 Rn 的一个双射,并且适合 定义中条件 1),2) (第六章第八节) . 上一节 说明, 也适合定义中条件 3),因而 是 V 到 Rn
第三节

ห้องสมุดไป่ตู้

主要内容
同构的定义 同构的性质
一、同构的定义
我们来建立欧氏空间同构的概念.
定义 8 实数域 R 上欧氏空间 V 与 V 称为同 构的,如果由 V 到 V 有一个双射 ,满足
1) ( + ) = ( ) + ( ) , 2) ( k ) = k ( ) ,
的一个同构映射,由此可知,每个 n 维的欧氏空间
都与 Rn 同构 .
二、同构的性质
性质 同构作为欧氏空间之间的关系具有以下
性质:
1) 反身性 为恒等映射; 2) 对称性 映射为 -1 ; 设 V1 与 V2 同构, V1 到 V2 的同 V 与 V 自身同构,且其同构映射

《欧几里得几何学》课件

《欧几里得几何学》课件

公理一
任意两点A和B可以确定一条且仅有一 条直线。
02
公理二
给定一条直线,可以找到一个且仅有 一个点,使得该点到这条直线的距离 为零。
01
公理五
通过给定直线外的一个点,有且仅有 一条与给定直线平行的直线。
05
03
公理三
通过给定的一点和不在给定直线上的 另一点,可以确定一条且仅有一条与 给定直线不同的直线。
黎曼几何学
以球面几何为基础,挑战欧几里得几何学的平坦空间假设。
弯曲空间理论
挑战欧几里得几何学的直线和圆的概念,提出空间可以弯曲。
欧几里得几何学在现代科技中的应用前景
建筑学
01
利用欧几里得几何学原理设计建筑结构和外观。
工程学
02
在机械、航空、船舶等领域,利用欧几里得几何学进行精确设
计和制造。
计算机图形学
数学教育
欧几里得几何学是数学教育中的重 要组成部分,对于培养学生的逻辑 思维和空间想象力具有重要意义。
欧几里得几何学与其他几何学的关系
非欧几里得几何
与欧几里得几何学相对,非欧几里得 几何学包括球面几何、双曲几何等, 它们在空间定义和公理体系上与欧几 里得几何有所不同。
解析几何
解析几何通过引入坐标系和代数方法 来研究几何问题,它与欧几里得几何 学相互补充,共同构成了现代几何学 的基础。
《欧几里得几何学》ppt课件
目录
• 欧几里得几何学简介 • 欧几里得几何学的基本假设 • 欧几里得几何学的基本定理 • 欧几里得几何学的推论与证明 • 欧几里得几何学的实际应用 • 欧几里得几何学的未来发展与挑战
01
欧几里得几何学简介
定义与起源
定义
欧几里得几何学,也称为欧式几 何,是基于古希腊数学家欧几里 得的几何体系,它研究的是平面 和三维空间的几何结构。

高等代数欧几里得空间课件

高等代数欧几里得空间课件

矩阵的定义
矩阵是一个由数字组成的矩形阵列,可 以表示向量之间的关系和线性变换。
VS
矩阵的性质
矩阵具有一些重要的性质,如矩阵的加法、 标量乘法和乘法满足相应的运算规则,矩 阵的转置、行列式、逆等也具有相应的性 质和定义。
矩阵的运算规则
1 2 3
矩阵的加法 矩阵的加法满足交换律和结合律,即 $A+B=B+A$和$(A+B)+C=A+(B+C)$。
运算规则二
如果 $W_1$ 和 $W_2$ 是子空间,且 $W_1 cap W_2 = {0}$, 则 $W_1 + W_2$ 是子空间。
运算规则三
如果 $W$ 是子空间,且 $u in W$,则存在唯一的 $v in W$ 使得 $u + v = 0$。
欧几里得空的同
06
构与等价
同构的定义与性质
等价性质
等价的欧几里得空间具有相同的秩,且线性变换在等价 下是可逆的。
THANKS.
矩阵运算对应线性变换运 算
矩阵的加法、标量乘法和乘法分别对应线性 变换的加法、标量乘法和复合运算。
特征与特征向量
04
特征值与特征向量的定义
特征值
对于一个给定的矩阵A,如果存在一个非零的数λ和相应的非零向量x,使得Ax=λx成立, 则称λ为矩阵A的特征值,x为矩阵A的对应于λ的特征向量。
特征向量
与特征值λ对应的非零向量x称为矩阵A的对应于λ的特征向量。
助于学生更好地理解和掌握这一概念。
04
复数域上的全体二维向量构成的集合是一个二维复数 欧几里得空间。
向量与向量的运算
ห้องสมุดไป่ตู้02
向量的定义与表示

第9章 欧几里德空间(第1讲)

第9章 欧几里德空间(第1讲)

第9章 欧几里德空间(第1讲)目标与要求理解欧几里德空间的概念, 并会检验线性空间是否构成欧氏空间; 理解向量的长度、夹角与正交的概念;理解度量矩阵概念, 掌握度量矩阵的性质.重点难点重点:理解欧几里德空间的概念, 理解向量的长度、夹角与正交的概念; 理解度量矩阵概念, 掌握度量矩阵的性质.难点:理解欧几里德空间的定义,理解度量矩阵概念, 掌握度量矩阵的性质.设计安排通过归纳几何空间内积的性质,给出实数域R 上线性空间内积公里化定义以及欧几里德空间的概念,再由内积定义向量的长度、夹角与正交的概念;适当启发,循序渐进,最后对度量矩阵概念、性质进行讨论.教学进程见幻灯片部分.(2学时) 黑板与多媒体讲授相结合.教学内容§1 定义与基本性质一.欧几里得空间的概念与简单性质线性空间的概念是从三维几何空间抽象而来,在这个抽象过程中,我们已抛弃了三维几何空间中向量的许多重要的几何性质,如:向量的长度和夹角在线性空间中没有相应地反映出来.而在几何空间中,向量的长度和夹角的理论作用是重要的、不可或缺的.如果没有这两个概念,几何空间的研究将是难以想象的.于是,自然就想到应该将向量的长度和夹角概念相应地抽象到线性空间中来,有了它们做工具,对空间的讨论研究将更加深入.那么,应如何在线性空间中引入向量的长度和夹角概念?下边回顾几何中的相关知识,以从中得到启发.在几何空间中,向量的长度和夹角都可以用内积来表示:),(ξξξ=,ηξηξηξ),(),cos(=∧.两个向量的内积是一个实数),cos(),(∧=βαβαβα,所以它有较强的代数性质.因此,我们把内积作为基本概念引入线性空间中,然后仿照几何空间中向量长度、夹角与内积的上述关系式,定义线性空间中向量长度和夹角的概念.而线性空间中的内积自然也应该抽取几何空间中内积的本质作为其定义.几何空间中内积本质上是一个二元实函数,在它的诸多性质中下述四条是最基本的:),(),(αββα=;),(),(βαβαk k =;),(),(),(γβγαγβα+=+;0),(≥αα,且00),(=⇔=ααα.我们就以这些要求作为线性空间中内积的定义.定义1 设V 是实数域R 上的线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,它具有以下性质:1)),(),(αββα=; 2)),(),(βαβαk k =; 3)),(),(),(γβγαγβα+=+; 4)0),(≥αα,且00),(=⇔=ααα.这里γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间.注:① 由于如果按照前述方法在线性空间中引进向量的夹角和长度概念要涉及到数的开方和三角函数,一般的数域对这两种运算不能封闭,所以欧几里得空间是定义在实数域上的线性空间之上的.当考虑的是复数域上的线性空间时,相应得到的就是酉空间的概念.② V 上的二元实函数即V V ⨯到R (实数域)的一个映射,当这个映射满足定义中的四条时,就是V 上的一个内积.两个向量的内积是一个实数.③ 定义中的2)、3)两条等价于),(),(),(22112211βαβαβααk k k k +=+. 例1 在线性空间nR 中,定义内积:n n b a b a b a +++= 2211),(βα (),,,(21n a a a =α,),,,(21n b b b =β),则n R 成为一个欧氏空间.这个欧氏空间仍记为n R .(注:在线性空间n R 中,也可以引进其它的内积使之成为欧式空间,但这些欧氏空间都不用n R 表示.)例2 在线性空间n R 中,定义内积:n n b na b a b a +++= 22112),(βα (),,,(21n a a a =α,),,,(21n b b b =β),则n R 成为一个欧氏空间.例3 闭区间],[b a 上的实连续函数所构成的线性空间),(b a C 对下边定义的内积构成欧氏空间:()⎰=badx x g x f x g x f )()()(),(.同样地,][x R 和n x R ][对上述内积也构成欧氏空间. 例4 n x R ][对内积:()∑==nk k g k f x g x f 1)()()(),(构成欧氏空间.欧氏空间的简单性质: (1) 0),0()0,(==αα.由此可知,欧式空间定义中的4)等价于"若0≠α,则0),,(>αα".(2) ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛r i sj j i j i s j j j r i i i b a b a 1111),(,βαβα(3) ⇔=0αV ∈∀η,有0),(=ηα.二.向量的长度和夹角定义2 非负实数),(αα称为向量α的长度,记为α. 由长度定义可见:(1) 向量的长度一般是正数,00=⇔=αα. (2) ααkk =.长度为1的向量称为单位向量,对任何一个非零向量0≠α,αα1就是一个单位向量.用α1去乘向量α,得到一个与α成比例的单位向量,通常称为把α单位化.为了仿照几何空间中向量间夹角的表达形式βαβαβα),(arccos ,=,将向量间夹角的概念引入到欧氏空间中,需要先证明柯西-布涅柯夫斯基不等式: 对任意向量βα,,有βαβα≤),(.当且仅当βα,线性相关时,等号才成立.证明思路:0=β时显然成立.0≠β时,令ββββααγ),(),(-=,则0),(≥γγ,展开整理即得不等式.当βα,线性相关时,等号显然成立.等号成立时,记),(),(βββα=k ,证明0),(=--βαβαk k ,于是0=-βαk ,即βα,线性相关.在不同的欧氏空间中,柯西-布涅柯夫斯基不等式的具体表达形式也不同.如: 对于例1的欧氏空间n R ,βαβα≤),(的具体形式为22221222212211n n n n b b b a a a b a b a b a ++++++≤+++这正是著名的柯西不等式.对于例2的欧氏空间),(b a C ,βαβα≤),(的具体形式为212212)()()()(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎰⎰⎰ba ba badx x g dx x f dx x g x f这正是著名的施瓦兹(Schwarz)不等式.利用柯西-布涅柯夫斯基不等式可以证明“三角不等式”:βαβα+≤+.推广:r r αααααα+++≤+++ 2121.定义3 非零向量βα,的夹角βα,规定为βαβαβα),(arccos,=,πβ≤≤,0.定义4 若向量βα,的内积为零,即0),(=βα,那么βα,称为正交或相互垂直,记为βα⊥.注:① 只有非零向量之间才有夹角的概念.② βαβα⊥∈∀⇔=,0V .两个非零向量βα,正交⇔2,πβα=.③ 若i ηα⊥ r i ,,2,1 =,则)(2211r r k k k ηηηα+++⊥ . 勾股定理 若βα⊥,则222βαβα+=+.推广:若r ααα,,,21 两两正交,则22221221r r αααααα+++=+++ .三.内积与基设V 是一个n 维欧氏空间,n εεε,,,21 是V 的一组基,对V 中的向量 n n x x x εεεα+++= 2211,n n y y y εεεβ+++= 2211 ()∑∑===++++=n i nj j i jin n n n y x y y x x 111111),(,),(εεεεεεβα令⎪⎪⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(),(),(),(),(),(212221212111n n n n n n A εεεεεεεεεεεεεεεεεε ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y21,则AY X '=),(βα.上述矩阵A 称为基n εεε,,,21 的度量矩阵.度量矩阵的意义在于它与内积是互相确定的,只要知道了一组基的度量矩阵A ,任意两个向量的内积可用这两个向量在此基下的坐标Y X ,和度量矩阵按AY X '算出,即度量矩阵完全确定了内积.度量矩阵的性质: (1) 度量矩阵是对称的; (2) 度量矩阵是正定的.(3) 对任意一个n 阶正定矩阵A 及n 维线性空间V 的一组基n εεε,,,21 ,可以规定V 的内积,使之成为欧氏空间,且基n εεε,,,21 的度量矩阵恰为A .不同基的度量矩阵之间的关系:设n ηηη,,,21 是V 的另一组基,由n εεε,,,21 到n ηηη,,,21 的过渡矩阵为C ,即 ()()C n n εεεηηη,,,,,,2121 =将C 分块()n C C C C ,,,21 =,则i C 就是i η在基n εεε,,,21 下的坐标(n i ,,2,1 =).于是按照上述利用坐标和度量矩阵求内积的方法,有j i j i AC C '=),(ηη.所以n ηηη,,,21 的度量矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(),(),(),(),(),(212221212111n n n n n n B ηηηηηηηηηηηηηηηηηη ⎪⎪⎪⎪⎪⎭⎫⎝⎛'''''''''=n n n n n n AC C AC C AC C AC C AC C AC C AC C AC C AC C212221212111()AC C C C C A C C C n n '=⎪⎪⎪⎪⎪⎭⎫⎝⎛'''= 2121. (A 为基n εεε,,,21 的度量矩阵)可见,不同基的度量矩阵是合同的. 最后指出,设V 是一个欧氏空间,则V 作为线性空间,它的任何线性子空间显然对V 的内积也构成欧氏空间.备注思考:1. 实数域上同一线性空间是否可以用不同的方式定义内积?若可以,它们是同一欧几里德空间吗?可以,如对R n 定义内积(α,β )=k αβ,k 为正实数.2.实数域上任何有限维线性空间都可以定义一个内积吗? 可以α = k 1e 1+k 2e 2+…+k n e n ,β= l 1e 1+l 2e 2+…+l n e n其中e 1,e 2,…,e n 为V 的一组基,则(α,β )= k 1 l 1+k 2 l 2+…+k n l n 定义一个内积.作业布置课后相应习题.第9章 欧几里德空间(第2讲)目标与要求理解正交向量组、标准正交基的概念, 掌握标准正交基的性质、存在性及求法(施密特正交化方法);理解正交矩阵概念,掌握正交矩阵性质.重点难点重点:理解标准正交基的概念, 掌握标准正交基的性质、存在性及求法,熟练运用施密特正交化方法求出标准正交基;理解正交矩阵概念,掌握正交矩阵性质.难点是理解和掌握标准正交基的概念和基性质,掌握标准正交基的存在性及求法,正交矩阵性质.设计安排首先给出正交向量组的概念与性质,其次对标准正交基的定义、性质、存在性及求法(施密特正交化方法)进行讨论,最后研究正交矩阵概念与性质.突出标准正交基的定义性质、存在性及求法(施密特正交化方法).教学进程见幻灯片部分.(3课时) 黑板与多媒体讲授相结合.教学内容§2标准正交基一.标准正交基及其性质定义5 欧氏空间V 中一组非零向量,如果它们两两正交,就称为一个正交向量组. 注:① 正交向量组必须是由非零向量构成的.单个非零向量也是正交向量组. ② 正交向量组是线性无关的向量组.定义6 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基.注:标准正交基是集长度、夹角、基为一体的一个概念.与普通基相比它具有更多的优点,所以在欧氏空间中取基时,如果可能应首先考虑取标准正交基.有关性质:(1) 在n 维欧氏空间中,n εεε,,,21 是标准正交基⎩⎨⎧≠==⇔ji ji j i 01),(εε,n j i ,,2,1, =.E n n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛⇔),(),(),(),(),(),(),(),(),(212221212111εεεεεεεεεεεεεεεεεε .(2) 设n εεε,,,21 是标准正交基,则向量α在此基下的坐标是()),(,),,(),,(21n εαεαεα .(3) 设n εεε,,,21 是标准正交基,n n n n y y y x x x εεεβεεεα+++=+++= 22112211,,则n n y x y x y x +++= 2211),(βα.注:由(3)可见,通过标准正交基建立起来的V 与n R 之间的联系是保持内积的.即YX R Vn −−−→←−−−→←−−−→←βα标准正交基),(),(Y X =βα (βα,在V 中的内积等于Y X ,在n R 中的内积)二.标准正交基的求法关键是求正交基,求得正交基后单位化即可.定理1 n 维欧氏空间中任意一个正交向量组都能扩充成一组正交基.证明思路 反复利用下边的结论:设m αα,,1 施正交向量组,β不能由m αα,,1 线性表出,令m m m m m ααααβααααβααααββα),(),(),(),(),(),(222211111----=+ ,则11,,,+m m ααα 是正交向量组.于是可以逐步地将m αα,,1 扩成正交基.注:此证明过程实际给出了一个具体扩充正交基的方法,从任意一个非零向量出发按此方法逐个地扩充,最后就得到一组正交基.再单位化就得到一组标准正交基.在上述扩充方法中,每要扩充一个向量,必须事先找一个不能由已知正交向量组线性表出的向量β.定理2 对n 维欧氏空间中任意一组基n εεε,,,21 ,都可以找到一组标准正交基n ηηη,,,21 ,使),,(),,(11i i L L ηηεε = n i ,,2,1 =.证明思路取11εη=,m m m m m m m m ηηηηεηηηηεεη),(),(),(),(11111111++++---=1,,2,1-=n m .再单位化即可.注:① 定理2的作用主要在于,省略了在扩充正交基的过程中每扩充一个向量都要事先找一个不能由已知正交向量组线性表出的向量β的麻烦,只需依次取已知基中的向量作为β就可以了.② 定理2中的),,(),,(11i i L L ηηεε =(n i ,,2,1 =)等价于由n εεε,,,21 到n ηηη,,,21 的过渡矩阵是上三角矩阵.按定理2的方法,将一组线性无关的向量变成一组单位正交向量的过程,叫做Schimidt 正交化过程.例1 把)1,1,1,1(),1.0.0.1(),0,1,0,1(),0,0,1,1(4321--=-===αααα变成单位正交向量组.三.标准正交基之间的关系、正交矩阵设n εεε,,,21 和n ηηη,,,21 是欧氏空间V 的两组标准正交基,它们之间的过渡矩阵为()nn ija A ⨯=,即()()A n n εεηη,,,,11 =.因为标准正交基的度量矩阵是单位矩阵,所以n εεε,,,21 和n ηηη,,,21 的度量矩阵都是E ,由两组基的度量矩阵是合同的,得E EA A =',即E A A ='或1-='A A .定义7 n 阶实矩阵A 称为正交矩阵,如果E A A ='(1-='A A ).相关性质:(1)设n εεε,,,21 是标准正交基,()()A n n εεηη,,,,11 =,则n ηηη,,,21 是标准正交基的充分必要条件是A 是正交矩阵.(2)n 阶方阵A 是正交矩阵⇔A 的行向量组是nR 的标准正交基⇔A 的行向量组是n R 的标准正交基.由(2)可知,用标准正交基建立起来的V 与nR 之间的联系,使V 的标准正交基与nR 的标准正交基相互对应,即n R Vn标准正交基,,,−−−−→←εεε 21标准正交基 n ηηη 21 −−−→←−−−→←−−−→← nX X X 21 标准正交基§3 同构定义8 实数域R 上的线性空间V 与V '称为同构的,如果由V 到V '有一个双射σ,满足1) )()()(βσασβασ+=+, 2) )()(ασασk k =, 3) ()()βαβσασ,)(),(=,这里R k V ∈∈,,βα,这样的映射σ称为V 到V '的同构映射.同构的欧氏空间必有相同的维数.同构作为欧氏空间之间的关系具有反身性、对称性、传递性. 每一个n 为欧氏空间都与nR 同构.定理3 两个有限维欧氏空间同构当且仅当它们维数相同. 可知,维数是有限维欧氏空间唯一本质的特征.备注补充例题,加深对有关概念、公式、结论的理解. 归纳解题思路方法,给学生留出时间做练习.课堂思考练习、评讲达到使学生吸收消化重点内容的目的. 怎样理解标准正交基?如何求出标准正交基?作业布置课后相应习题.第9章 欧几里德空间(第3讲)目标与要求理解正交变换的概念,掌握正交变换的性质, 会检验线性变换是否为正交变换; 掌握子空间的正交关系.重点难点重点:理解正交变换的概念, 掌握正交变换的性质,掌握子空间的正交关系. 难点:理解正交变换的概念性质、掌握子空间的正交关系.设计安排首先给出正交变换的概念与性质及分类,其次对子空间的正交关系进行讨论,给出两个重要结论:若子空间V 1,V 2,…,Vs 两两正交,则和V 1+V 2+…+Vs 为直和; n 维欧氏空间V 的每一个子空间都有唯一的正交补. 教学进程见幻灯片部分.(3课时) 黑板与多媒体讲授相结合.教学内容§4 正交变换定义9 欧氏空间V 的线性变换A 称为正交变换,如果它保持向量的内积不变,即对任意的V ∈βα,,都有(A ,αA β)),(βα=.正交变换可以从以下几个方面进行刻画.定理4 设A 是欧氏空间V 的一个线性变换,则下述四条等价: 1)A 是正交变换;2) A 保持向量的长度不变,即对于V ∈∀α,有|A α|α=;3)若n εε,,1 是V 的标准正交基,则A ,,1 εA n ε也是V 的标准正交基; 4) A 在任意一组标准正交基下的矩阵是正交矩阵. 证明思路:1)⇔2),1)⇔3),3)⇔4). 1)⇔2):⇒ 显然.⇐ 将(A ),(βα+A )(βα+)),(βαβα++=两边展开. 1)⇔3):⇒ 由(A ,i εA j ε)⎩⎨⎧≠===ji ji j i 01),(εε可见.⇒ 一个向量α在基n εε,,1 下的坐标和其象A α在基A ,,1 εA n ε下的坐标相同.而内积等于两向量在标准正交基下的坐标的对应分量乘积之和,由此即得.3)⇔4):⇒ A 在标准正交基n εε,,1 下的矩阵就是标准正交基n εε,,1 到标准正交基A ,,1 εA n ε的过渡矩阵,所以是正交矩阵.⇐ 显然.正交变换的有关性质: 1) 正交变换是单射.2) 正交变换保持向量间的夹角不变,反之不然. 3) 在标准正交基下正交变换与正交矩阵一一对应.设A 是正交矩阵,则E A A =',两边取行列式得1±=A .行列式等于1的正交变换称为旋转,或第一类的;行列式等于-1的正交变换称为第二类的.例1 把二维几何平面围绕坐标原点按反时针方向旋转θ角的变换(274页例1),此变换保持向量的长度不变,所以是正交变换.其行列式为1cos sin sin cos =-θθθθ,所以它是第一类的.例2 H 是三维几何空间V 中过原点的一个平面,σ是对H 的镜面反射,可知σ保持向量的长度不变,所以是正交变换.在H 内取两个彼此正交的单位向量32,εε,再取一个垂直于H 的单位向量1ε,则321,,εεε构成V 的标准正交基.显然332211)(,)(,)(εεσεεσεεσ==-=,所以σ在此基下的矩阵是⎪⎪⎪⎭⎫⎝⎛-100010001,其行列式为1-,故σ是第二类的.一般地,在欧氏空间中去一组标准正交基n εε,,1 ,定义线性变换A 为;A 11εε-=,A i i εε= n i ,,3,2 =,那么A 是一个第二类的正交变换,这样的正交变换叫镜面反射.§5 子空间一. 向量与子空间、子空间与子空间的正交定义10 设21,V V 是欧氏空间V 的两个子空间,如果对21,V V ∈∈∀βα,恒有()0,=βα,则称21,V V 是正交的,记为21V V ⊥.一个向量α,如果满足1V ∈∀β,恒有()0,=βα,则称α与子空间1V 正交,记为1V ⊥α.定理5 若子空间s V V ,,1 两两正交,则和s V V V +++ 21是直和. 证明思路:证明零向量分解唯一.二.子空间的正交补定义11 子空间2V 称为子空间1V 的正交补,如果21V V ⊥并且V V V =+21. 注:21,V V 互为正交补.定理6 有限维欧氏空间V 的每个子空间1V 都有正交补,且正交补是唯一的. 证明思路 存在性:取1V 的一组标准正交基m εε,,1 ,将其扩充成V 的一组标准正交基m εε,,1 ,n m εε,,1 +,则),,(12n m L V εε +=就是1V 的正交补. 唯一性:设32,V V 都是1V 的正交补,证明32,V V 相互包含. 子空间1V 的唯一的正交补记为⊥1V .有()11V V =⊥⊥,维+)(1V 维=⊥)(1V 维)(V ,()⊥⊥⊥=+2121V V V V ,()⊥⊥⊥+=2121V V V V .推论 {}11|V V V ⊥∈=⊥αα. 证明思路:令{}1|V V W ⊥∈=αα,按定义证明1V W ⊥且V V W =+1. 例1 设1V 是三维几何空间中过原点的一个平面,1α是向量α在平面1V 上的内射影,则对于1V ∈∀β(1αβ≠),有βααα-<-1.(即从平面外一点到平面上点之间的距离以垂线最短)此结果可以推广到一般欧氏空间中: 因为⊥+=11V V V ,所以V ∈∀α,α有唯一的分解式21ααα+=(⊥∈∈1211,V V αα),这样对任一V ∈α,有唯一的11V ∈α与之对应,称1α为α在1V 上的内射影.内射影具有下述性质: 对1V ∈∀β(1αβ≠),有βααα-<-1.备注欧氏空间中保持内积不变的变换是否为正交变换?作业布置课后相应习题.第9章 欧几里德空间(第4讲)目标与要求理解和掌握正交变换与对称变换的概念与性质; 掌握实对称矩阵对角化的方法;掌握利用正交变换化二次型为标准形的方法.重点难点重点:掌握实对称矩阵实对称矩阵特征值与特征向量的性质,掌握实对称矩阵对角化的方法及利用正交变换化二次型为标准形的方法.难点:掌握正交矩阵化实对称矩阵为对角形矩阵的方法,理解有关定理的证明思想.设计安排首先介绍对称变换的概念和性质,其次讨论实对称矩阵特征值与特征向量的性质,给出主要定理:对于任意n 级实对称矩阵A 为,必存在n 级正交矩阵T ,使T T AT =T –1 AT =Λ为对角阵,Λ的对角线上的元素为A 的n 个特征值及利用正交矩阵化实对称矩阵为对角阵的步骤,最后阐述实二次型的有关结论.教学进程见幻灯片部分.(3时) 黑板与多媒体讲授相结合.教学内容§6 对称矩阵的标准形本节要证明的主要结论是:对任意一个n 阶实对称矩阵A ,都存在一个n 阶正交矩阵T ,使AT T AT T 1-='为对角矩阵.一.对称变换及其性质定义12 A 是欧氏空间V 的一个线性变换,如果V ∈∀βα,,有(A βα,)=(,αA β),则称A 为对称变换.引理2 A 实对称变换当且仅当A 在标准正交基下的矩阵是实对称矩阵. 证明思路:设A 在标准正交基 ,1εn ε,下的矩阵是()nn ij a A ⨯=,则A n ni i i a a εεε++= 11,于是(A ji j n ni i j i a a a =++=),(),11εεεεε ,(,i εA ij n nj j i j a a a =++=),()11εεεε , 可见(A ,(),i j i εεε=A )j εij ji a a =⇔,即A 是对称变换A ⇔是实对称矩阵.由此引理,对称变换的问题可以转化成实对称矩阵的问题,反之亦然.下边对实对称矩阵的研究就是采用了这种方法.下两个引理是对称变换的两个重要性质.引理3 设A 是对称变换,1V 是A -子空间,则⊥1V 也是A -子空间. 证明思路:对11,V V ∈∈∀⊥βα,有(A βα,)=0,所以A ⊥∈1V α. 引理4 设A 是对称变换,则A 的属于不同特征值的特征向量必正交.证明思路:设βα,是属于不同特征值μλ,的特征向量,由(A βα,)=(,αA β)即得.二.对实对称矩阵的相关讨论引理1 实对称矩阵的特征值均为实数.证明思路:设λξξ=A ,注意到A A A A ==',,用两种方法计算ξξA ',得ξξλξξλ'=',因为ξξ'是非零实数,所以λλ=.下边利用实对称矩阵A 构造nR 上的一个对称变换A ,以便用对A 的讨论代替对A 的讨论.设A 是一个实对称矩阵,作n R 上的线性变换A 如下:A :⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A x x x2121显然A 在n R 的标准正交基⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100,,010,00121 n εεε下的矩阵是实对称矩阵A ,所以A 是n R 上的一个对称变换.定理7 对任意一个n 阶实对称矩阵A ,都存在一个n 阶正交矩阵T ,使AT T AT T 1-='为对角矩阵.证明思路分析:A 按上述方式可定义n R 上的一个对称变换A ,且A 在标准正交基n εεε,,,21 下的矩阵是A .如果能证明:A 有n 个特征向量n ξξξ,,,21 构成n R 的标准正交基,则有① 因为基n ξξξ,,,21 是由特征向量构成,所以A 在此基下的矩阵D 是对角形的; ② 因为D A ,是同一个线性变换在不同基下的矩阵,所以AT TD 1-=,其中T 是n εεε,,,21 到n ξξξ,,,21 的过渡矩阵;③ 由于标准正交基到标准正交基的过渡矩阵是正交矩阵,所以T T'=-1;④ 由基n εεε,,,21 构造上的特殊性可知,T 的列向量组就是n ξξξ,,,21 . 综合上述分析可知,只要证明A 有n 个特征向量构成nR 的标准正交基即可. 对n 阶实对称矩阵A ,求正交矩阵T ,使AT TAT T 1-='为对角矩阵的具体步骤:1) 求出A E -λ的全部根(均为实根),设r λλ,,1 是A 的全部不同的特征值.(它们的重数之和等于n );2) 对每个i λ,求线性方程组0)(1=⎪⎪⎪⎭⎫⎝⎛-n i x x A E λ的一个基础解系i in i i ξξξ,,,21 (基础解系中含向量的个数i n 一定等于i λ的重数);3) 利用施密特正交化过程将i in i i ξξξ,,,21 正交化、单位化,得到i V λ得一组标准正交基i in i ηη,,1 r i ,,2,1 =;4)以r rn r n n ηηηηηη,,,,,,,,,122111121 为列向量构造矩阵T ,则T 是正交阵且=D AT T ' 是对角矩阵.注:D 的主对角元恰为A 的全部特征值.每个特征值在D 中所处的列与其特征向量在T 中所处的列应当对应一致.例1 已知⎪⎪⎪⎪⎪⎭⎫⎝⎛----=0111101111011110A ,求一个正交矩阵T ,使AT T '为对角阵,并写出此对角阵.在定理7中,还可以进一步要求1=T (或-1).事实上:如果所求得的T 的行列式等于-1,则可取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=111 S ,令TS T =1,那么1T 是行列式等于1的正交矩阵,且AT T AT T '='11为对角形矩阵.当然也可以交换T 的两列的位置,即令),(2j i TP T =,则2T 也是行列式等于1的正交矩阵,且22AT T '亦为对角矩阵,但是AT T AT T '≠'22(22AT T '是交换了AT T '主对角线上第i 个元素和第j 个元素的位置).上边对实对称矩阵的结论也可以用二次型的语言叙述如下:如果线性替换CY X =的矩阵()ij c C =是正交矩阵,则称此线性替换是正交的线性替换.正交的线性替换显然是非退化的.定理8 任意一个实二次型AX X '(A A =')都可以经过正交的线性替换化为平方和2222211n n y y y λλλ+++其中平方项的系数n λλλ,,,21 就是A 的全部特征值(重特征值按重数计).由此可得:A 是正定的A ⇔的特征值全大于0.三.在二次曲面(线)方程化简上的应用 在直角坐标系下,二次曲面的一般方程是0222222221231312233222211=+++++++++d z b y b x b yx a xz a xy a z a y a x a令 ⎪⎪⎪⎭⎫⎝⎛=332313232212131211a a a a a a a a a A ,⎪⎪⎪⎭⎫ ⎝⎛=z y x X ,⎪⎪⎪⎭⎫ ⎝⎛=321b b b B ,则二次曲面的方程可写成02=+'+'d X B AX X ,其中AX X '是一个实二次型,有上述讨论,有行列式等于1的正交矩阵C ()ij c =,使⎪⎪⎪⎭⎫⎝⎛='321λλλAC C . 构造坐标变换 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛===⎪⎪⎪⎭⎫ ⎝⎛1113332312322211312111z y x c c c c c c c c c CX X z y x ,这是一个从右手系到右手系的旋转.在新坐标系中,曲面的方程为0)(2)(111=+'+''d X C B X AC C X , 即: 02221*31*21*1213212211=++++++d z b y b x b z y x λλλ.其中C B C b b b b b b '==),,(),,(321*3*2*1.此时,再按照321,,λλλ是否为0的情况,作适当的坐标平移就可把曲面方程化为标准方程.比如:当321,,λλλ均不为0时,将方程配方032*322*212*123*31322*21221*111=⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+λλλλλλλλλb b b d b z b y b x 作坐标平移⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=3*3122*2121*112λλλb z z b y y b x x 则曲面方程化为标准方程0*223222221=+++d z y x λλλ,其中32*322*212*1*λλλb b b d d ---=.备注归纳解题思路方法,给学生留出时间做练习.课堂思考练习、评讲达到使学生吸收消化重点内容的目的.作业布置课后相应习题.第9章欧几里德空间(第5讲)目标与要求掌握利用应用软件Mathematica进行向量运算的相关命令.掌握利用应用软件Mathematica计算线性变换的特征值与特征向量的相关命令.掌握利用应用软件Mathematica进行二次型正定性判定的命令和方法.掌握利用应用软件Mathematica求线性空间基、标准正交基、维数与坐标的方法.重点难点重点:掌握利用应用软件Mathematica完成下述内容1.向量的加法、数乘.2.向量内积、模、夹角.3.线性变换的特征值与特征向量、Hamilton-Cayley定理.4.矩阵对角化(一般矩阵、实对称矩阵).5.化二次型为标准型、二次型正定性判定.6.线性空间的维数、基与坐标.7.线性空间的标准正交基.难点:命令格式、含义.设计安排针对实验三中对二次型、线性空间、线性变换、欧几里德空间的实验要求,对涉及的重点内容做Mathematica4.0演示,提供实验事例;教学进程见实验讲义第四讲(2课时).教学内容习题课应用Mathematica4.0进行二次型线性空间线性变换欧几里德空间的相关运算(课程实验三预备知识)相关命令αβαk ,+]../.[..ββααβαααααArcCos 、、Eigenvalues [A ] Eigenvalues [N[A ]] Eigenvectors [A ] Eigensystem [A ]DiagonalMatrix [lst ] RowReduce [A ]CharacteristicPolynomial [矩阵,变量] Normalize[向量].GramSchmidt [向量列表]备注习题课(2课时).作业布置熟悉《高等代数》课程实验(上 机 三).。

《欧几里得证法》课件

《欧几里得证法》课件
《欧几里得证法》PPT课件
目录
• 欧几里得简介 • 欧几里得证法概述 • 欧几里得证法的证明过程 • 欧几里得证法的应用实例 • 欧几里得证法的局限性与发展 • 总结与思考
01
欧几里得简介
生平简介
欧几里得出生于公元前330年左 右,成长于雅典。
他的教育背景不详,但据推测他 可能受到了当时著名学者亚里士
其他领域应用
物理学中的应用
欧几里得证法在物理学中有广泛的应 用,例如在力学和电磁学中,可以通 过欧几里得证法证明一些重要的定理 和定律。
工程领域的应用
在工程领域中,欧几里得证法也被广 泛应用,例如在结构设计、机械零件 的强度分析和流体动力学中,可以通 过欧几里得证法证明一些重要的定理 和公式。
05
06
总结与思考
欧几里得证法的意义与价值
欧几里得证法在数学史上具有重要意 义,它为几何学提供了一种系统化的 证明方法,使得几何学的推理变得更 加严谨和有逻辑。
欧几里得证法对于培养人们的逻辑思 维和推理能力也有很大的帮助,它使 得人们在学习和工作中更加注重逻辑 和推理的重要性。
通过欧几里得证法,我们可以更好地 理解几何学的本质和原理,从而更好 地应用几何知识解决实际问题。
毕达哥拉斯定理证明
通过应用欧几里得证法,可以证明毕达哥拉斯定理,即在一 个直角三角形中,斜边的平方等于两直角边的平方和。
代数定理证明
二项式定理证明
利用欧几里得证法,可以证明二项式定理,这是代数中一个重要的定理,用于展 开二项式的幂。
代数基本定理证明
通过应用欧几里得证法,可以证明代数基本定理,即一个多项式方程有解当且仅 当它的根的最高次数是偶数。
Байду номын сангаас

欧几里得几何学ppt课件

欧几里得几何学ppt课件


上面提到的一切人物都接受了欧几里得的传统。他们
确实都仔细地学习过欧几里得的<几何本来>,并使之成为
他们数学知识的根底。欧几里得对牛顿的影响尤为明显。
牛顿的<数学原理>一书,就是按照类似于<几何本来>的
“几何学〞的方式写成的。自那以后,许多西方的科学家
都效仿欧几里得,阐明他们的结论是如何从最初的几个假
明过的结论作为论证命题的根据;等等。正由于如此,在 <本来>问世后2000年中,一方面<本来>作为用逻辑来表达 科学的典范,对数学其他分支甚至整个科学开展起着深远 的影响;另一方面,对于<本来>在逻辑上的欠缺进展修正、 补充和研讨任务从未停顿过,对于<本来>中的定义、公理、
公设的研讨成了历代数学家的重要课题。尤其对于<本来> 中的第五公设,许多数学家对它产生了疑心,最终导致非 欧几何的创建〔见非欧几里得几何学〕。

在欧几里得几何体系中,第五公设和“在平面内过知直线外一点,只需一条直线
与知直线平行〞相等价,如今把后一命题称作欧几里得平行公理。它表达了“欧几里
得几何〞与“非欧几里得几何〞的区别。
Thanks
2.1 早期几何知识
• 约公元前300年,古希腊数学家欧几里得 集前人之大成,总结了人们在消费、生活 实际中获得的大量的几何知识,规定了少 数几个原始假定为公理、公设,并定义了 一些名词概念,经过逻辑推理,得到一系 列的几何命题,构成了欧几里得几何学, 简称欧氏几何。
2.2 著名作品
• 欧几里得著有<几何本来>〔以下简称<本来>〕一书, 该书共13卷,除第5、7、8、9、10卷是用几何方法讲述 比例和算术实际以外,其他各卷都是论述几何问题的。这 部书成为传播几何知识的教科书达2000年之久,现代初等 几何学〔即平面几何和立体几何〕的内容根本全包括在此 书内。中国最早的译本是明代万历年间〔1607〕由大学士 徐光启与意大利天主教传教士利玛窦合译的<几何本来>前 6卷。<本来>之所以具有价值,不仅由于欧几里得非常详 尽地搜集了当时所知道的一切几何资料,而更重要的是把 那些分散的知识用逻辑推理的方法编排成一个有系统的演 绎的几何学体系。他是历史上第一个发明了一个比较完好 的数学实际的人

大学数学第九章欧几里得空间第一节精品PPT课件

大学数学第九章欧几里得空间第一节精品PPT课件

构成一欧几里得空间.
同样地,线性空间 R[ x ] , R[ x ]n 对于内积 (2)
也构成欧几得里空间.
内积定义中的四个性质:
3.
欧几里得空间的性质 内 积 定 义 中内的积四定个义性中质的:四 个 性 质 :
下面来看1欧) 几( 里, 得) 空= 间( 的, 一);些基本性质.
首先,1定) (2义) 中,(k条) ,=件()1=), (k()表,;, 明) =内);(积 ,是 对);称的.

( , )2 ( , ) ( , ) .
两边开方便得
| ( , ) | | | | | .
当 , 线性相关时,等号显然成立. 反过来,如
果等号成立,由以上证明过程可以看出,或者 =0
或者
(,) 0, (,)
也就是说 , 线性相关.
证毕
3. 两个著名的不等式
| (对, 于 )例| 1| 在|中|线的性|欧空几间里R得n 空中间, 对Rn于,(向4 )量 式就
由 4 ) ( 可, 知) , 0不,论当t且取仅何当值, =一0定时有( , ) = 0 .
( , ) = ( + t , + t ) 0.

( , ) + 2( , ) t + ( , ) t 2 0.
(5)

t (, ) . (, )
代入 (5) 式,得
(,)(,)2 0, (,)
性质 2 柯西 - 布涅柯夫斯基不等式
设 , 是任意两个向量,则
| ( , ) | | | | |,
(4)
当且内仅积当定义, 中线的性四相个关性时,质等:号才成立.
1 )证(明, ) 当= ( , = 0);时,(4) 式显然成立. 以下

线性代数课件PPT第六章 欧几里德空间 S2 正交变换

线性代数课件PPT第六章 欧几里德空间 S2 正交变换
因此只能 dim{M}=n−1.
13
小结
• 正交变换的定义(重点) • 正交变换的判定(重点) • n维欧氏空间中正交变换的重要结

14
2 T ,T 2 ,
T ,T ,
4
推论 设T为欧氏空间的正交变换,又, V ,则
( , ) (T,T ) 【保持夹角不变】

, ( , ) arccos
T ,T
arccos
(T ,T )
| || |
| T || T |
总结:正交变换保持向量的模、内积、夹角不变
k1, = k1, =k1, =0. 因此 1+2M, k1M.
所以M是V的一个子空间.
12
(2) 由V是n维欧氏空间,0知,在V中必可找到n−1 个向量1, 2, …,n−1使, 1, 2, …,n−1为线性无
关向量组. 设对该向量组正交化得向量组为
=, 1, 2, …, n−1. 于是 i, =0, i=1,2,…,n-1, 则 1, 2, …, n−1都属于M, 且它们性无关,从而 dim{M}n−1. 若dim{M}=n, 则 M=V, 于是M, 而由0知, 0 ,则M,这与M=V矛盾.
0
0
1 2
1 2
2
正交变换的定义
定义:设T是欧氏空间V中的线性变换,如果对于任
意的 V,都有 |T |=|| ,即T, T= , ,
则T称为正交变换. 【保持向量的模不变】
例 在几何空间中把每一向量旋转一个角θ 的线性 变换是正交变换.
定理1 欧氏空间V中的一个线性变换T是正交变换
对 , V,Βιβλιοθήκη 有 T,T ,从而T是正交变换.
7
定理3 设 [1, 2, , n ] 是n维欧氏空间V的标准正交基底, V中的线性变换T为正交变换 T在标准正交

欧几里德空间知识点总结PPT课件

欧几里德空间知识点总结PPT课件
第15页/共24页
例6、 (1)设 A Rnn 为反对称矩阵,证明: E A 可逆,且 P (E A)(E A)1
是正交矩阵. (P395习题16) (注意:反对称实矩阵的特征值只能是0或纯虚数)
(2)设 AT A Rnn且满足A2 4 A 3I 0
证明:A 2I是正交矩阵.
第16页/共24页
求a, b及所用的正交线性替换。 (类似P199习题5)
例2、设A是正定实对称矩阵,证明:
A E 1.
第22页/共24页
例3、设 A, B 都是实对称矩阵,
(1)证明:存在正交矩阵 T ,使得 T 1AT B
的充分必要条件是 A, B的特征多项式的根全部相同.
(2)如果 B 是正定矩阵,证明存在一个 n n
将 11,12 , ,1n1 ,
,r1,r 2 , ,rnr 的分量依次作
矩阵P的第1,2,…,n列,
使 PT AP P 1 AP为对角形.
第11页/共24页
2.对称变换定义
欧氏空间V的线性变换 ,如果
( ), ( , ( )), , V
则称 为对称变换.
注. 对称变换的特征值都是实数,属于不同特征值
为上三角阵,且 tii 0,i 1,2, ,n ,并证明这个分 解是唯一的。 (P188习题7)
(2)设A为n阶正定矩阵,证明存在一上三角形 矩阵P,使 A PT P 。
第4页/共24页
二、正交变换
1.定义
欧氏空间V的线性变换 如果保持向量的内积不变,
( ), ( ) ( , ), , V
(v) 实对称矩阵A的正、负惯性指数分别为正、负特 特征值的个数(重根按重数计). (vi) 当A退化时, n-秩(A)是0为A的特征值的重数.

欧几里得空间课件

欧几里得空间课件
不同类型拓扑的性质
不同类型的拓扑具有不同的性质和特点,例如离散拓扑中的点是孤立的,紧凑拓扑中的点是逐渐趋近于某个点的 ,线性拓扑中的点在直线上呈线性排列等。
拓扑的应用与实例
拓扑的应用
拓扑在数学、物理学、工程学和其他学 科中都有广泛的应用,例如在计算机科 学中,拓扑排序和图论中的问题解决需 要用到拓扑的性质。

立方体
立方体是一个三维的欧几里得空 间,其中两点之间的距离可以通 过连接这两点的线段的长度来定
义。
非欧几里得空间的例子
球面
球面是一个二维的曲面,其中两点之间的距 离可以通过连接这两点的最短线段的长度来 定义。球面不同于平面,因为球面的曲率是 变化的。
双曲几何
双曲几何是一种非欧几里得空间,其中两点 之间的距离可以通过连接这两点的线段的长 度来定义。双曲几何不同于欧氏空间,因为 它的角度和距离的定义与欧氏空间不同。
05
欧几里得空间的拓扑学
拓扑的定义与性质
拓扑的定义
拓扑是研究空间结构的一种数学分支,主要关注空间中点、线、面等基本元素之间的相互关系和性质 。
拓扑的性质
拓扑研究空间中的开集、闭集、连续性、紧致性、连通性等基本性质,这些性质在欧几里得空间和非 欧几里得空间中有所不同。
拓扑的分类与性质
拓扑的分类
根据空间中基本元素的性质和相互关系,可以将拓扑分为离散拓扑、紧凑拓扑、线性拓扑和微分拓扑等不同类型 。
子空间的定义与性质
01
02
子空间的定义:设E是域 P上的线性空间,F是E的 子集,如果F对于E的加 法和数量乘法构成域P上 的线性空间,则称F为E 的子空间。
子空间的性质
03
1. F是E的子集。
04

大学数学高数微积分第九章欧几里得空间第二节课件课堂讲义

大学数学高数微积分第九章欧几里得空间第二节课件课堂讲义
能扩充成一组正交基.
证明 设 1 , 2 , … , m 是一正交向量组,
我们对 n - m 作数学归纳法. 当 n - m = 0 时, 1 , 2 , … , m 就是一组正交
基. 假设 n - m = k 时定理成立,也就是说,可以
找到向量 1 , 2 , … , s , 使得
1 , 2 , … , m , 1 , 2 , … , s
+ xi+1(i , i+1) + … + xn(i , n ) = xi(i , i ) = xi .
证毕
性质 3 设 1 , 2 , … , n 是一组标准正交基,

那么
= x1 1 + x2 2 + … + xn n ,
= y1 1 + y2 2 + … + yn n ,
( , ) = x1 y1 + x2 y2 + … + xn yn = XTY . (2)
若请本若本本请想若请单节若想节本请若单本节本结想请单内若击想结请节本内若单想击请节请内若若本请结单若本节本束击请容本想若返结本请本单内请束节若容想若击若返本结单请内请单想节容想束击想单节节内返已本本单结想节请回节束若单击容节单想返内想已结本回想击节束单容本若请本结若内单击本返结已结内内击回结容击节束堂请结内内单想按返已击本若结回内击结容结束本请堂按若本结返节想击已内本单束容节堂回若想请击返束束容本容结束若按返返请若本内若本已单束请容课结本回结击钮返容堂本束请按想返请节容钮束已束单本请课内想结本节回返结本束已击容堂若课按想单内返回结节本本本已已请钮束单想回回堂想已节击容想本若束结按!单束节,回返.节本钮课已单结单内.回击本结已堂容束单节按堂,结回束结内返想,钮已课本结!内击回堂按结容结节堂束击.单按结课想结返本堂结内已结按钮内束击按内堂.回击束,!击结容!按返已本堂束课结课内束钮击按结.回束容结,束容堂课束返按束钮!返内课已本束钮结击堂,回.课束束容结束容钮容课返按返本返已束回结堂钮,课!,容.束钮束按返已束本本已!课,!回回钮.,容束结.课堂按,返!!本已已已,束本本.!回结回堂钮回束课按.本已,.钮结回堂!堂结按,按.本,已!束钮课!结结回堂结堂堂按束按课.按,钮!堂结.!束课按钮课束堂钮结.束,束课按钮束课钮课,!钮.!课束,.钮课!,.束.,,!钮.!,!,.!!,. .!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证毕
3. 两个著名的不等式
| 对(于, )例| 1| 中在| 的|线欧性| 几空里间得R空n 中间,R对n ,于(向4)量式就

= (a1 , a2 , … , an ) , = (b1 , b2 , … , bn ) ,
| a1定b1义内a2积b2 anbn |
(a,12) a=22a1 b1 +aa2 nb2 2 +b1…2 +ba22nbn . bn2 . (1)
数,这样的线性空间 V 称为欧几里得空间.
在欧几里得空间的定义中,对它作为线性空间 的维数并无要求,可以是有限维的,也可以是无限 维的.பைடு நூலகம்
几何空间中向量的内积显然适合定义中列举的 性质,所以几何空间中向量的全体构成一个欧几里 得空间.
2. 欧几里得空间举例
下面再看两个例子.
例 1 在线性空间 Rn 中,对于向量
( , ),它具有以下性质: 1) ( , ) = ( , ); 2) (k , ) = k( , ); 3) ( + , ) = ( , ) + ( , ) ; 4) ( , ) 0,当且仅当 = 0 时 ( , ) = 0 .
这里 , , 是 V 中任意的向量,k 是任意实
解析几何中我们看到,向量的长度与夹角等度 量性质都可以通过向量的内积来表示,而且向量的 内积有明显的代数性质,所以在抽象的讨论中,我 们取内积作为基本概念.
第一节 定义与基本性质
主要内容
内积 长度 夹角 度量矩阵 举例
一、内积
1. 定义 定义 1 设 V 是实数域 R 上一线性空间,在 V 上定义了一个二元实函数,称为内积,记作
k 2 (, ) | k || | .
性质 2 柯西 - 布涅柯夫斯基不等式
设 , 是任意两个向量,则
内积定| (义, 中)的| 四| 个| 性| 质|,:
(4)
当且仅当 , 线性相关时,等号才成立.
1)证(明, ) 当= ( ,=0);时,(4) 式显然成立. 以下
设 2) (k0., 令) =tk是(一, 个);实变数,作向量 3) ( + , =) =(+t, .) + ( , ) ;
内积定义中的四个性质: 3. 欧几内里积得定空义间中的的内性四积质个定性义质中:的四个性质:
下面来看欧1几) 里(得, 空)间= (的 一, 些);基本性质.
首先,内1定积) 义(定2中,义)条(k)中件=的,(四1), )=个()k表;(性,明,质内)=:积);(是, 对 )称;的.
因此,与 2) (k3),(相)当+= 地k(2,就)(,)有k=)(,; ,)=)k+((, , );) ; 2 ) (1)3,()k(,)4=)+)((=k,(,, ),)=3))=()0(;k,(,+当,)且+,)(仅=)当,k=(();,=,0));时+ ((,,)); 3 ) (2)4(,)k(+,,)))==(k0(,+4,)当(,且);,)仅=当)(,0,=)0当+时且((仅,当,)) = 0 .时
例 2 在闭区间 [a , b] 上的所有实连续函数所
成的空间 C (a , b) 中,对于函数 f (x) , g (x) 定义内

b
( f , g) a f (x)g(x)dx .
(2)
由定积分的性质不难证明,对于内积 (2),C (a , b)
构成一欧几里得空间.
同样地,线性空间 R[ x ] , R[ x ]n 对于内积 (2) 也构成欧几得里空间.
3) ( + , = )(= ,( ,) +)(+ (,), . ) ;
由条件 4) (有, () ,0),当0 且. 仅当 = 0 时 ( , ) = 0 .
因此,在任一欧式空间中,对于任意的向
量 , (, ) 是有意义的. 在几何空间中,向量 的长度为 (, ) . 类似地,我们在一般的欧几
对于| (显例, 然2),| 中内在|的积闭欧区|(1|几间)适里|[a合得,定空b]义间上中的C的(所a条,有b件)实,,连(4这续) 样函,数R所
式就成是就的成空为间一C个(欧a ,几b)里中得,空对间于. 函以数后f仍(x用) , gR(nx来) 定表义示内这

( , )2 ( , ) ( , ) .
两边开方便得
| ( , ) | | | | | .
| ( , ) | | | | | .
当 , 线性相关时,等号显然成立. 反过来,如
果等号成立,由以上证明过程可以看出,或者 =0
或者
(, ) 0 , ( , )
也就是说 , 线性相关.
第九章
欧几里得空间
在线性空间中,向量之间的基本运算只有加法
与数量乘法,统称为线性运算. 如果我们以几何
空间中的向量作为线性空间理论的一个具体模型, 那么就会发现向量的度量性质,如长度、夹角等, 在线性空间的理论中没有得到反映. 但是向量的度 量性质在许多问题中(其中包括几何问题)有着特殊 的地位,因此有必要引入度量的概念.
里得空间中引进向量长度的概念.
二、长度
1. 定义
定义 2 非负实数 (, ) 称为向量 的长
度,记为 | |.
显然,向量的长度一般是正数,只有零向量的 长度才是零,这样定义的长度有以下的性质:
2. 性质
性质 1 设 k R, V , 则有
| k | = | k | | |.
(3)
证明
| k | (k, k )
= (a1 , a2 , … , an ) , = (b1 , b2 , … , bn ) ,
定义内积
( , ) = a1 b1 + a2 b2 + … + an bn .
(1)
显然,内积 (1) 适合定义中的条件,这样, Rn
就成为一个欧几里得空间. 以后仍用 Rn 来表示这 个欧几里得空间. 在 n = 3 时,(1) 式就是几何空间 中向量的内积在直角坐标系中的表达式.
由 4) (可, 知), 0不,论当t且取仅何当值, =一0定时有( , ) = 0 .
( , ) = ( + t , + t ) 0.
即 ( , ) + 2( , ) t + ( , ) t 2 0.
(5)

t (, ) .
( , )
代入 (5) 式,得 ( , ) ( , )2 0 , ( , )
相关文档
最新文档