专题22 导数的概念及其意义、导数的运算(原卷版)
高考数学导数的概念及几何意义、导数的运算.docx
第九章导数及其应用命题探究(1)由 PO1 =2 知 O 1O=4PO1 =8.因为 A 1 B1 =AB=6,所以正四棱锥P-A 1 B1 C1D 1的体积V 锥 = ·A1·PO1=×62×2=24(m3);正四棱柱ABCD-A 1 B1 C1 D1的体积V 柱 =AB 2·O1 O=62×8=288(m 3 ).所以仓库的容积V=V 锥 +V 柱 =24+288=312(m 3 ).(2)设 A 1 B1 =a(m),PO 1=h(m), 则 0<h<6,O 1 O=4h(m). 连结 O1 B1.因为在 Rt△PO1 B 1中 ,O1+P=P,所以+h2=36,即a2 =2(36-h 2).于是仓库的容积V=V 柱 +V 锥 =a2·4h+ a2·h= a2 h=(36h-h 3 ),0<h<6,从而 V'=(36-3h2 )=26(12-h 2).令 V'=0, 得 h=2或h=-2(舍 ).当0<h<2时,V'>0,V是单调增函数;当2<h<6 时,V'<0,V 是单调减函数 .故 h=2时,V取得极大值,也是最大值.因此 ,当 PO1=2m 时 ,仓库的容积最大.§9.1导数的概念及几何意义、导数的运算考纲解读要求来五年高考统计来源学# 科 #网 Z#X#X#K]考点来源学+科 +网][ 来源 :Z*xx*]内容解读2013 2 01420152016常考题型预测热度源 :][ 来源学。
科。
网20171.导数的概念及几何 1.切线方程的有关问题B 11 题填空题★★★意义 2.导数几何意义的应用 5 分解答题2.导数的运算导数的运算B 填空题★★★解答题分析解读导数的几何意义和导数的四则运算是学习导数的基础,江苏高考偶有单独考查,但更多的是与导数解答题放在一起进行综合考查 .五年高考考点一导数的概念及几何意义1.(2017课标全国Ⅰ文 ,14,5 分)曲线 y=x 2+ 在点 (1,2)处的切线方程为.答案x-y+1=02.(2017天津文改编 ,10,5 分 )已知 a∈R,设函数 f(x)=ax-ln x 的图象在点 (1, f(1)) 处的切线为 l, 则 l 在 y 轴上的截距为.答案13.(2016课标全国Ⅲ,16,5 分 )已知 f(x) 为偶函数 , 当 x≤0 时, f(x)=e -x-1-x, 则曲线 y=f(x) 在点 (1,2)处的切线方程是.答案y=2x4.(2015陕西 ,15,5 分)设曲线 y=e x在点 (0,1)处的切线与曲线 y=(x>0) 上点 P 处的切线垂直 ,则 P 的坐标为.答案(1,1)5.(2014江苏 ,11,5 分)在平面直角坐标系xOy 中,若曲线 y=ax2+(a,b 为常数 ) 过点 P(2,-5),且该曲线在点 P 处的切线与直线7x+2y+3=0 平行 ,则 a+b 的值是.答案-3教师用书专用 (6 — 9)6.(2013广东理 ,10,5 分 )若曲线 y=kx+ln x 在点 (1,k) 处的切线平行于 x 轴 ,则 k=.答案-17.(2013重庆理 ,17,13 分 )设 f(x)=a(x-5) 2+6ln x,其中 a∈R,曲线 y=f(x) 在点 (1, f(1)) 处的切线与 y 轴相交于点 (0,6).(1)确定 a的值 ;(2)求函数 f(x) 的单调区间与极值 .解析(1)因 f(x)=a(x-5) 2+6ln x,故 f '(x)=2a(x-5)+ .令 x=1, 得 f(1)=16a, f '(1)=6-8a, 所以曲线 y=f(x) 在点 (1, f(1)) 处的切线方程为y-16a=(6-8a)(x-1), 由点 (0,6)在切线上可得6-16a=8a-6,故a= .(2)由 (1) 知, f(x)= (x-5) 2+6ln x(x>0), f '(x)=x-5+ =--.令f '(x)=0, 解得 x1=2,x 2=3.当0<x<2 或 x>3 时 , f '(x)>0, 故 f(x) 在 (0,2),(3,+ 上∞)为增函数 ; 当 2<x<3 时, f '(x)<0, 故 f(x) 在(2,3)上为减函数 .由此可知 f(x) 在 x=2 处取得极大值f(2)= +6ln 2,在 x=3 处取得极小值f(3)=2+6ln 3.8.(2015 北京 ,18,13 分) 已知函数 f(x)=ln-.(1)求曲线 y=f(x) 在点 (0, f(0)) 处的切线方程 ;(2)求证 : 当 x∈(0,1)时 , f(x)>2;(3)设实数 k 使得 f(x)>k对x∈(0,1)恒成立,求k的最大值.解析(1)因为 f(x)=ln(1+x)-ln(1-x),所以 f '(x)=+ - , f '(0)=2.又因为 f(0)=0, 所以曲线y=f(x) 在点 (0,f(0)) 处的切线方程为y=2x.(2)证明 : 令 g(x)=f(x)-2,则g'(x)=f '(x)-2(1+x 2 )= - .因为 g'(x)>0(0<x<1), 所以 g(x) 在区间 (0,1)上单调递增 .所以 g(x)>g(0)=0,x ∈(0,1),即当 x∈(0,1)时 , f(x)>2.(3)由 (2) 知,当 k ≤2 时 , f(x)>k对x∈(0,1)恒成立.当 k>2 时 ,令 h(x)=f(x)-k,则 h'(x)=f '(x)-k(1+x2 )=- -. -所以当 0<x<-时 ,h'(x)<0, 因此 h(x) 在区间-上单调递减 .-时 ,h(x)<h(0)=0, 即 f(x)<k.当 0<x<所以当 k>2 时 , f(x)>k并非对 x∈(0,1)恒成立 .综上可知 ,k 的最大值为 2.9.(2013 北京理 ,18,13 分 )设 L 为曲线 C:y=在点 (1,0)处的切线 .(1)求 L 的方程 ;(2)证明 : 除切点 (1,0)之外 ,曲线 C 在直线 L 的下方 .解析 (1)设 f(x)=,则 f '(x)=-.所以 f '(1)=1. 所以 L 的方程为 y=x-1.(2)证明 : 令 g(x)=x-1-f(x), 则除切点之外 ,曲线 C 在直线 L 的下方等价于g(x)>0( ?x>0,x ≠1).g(x) 满足 g(1)=0, 且-.g'(x)=1-f '(x)=当0<x<1 时,x2-1<0,ln x<0,所以 g'(x)<0, 故 g(x) 单调递减 ;当x>1 时 ,x2-1>0,ln x>0,所以 g'(x)>0, 故 g(x)单调递增 .所以 ,g(x)>g(1)=0( ? x>0,x ≠1).所以除切点之外,曲线 C 在直线 L 的下方 .考点二导数的运算1.(2016 天津 ,10,5 分)已知函数 f(x)=(2x+1)e x, f '(x) 为 f(x) 的导函数 ,则 f '(0)的值为.答案32.(2014 福建 ,20,14 分) 已知函数 f(x)=e x-ax(a 为常数 )的图象与y 轴交于点A, 曲线 y=f(x) 在点 A 处的切线斜率为-1.(1)求 a 的值及函数f(x) 的极值 ;(2)证明 : 当 x>0 时,x2 <e x;2x(3)证明 : 对任意给定的正数c,总存在 x0,使得当 x∈(x0,+ ∞)时,恒有 x <ce .x x解析(1)由 f(x)=e -ax,得 f '(x)=e -a.又f '(0)=1-a=-1, 得 a=2.所以 f(x)=e x-2x,f '(x)=e x-2.令f '(x)=0, 得 x=ln 2.当x<ln 2 时, f '(x)<0,f(x) 单调递减 ;当x>ln 2 时, f '(x)>0,f(x) 单调递增 .所以当 x=ln 2 时,f(x) 取得极小值 ,且极小值为 f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x) 无极大值 .(2)证明 : 令 g(x)=e x-x 2,则 g'(x)=e x -2x.由(1)得 g'(x)=f(x) ≥f(ln 2)>0,故g(x) 在 R 上单调递增 ,又 g(0)=1>0,因此 ,当 x>0 时,g(x)>g(0)>0, 即 x 2<e x.x x2x(3)证法一 :①若 c≥1,则 e ≤ce . 又由 (2)知,当 x>0 时,x <e .2x所以当 x>0 时 ,x <ce .取x 0=0,当 x∈(x 0,+ ∞)时,恒有 x 2<ce x.②若 0<c<1,令 k= >1,要使不等式x2<ce x成立,只要e x>kx2成立.而要使 e x>kx 2成立 ,则只要 x>ln(kx 2),只要 x>2ln x+ln k 成立 .-令 h(x)=x-2ln x-ln k, 则 h'(x)=1- = ,所以当 x>2 时 ,h'(x)>0,h(x) 在 (2,+ ∞)内单调递增 .取x 0=16k>16, 所以 h(x) 在(x 0,+ ∞)内单调递增 ,又 h(x 0)=16k-2ln(16k)-ln k=8(k-ln 2)+3(k-ln k)+5k,易知 k>ln k,k>ln 2,5k>0, 所以 h(x0)>0.即存在 x 0=,当 x ∈(x 0,+ ∞)时,恒有 x2<ce x.综上 ,对任意给定的正数c,总存在 x0,当 x∈(x0,+ ∞)时,恒有 x 2<ce x .证法二 : 对任意给定的正数c,取 x0= ,由(2)知, 当 x>0 时 ,e x >x2,所以 e x=· >,当 x>x 0时,e x>>= x2,因此 ,对任意给定的正数c,总存在 x0,当 x∈(x0,+ ∞)时,恒有 x 2<ce x .证法三 : 首先证明当x∈(0,+ ∞)时,恒有 x3<e x.证明如下 :令 h(x)= x 3-e x,则 h'(x)=x 2-e x.由(2)知, 当 x>0 时 ,x2 <e x,从而 h'(x)<0,h(x) 在 (0,+ ∞)内单调递减 ,所以 h(x)<h(0)=-1<0, 即 x 3<e x.取x 0= , 当 x>x 0时,有 x2< x 3<e x.2x 因此 ,对任意给定的正数c,总存在 x0,当 x∈(x0,+ ∞)时,恒有 x <ce .教师用书专用(3)3.(2013 福建理 ,17,13 分 )已知函数f(x)=x-aln x(a∈R).(1)当 a=2 时 ,求曲线 y=f(x) 在点 A(1, f(1)) 处的切线方程 ;(2)求函数 f(x) 的极值 .解析函数 f(x) 的定义域为 (0,+ ∞ ),f '(x)=1- .(1)当 a=2 时 , f(x)=x-2ln x, f '(x)=1- (x>0),因而 f(1)=1, f '(1)=-1,所以曲线 y=f(x) 在点 A(1, f(1)) 处的切线方程为y-1=-(x-1), 即 x+y-2=0.(2)由 f '(x)=1- = - ,x>0 知:①当 a≤0 时 , f '(x)>0, 函数 f(x) 为(0,+ ∞)上的增函数 ,函数 f(x) 无极值 ;②当 a>0 时 ,由 f '(x)=0, 解得 x=a.又当 x∈(0,a)时 , f '(x)<0; 当 x ∈(a,+ ∞)时, f '(x)>0,从而函数 f(x) 在 x=a 处取得极小值 ,且极小值为f(a)=a-aln a,无极大值 .综上 ,当 a≤0 时 ,函数 f(x) 无极值 ;当 a>0 时 ,函数 f(x) 在 x=a 处取得极小值a-aln a,无极大值 .三年模拟A 组2016—2018 年模拟·基础题组考点一导数的概念及几何意义1.(2018江苏常熟期中调研 )已知曲线 f(x)=ax 3+ln x 在 (1,f(1)) 处的切线的斜率为 2,则实数 a 的值是.答案2.(2018江苏东台安丰高级中学月考 )在平面直角坐标系 xOy 中,直线 l 与函数 f(x)=2x2+a2(x>0) 和 g(x)=2x 3+a2(x>0) 的图象均相切 (其中 a 为常数 ),切点分别为 A(x 1 ,y1 )和 B(x 2,y2),则 x1+x2的值为.答案3.(2018江苏扬州中学月考 )若曲线 y=kx+ln x 在点 (1,k) 处的切线平行于x 轴,则 k=.答案 -14.(2018江苏淮安宿迁高三第一学期期中)已知函数 f(x)=x 3 .设曲线 y=f(x) 在点 P(x1,f(x 1)) 处的切线与该曲线交于另一点 Q(x 2,f(x 2 )),记 f '(x) 为函数 f(x) 的导数 ,则的值为.答案5.(2018江苏常熟高三期中 )已知函数 f(x)=若直线 y=ax 与 y=f(x) 的图象交于三个不同的点A(m,f(m)),B(n,f(n)),C(t,f(t))( 其中 m<n<t),则 n+ +2 的取值范围是.答案6.(苏教选2—2,一,1,5,变式 )经过点 (2,0)且与曲线 y= 相切的直线方程为.答案 x+y-2=07.(2017江苏苏州暑期调研 ,5)曲线 y=e x在 x=0 处的切线方程是.答案 y=x+18.(2017江苏海头高级中学质检,10)已知点 P(1,m)是函数 y=ax+图象上的点 ,直线 x+y=b 是该函数图象在点P 处的切线 ,则 a+b-m=.答案29.(2017 江苏南京高淳质检,10)设 P 是函数 y= (x+1) 图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是.10.(2017 江苏苏州期中 ,4)曲线 y=x-cos x 在点处的切线方程为.答案2x-y- =011.(2016 江苏扬州中学期中 ,11)若 x 轴是曲线 f(x)=ln x-kx+3 的一条切线 ,则 k=.答案e212.(苏教选 2—2,一 ,2,4,变式 )点 P 是曲线 y=e x上任意一点 ,求点 P 到直线 y=x 的最小距离 .解析根据题意设平行于直线 y=x 的直线与曲线 y=e x相切于点 (x 0,y0),该切点即为曲线y=e x上与直线 y=x 距离最近的点 ,如图 .则曲线y=e x在点 (x0 ,y0)处的切线斜率为 1.∵y'=(e x)'=e x,∴=1,得 x0=0,∴y0=1,即P(0,1).利用点到直线的距离公式得点P(0,1) 到直线 y=x 的距离为.考点二导数的运算13.(苏教选 2—2,一 ,2,8,变式 )设 y=-2e x sin x,则 y'=.答案 -2e x (sin x+cos x)14.(苏教选 2— 2,一,2,5,变式 )设曲线 y=-在点 (3,2)处的切线与直线ax+y+1=0 垂直 , 则 a=.答案 -215.(2016 江苏阶段测试 ,10)若函数 f(x)=x3-f '(-1)x 2+x, 则 [f '(0)+f '(1)]f'(2)=.答案 91B 组2016— 2018 年模拟·提升题组(满分 :15 分时间 :10 分钟 )填空题 (每小题 5 分,共 15 分)x 的图象与圆 M:(x-3) 2+y2 =r2的公共点 ,且它们在1.(2017 江苏南京、盐城一模 ,13) 在平面直角坐标系xOy 中,已知点 P 为函数 y=2ln点 P 处有公切线 ,若二次函数 y=f(x) 的图象经过点O,P,M, 则 y=f(x) 的最大值为.答案2.(2017 南京、盐城第二次模拟考试,14)已知函数f(x)= ln x+(e-a)x-b, 其中 e 为自然对数的底数.若不等式f(x) ≤0 恒成立 ,则的最小值为.答案-3.(2016 江苏无锡期末 ,12)曲线 y=x- (x>0) 上一点 P(x0,y0 )处的切线分别与x 轴,y 轴交于点 A 、 B,O 是坐标原点 , 若△OAB 的面积为,则 x 0=.C 组2016 —2018 年模拟·方法题组方法 1求函数的导数的方法1.求下列函数的导数:(1)y=x 2sin x;(2)y=-;(3)y=.解析(1)y'=(x 2)'sin x+x 2(sin x)'=2xsin x+x 2cos x.- ---(2)y'==.--( 3)y'=-= ------=.方法 2利用导函数求曲线的切线方程2.已知函数 f(x)=,g(x)=aln x,a∈R.若曲线 y=f(x) 与曲线 y=g(x) 相交 ,且在交点处有相同的切线,求该切线方程 .解析 f '(x)=,g'(x)=(x>0),设两曲线交点的横坐标为x, 则由已知得解得 a= ,x=e2 ,∴两条曲线交点的坐标为(e2,e),切线的斜率 k=f'(e2)=,∴切线的方程为 y-e=(x-e2),即 x-2ey+e2=0.D 组2016—2018 年模拟·突破题组(2016 江苏扬州中学质检 ,19)对于函数 f(x),g(x), 如果它们的图象有公共点P,且在点 P 处的切线相同 ,则称函数 f(x) 和 g(x) 在点 P 处相切 ,称点 P 为这两个函数的切点 .设函数 f(x)=ax 2-bx(a ≠0),g(x)=ln x.(1)当 a=-1,b=0 时 , 判断函数 f(x) 和 g(x) 是否相切 ,并说明理由 ;(2)已知 a=b,a>0,且函数 f(x) 和 g(x) 相切 ,求切点 P 的坐标 .解析(1)当 a=-1,b=0 时, 函数 f(x) 和 g(x)不相切 .理由如下 :由条件知f(x)=-x 2,由 g(x)=ln x,得 x>0,因为 f '(x)=-2x,g'(x)= , 所以当 x>0 时,f '(x)=-2x<0,g'(x)= >0,所以对于任意的x>0,f '(x) ≠g'(x).故当 a=-1,b=0 时 ,函数 f(x) 和 g(x) 不相切 .(2)若 a=b,则 f '(x)=2ax-a, 由题意得 g'(x)=,设切点坐标为 (s,t),其中 s>0,由题意 ,得 as 2-as=ln s①,2as-a=②,由②得a=,代入①得-- =ln s(*). 因为 a=->0,且 s>0,所以 s> .--设函数 F(x)=- -ln x,x ∈,则 F'(x)= - -- .-令F'(x)=0, 解得 x=1 或 x= ( 舍).当 x 变化时 ,F'(x) 与 F(x) 的变化情况如下表所示:x1(1,+ ∞)F'(x)+0-F(x)↗极大值↘所以当 x=1 时 ,F(x)取到最大值F(1)=0, 且当x ∈∪(1,+∞)时,F(x)<0.因此 ,当且仅当 x=1 时 ,F(x)=0. 所以方程 (* )有且仅有一解s=1.于是 t=ln s=0,因此切点 P 的坐标为 (1,0).。
导数的概念及其意义、导数的运算
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f′(x0)=[f(x0)]′.( × ) (4)若f(x)=sin (-x),则f′(x)=cos (-x).( × )
∵点(0,-1)不在曲线f(x)=xln x上, ∴设切点为(x0,y0). 又f′(x)=1+ln x, ∴直线l的方程为y+1=(1+ln x0)x. ∴由yy00= +x10=lnx10+,ln x0x0, 解得 x0=1,y0=0.
∴直线l的方程为y=x-1,即x-y-1=0.
命题点2 求参数的值(范围)
1.函数f(x)=ex+1x 在x=1处的切线方程为__y=__(_e_-__1_)_x_+_2__.
f′(x)=ex-x12, ∴f′(1)=e-1, 又f(1)=e+1, ∴切点为(1,e+1),切线斜率k=f′(1)=e-1, 即切线方程为y-(e+1)=(e-1)(x-1), 即y=(e-1)x+2.
[cf(x)]′= cf′(x) .
5.复合函数的定义及其导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x = y′u·u′x ,即y对x的导数等于y对u的导数与u对x的导数的乘积.
常用 结论
1.区分在点处的切线与过点处的切线 (1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.f1x′=-[ff′x]2x(f(x)≠0).
第三章
考试要求
1.了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义 3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如
导数的概念及其几何意义(高三理)
导数的概念及其几何意义【考点精讲】(一)导数的概念:1.导函数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即xx f x x f x y x ∆-∆+='→∆)()(lim )(0000。
(二)导数的几何意义:1. 导数的几何意义:设函数()y f x =如图,AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线,由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率。
当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即:000()()limx f x x f x x∆→+∆-=∆切线AD 的斜率,曲线()y f x =过点00(,())x f x 切线的斜率等于0()f x '。
2.切线的方程:函数()f x 在0x x =处的导数就是曲线()y f x =在点P 00(,())x f x 处的切线的斜率。
由此,求曲线在一点处的切线的一般步骤: ①求出P 点的坐标; ②求点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆得曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程(三)常见函数的导数:(高等数学中有证明过程)(1) (2) (3)(4) (5) (6)()ln (0,1)x x a a a a a '=>≠ (7) (8)1()2x x '=(9)a x x a ln 1)(log ='(四)导函数的四则运算法则:()'''u v u v +=+,()'''uv u v uv =+ ,2''()'u u v uv v v -= (五)复合函数的导数:设函数在点处有导数,函数在点的对应点处有导数,则在点处有导数.).)((0'0x x x f y y -=-)(0为常数C C =')(1Q n nx x n n ∈='-)(x x cos )(sin ='x x sin )(cos -='xx 1)(ln ='xx e e =')()(x u ψ=x )(x u x ψ'=')(u f y =x u )(u f y u '='f y =)]([x ψx x u x u y y '⋅'='(六)如何求函数的导数:(1)由导数的定义求函数)(x f y =的导数的一般方法:①求函数的变量)()(f x f x x f -∆+=∆; ②求平均变化率xx f x x f x∆-∆+=∆∆)()(f ;③求导数=xx ∆∆→∆f lim 0。
导数的概念及其意义、导数的运算
π
3
π
3
( x 2e x )'=( x 2+2 x )e x ,故B错误;
cos 2 −
1
−
'=-2 sin 2 −
1
'=1+ 2 ,故D正确.
,故C错误;
3. (2024·陕西西安模拟)已知函数 f =ln x +f' 1 x 2-3,则f' 1
=
-1 .
因为 f =ln x +f' 1
;
ln(2+1)
[解] y'=
=
=
=
'
ln(2+1) ′ −′ln(2+1)
2
′· −ln(2+1)
(2+1)
2+1
2
2
−ln(2+1)
2+1
2
2−(2+1)ln(2+1)
=
.
2
(2+1)
e +1
(5) y = ;
e −1
e (e −1)−(e +1)e
0有两不相等的实根,故Δ= a 2+4 a >0,解得 a >0或 a <-4.
例4
为
过点(0,-1)作曲线 f ( )=ln x ( x >0)的切线,则切点坐标
( e ,1) .
由 f ( )=ln x ( x >0),得 f ( x )=ln x 2=2ln x ,
2
则f'( x )= ,设切点坐标为( x 0,2ln
2ln 0 +1
(完整版)导数的概念、几何意义及其运算
导数的概念、几何意义及其运算常见基本初等函数的导数公式和常用导数运算公式 :+-∈==N n nx x C C n n ,)(;)(01''为常数;;sin )(cos ;cos )(sin ''x x x x -== a a a e e xx x x ln )(;)(''==;e x x x x a a log 1)(log ;1)(ln ''==法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u +=法则3: )0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾:1.导数的定义:函数)(x f y =在0x 处的瞬时变化率xx f x x f x y o x x ∆-∆+=∆∆→∆→∆)()(limlim 000称为函数)(x f y =在0x x =处的导数,记作)(0/x f 或0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。
称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =xx f x x f x ∆-∆+→∆)()(lim0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0/x x y =,就是导函数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。
导数的概念及其意义 、导数的运算(高三一轮复习)
;
gfxx′=f′xgx[g-xf]2xg′x(g(x)≠0);
[cf(x)]′= 16 cf′(x)
.
— 8—
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x 的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y= 17 f(g(x)) .
— 20 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 导数的几何意义
考向1 求切线方程
例2
(1)(2022·湖南衡阳二模)函数f(x)=xln(-2x),则曲线y=f(x)在x=-
e 2
处的
切线方程为 4x-2y+e=0
.
(2)(2y0=22-·新1e高x 考Ⅱ卷.)曲线y=ln|x|过坐标原点的两条切线的方程为
(2)f1x′=-f[′fxx]2(f(x)≠0). (3)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次函数的图 象相切只有一个公共点. (4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变 化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
f(x)=xα(α∈Q且α≠0) f′(x)= 7αxα-1
f(x)=sin x
f′(x)= 8 cos x
f(x)=cos x
f′(x)= 9 -sin x
— 6—
数学 N 必备知识 自主学习 关键能力 互动探究
f(x)=ax(a>0且a≠1) f′(x)= 10 axln a
导数的概念及其意义、导数的运算
B.(x2ex)′=x(x+2)ex D.x-1x′=1-x12
答案:BC
解析:A 项ln1x′=-ln12x·(ln x)′=-xln12x; D 项x-1x′=1+x12.
2.已知 f(x)=coesx x,则 f′(x)=________.
答案:-sin
x+cos ex
x
解析:f′(x)=coesx
答案:C 解析:由题意可知 y′=2cos x-sin x,则 y′|x=π=-2.所以曲线 y =2sin x+cos x 在点(π,-1)处的切线方程为 y+1=-2(x-π),即 2x +y+1-2π=0,故选 C.
6.[2019·全国Ⅰ卷]曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 ________.
答案:C 解析:∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
2.[选修二·P18 A 组 T6]曲线 y=1-x+2 2在点(-1,-1)处的切线 方程为________.
答案:2x-y+1=0 解析:∵y′=x+222,∴y′|x=-1=2.∴所求切线方程为 2x-y+1 =0.
4.设 f(x)=ln(3-2x)+cos 2x,则 f′(0)=________.
答案:-23 解析:因为 f′(x)=-3-22x-2sin 2x,所以 f′(0)=-23.
三、走进高考 5.[2019·全国Ⅱ卷]曲线 y=2sin x+cos x 在点(π,-1)处的切线方 程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0
微点 2 未知切点求切线方程 [例 2] 已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直线 l 的方程为________.
第01讲 导数的概念及其意义、导数的运算(十二大题型)2025年高考数学一轮复习讲练测
(0 +ℎ)−(0 −ℎ)
(, ),则 lim
ℎ
ℎ→0
)
A.′ 0
B.2′ 0
C.−2 ′ 0
D.0
【答案】B
0 +ℎ − 0 −ℎ
【解析】由题意知, lim
ℎ
ℎ→0
0 +ℎ − 0 −ℎ
ℎ→0 0 +ℎ − 0 −ℎ
= 2lim
故选:B
= 2′ 0 .
变化率为( )
3
A.
300
cm/s
6π
3
B.
3
300
cm/s
5π
C.
150
cm/s
3π
3
D.
150
cm/s
2π
【答案】C
2
1
1
【解析】设注入溶液的时间为(单位:s)时,溶液的高为ℎcm,则 π ⋅ ℎ
3
5
因为ℎ′ =
1 3 150
,所以当
3 π 2
= π时,ℎ′ =
1 3 150
3
π3
即圆锥容器内的液体高度的瞬时变化率为
1
【解析】() = ′(1) −1 − (0) + 2 2 ⇒ ′() = ′(1) −1 − (0) +
令 = 1得: (0) = 1
() =
′(1) −1
−+
1 2
2
⇒ (0) = ′(1) −1 = 1 ⇔ ′(1) =
1
得:() = − + 2 2
则 ′ (0) = 1且(0) = 0,即切线的斜率为 = 1,切点坐标为(0,0),
所以切线方程为 = .
导数的概念及运算、几何意义
导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。
导数的意义知识点总结
导数的意义知识点总结一、导数的定义导数是函数在某一点上的变化率,它表示了函数在这一点上的瞬时变化速率。
具体来说,对于函数y=f(x),其在点x处的导数可以定义为:f'(x) = lim(Δx->0) [f(x+Δx)-f(x)] / Δx其中,lim表示极限运算,Δx表示自变量x的增量。
这个定义可以直观地理解为,当Δx 趋向于0时,函数在点x处的变化率,即斜率,就是函数在这一点的导数。
二、导数的意义1. 几何意义导数在几何学中有重要的意义,它可以表示函数图像在某一点的切线斜率。
具体地说,函数y=f(x)在点(x, f(x))处的切线斜率就是函数在这一点的导数f'(x)。
这个切线斜率可以告诉我们函数在这一点上的变化趋势,以及函数在这一点的局部性质。
2. 物理意义在物理学中,导数表示了物理量随时间的变化率。
例如,位移随时间的导数就是速度,速度随时间的导数就是加速度。
这些物理量的导数可以告诉我们物体在某一时刻的变化速度和变化趋势,对于研究物体的运动和变化有着重要的意义。
3. 经济意义在经济学中,导数表示了经济变量随时间的变化率。
例如,收入随时间的导数就是收入增长率,成本随时间的导数就是成本增长率。
这些导数可以告诉我们经济变量的变化趋势,对于研究经济发展和经济政策有着重要的意义。
三、导数的应用1. 最优化导数在最优化问题中有着重要的应用,它可以帮助我们找到函数的最大值和最小值。
具体地说,函数在最大值和最小值点处的导数为0,因此我们可以通过求导数为0的点来解决最优化问题。
2. 运动学在运动学中,导数可以帮助我们研究物体的运动轨迹和速度变化。
通过求解物体位移随时间的导数,我们可以得到物体的速度;通过求解速度随时间的导数,我们可以得到物体的加速度。
这些导数可以帮助我们研究物体的运动规律和行为。
3. 曲线拟合导数可以帮助我们进行曲线拟合和数据分析。
通过求解数据点的导数,我们可以得到数据的变化率和趋势,从而对数据进行分析和预测。
导数的概念及其意义、导数的运算(精讲)2024年高考数学高频考点题型归纳与方法总结(新高考通用)
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第14讲 导数的概念及其意义、导数的运算(精讲)题型目录一览一、导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.注:增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.二、导数的运算1.求导的基本公式2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【常用结论】1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线) 题型一 导数的定义策略方法 对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出.【题型训练】一、单选题二、填空题题型二导数的运算策略方法对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题.【题型训练】一、解答题题型三 导数中的切线问题①-求在曲线上一点的切线方程策略方法 已知切点A (x 0,f (x 0))求切线方程,可先求该点处的导数值f ′(x 0),再根据y -f (x 0)=f ′(x 0)(x -x 0)求解.【题型训练】一、单选题二、填空题4.(2023·全国·高三专题练习)已知曲线2y x 在点()2,4处的切线与曲线()e xf x x =-在点()()00,x f x 处的7.(2023·湖北·黄冈中学校联考模拟预测)已知函数()|ln |f x x =,直线1l ,2l 是()f x 的两条切线,1l ,2l 相交于点Q ,若12l l ⊥,则Q 点横坐标的取值范围是________. 三、解答题题型四 导数中的切线问题①-求过一点的切线方程策略方法设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-, 又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值【题型训练】一、单选题二、填空题题型五 导数中的切线问题①-求参数的值(范围)策略方法 1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围. (2)谨记切点既在切线上又在曲线上.【典例1】已知函数()2ln f x ax b x =-在点()()1,1f 处的切线为1y =,则a b +的值为( )A .1B .2C .3D .4【题型训练】一、单选题的横坐标为( ) A .1B .1-C .2D .2-2.(2023·全国·高三专题练习)已知函数()xf x xe =与()()2g x x ax a =+∈R 的图象在()0,0A 处有相同的切线,则=a ( ) A .0B .1-C .1D .1-或13.(2023春·宁夏银川·高三银川一中校考阶段练习)若点P 是函数()2ln f x x x =-任意一点,则点P 到直线二、填空题点()1,0处的切线与直线10x by -+=垂直,则a b +=__________.7.(2023春·云南·高三校联考开学考试)已知直线y ax b =+与曲线ln 2y a x =+相切,则223a b +的最小值为____________.。
(word完整版)导数的概念、导数公式与应用
导数的概念及运算知识点一:函数的平均变化率(1)概念:+△x)函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x—f(x),其比值叫做函数从到+△x的平均变化率,即。
若,,则平均变化率可表示为,称为函数从到的平均变化率。
注意:①事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。
③是自变量在处的改变量,;而是函数值的改变量,可以是0。
函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。
(2)平均变化率的几何意义函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。
如图所示,函数的平均变化率的几何意义是:直线AB的斜率。
事实上,.作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。
知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x 以增量,函数y 相应有增量。
若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。
即:(或)注意: ①增量可以是正数,也可以是负数;②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数.注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。
3.导数几何意义: (1)曲线的切线曲线上一点P(x 0,y 0)及其附近一点Q (x 0+△x ,y 0+△y),经过点P 、Q 作曲线的割线PQ ,其倾斜角为当点Q(x 0+△x,y 0+△y)沿曲线无限接近于点P(x 0,y 0),即△x →0时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线。
若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。
22第一部分 板块二 专题六 函数与导数 第3讲 导数的简单应用(小题)
第3讲 导数的简单应用(小题)热点一 导数的几何意义应用导数的几何意义解题时应注意:(1)f ′(x )与f ′(x 0)的区别与联系,f ′(x 0)表示函数f (x )在x =x 0处的导数值,是一个常数; (2)函数在某点处的导数值就是对应曲线在该点处切线的斜率; (3)切点既在原函数的图象上也在切线上.例1 (1)已知函数f (x )=x +1,g (x )=a ln x ,若函数f (x )与g (x )的图象在x =14处的切线平行,则实数a 的值为( ) A.14 B.12C .1D .4 (2)(2019·东莞调研)设函数f (x )=2x 3+(a +3)x sin x +ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A .y =x B .y =2x C .y =-3xD .y =4x跟踪演练1 (1)(2019·六安联考)曲线f (x )=a ln x 在点P (e ,f (e))处的切线经过点(-1,-1),则a 的值为( )A .1B .2C .eD .2e(2)若直线y =kx +b 是曲线y =ln x +1的切线,也是曲线y =ln(x +2)的切线,则实数b =________.热点二 利用导数研究函数的单调性 利用导数研究函数单调性的关键:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)单调区间的划分要注意对导数等于零的点的确认; (3)已知函数单调性求参数范围,要注意导数等于零的情况.例2 (1)(2019·郑州质检)函数f (x )是定义在[0,+∞)上的函数,f (0)=0,且在(0,+∞)上可导,f ′(x )为其导函数,若xf ′(x )+f (x )=e x (x -2)且f (3)=0,则不等式f (x )<0的解集为( ) A .(0,2) B .(0,3) C .(2,3)D .(3,+∞)(2)(2019·江西红色七校联考)若函数f (x )=2x 3-3mx 2+6x 在区间(1,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,1] B .(-∞,1) C .(-∞,2]D .(-∞,2)跟踪演练2 (1)(2019·上饶模拟)对任意x ∈R ,函数y =f (x )的导数都存在,若f (x )+f ′(x )>0恒成立,且a >0,则下列说法正确的是( ) A .f (a )<f (0) B .f (a )>f (0) C .e a ·f (a )<f (0)D .e a ·f (a )>f (0)(2)(2019·临沂质检)函数f (x )=12ax 2-2ax +ln x 在(1,3)上不单调的一个充分不必要条件是( )A .a ∈⎝⎛⎭⎫-∞,-12 B .a ∈⎝⎛⎭⎫-12,16 C .a ∈⎝⎛⎭⎫16,12D .a ∈⎝⎛⎭⎫12,+∞热点三 利用导数研究函数的极值、最值 利用导数研究函数的极值、最值应注意的问题: (1)不能忽略函数f (x )的定义域;(2)f ′(x 0)=0是可导函数在x =x 0处取得极值的必要不充分条件; (3)函数的极小值不一定比极大值小;(4)函数在区间(a ,b )上有唯一极值点,则这个极值点也是最大(小)值点,此结论在导数的实际应用中经常用到.例3 (1)(2019·东北三省三校模拟)若函数f (x )=e x -ax 2在区间(0,+∞)上有两个极值点x 1,x 2(0<x 1<x 2),则实数a 的取值范围是( ) A .a ≤e 2 B .a >e C .a ≤e D .a >e2(2)(2019·丹东质检)直线y =m 与直线y =2x +3和曲线y =ln 2x 分别相交于A ,B 两点,则|AB |的最小值为________.跟踪演练3 (1)(2019·天津市和平区质检)已知函数f (x )=x 3+ax 2+bx +c ,若f (1)=0,f ′(1)=0,但x =1不是函数的极值点,则abc 的值为________. (2)已知a >0,f (x )=x e xe x +a ,若f (x )的最小值为-1,则a 等于( )A.1e 2B.1eC .eD .e 2真题体验1.(2017·山东,文,10)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( ) A .f (x )=2-x B .f (x )=x 2 C .f (x )=3-xD .f (x )=cos x2.(2019·全国Ⅱ,文,10)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( ) A .x -y -π-1=0 B .2x -y -2π-1=0 C .2x +y -2π+1=0 D .x +y -π+1=0押题预测1.曲线y =2x ln x 在x =e 处的切线与坐标轴围成的三角形的面积为( ) A.e 24 B.e 22C .e 2D .2e 2 2.已知定义在R 上的函数f (x )的导函数为f ′(x ),若f (x )+f ′(x )<0,f (0)=1,则不等式e x f (x )<1的解集为( ) A .(-∞,0) B .(0,+∞) C .(-∞,1)D .(1,+∞) 3.已知函数f (x )=(x -3)e x +a (2ln x -x +1)在(1,+∞)上有两个极值点,且f (x )在(1,2)上单调递增,则实数a 的取值范围是( ) A .(e ,+∞) B .(e,2e 2)C .(2e 2,+∞)D .(e,2e 2)∪(2e 2,+∞)A 组 专题通关1.设函数y =x sin x +cos x 的图象在点()t ,f (t )处切线的斜率为g (t ),则函数y =g (t )的图象一部分可以是( )2.(2019·甘青宁联考)若直线y =kx -2与曲线y =1+3ln x 相切,则k 等于( ) A .3 B.13 C .2 D.123.(2019·沈阳模拟)已知函数f (x )=2e f ′(e)ln x -xe,则f (x )的极大值点为( )A.1eB .1C .eD .2e 4.(2019·全国Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( ) A .a =e ,b =-1 B .a =e ,b =1 C .a =e -1,b =1D .a =e -1,b =-15.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的解集为( )A.⎝⎛⎭⎫-∞,12 B .(0,+∞) C.⎝⎛⎭⎫12,+∞ D .(-∞,0)6.已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A.⎝⎛⎦⎤-∞,e24 B.⎝⎛⎦⎤-∞,e2 C .(0,2]D.[)2,+∞7.若函数f (x )=e x -x 2-ax (其中e 是自然对数的底数)的图象在x =0处的切线方程为y =2x +b ,则函数g (x )=f ′(x )-bx 在(0,+∞)上的最小值为( )A .-1B .eC .e -2D .e 28.若曲线y =x -ln x 与曲线y =ax 3+x +1在公共点处有相同的切线,则实数a 等于( ) A.e 23 B .-e 23C .-e 3D.e 39.(2019·岳阳模拟)已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为( ) A.⎝⎛⎦⎤1e 2,4e B.⎝⎛⎦⎤1e ,4e 2 C.⎣⎡⎭⎫4e 2,2eD.⎣⎡⎭⎫1e 3,2e 210.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.2211.(2019·吉林调研)设函数f (x )在R 上存在导函数f ′(x ),对任意实数x ,都有f (x )=f (-x )+2x ,当x <0时,f ′(x )<2x +1,若f (1-a )≤f (-a )+2-2a ,则实数a 的最小值为( ) A .-1 B .-12 C.12D .112.(2019·江淮联考)若对∀x 1,x 2∈(m ,+∞),且x 1<x 2,都有x 1ln x 2-x 2ln x 1x 2-x 1<1,则m 的最小值是( )注:(e 为自然对数的底数,即e =2.718 28…) A.1e B .e C .1 D.3e13.(2018·齐鲁名校教科研协作体模拟)已知函数f (x )=sin x -x cos x ,现有下列结论: ①当x ∈[0,π]时,f (x )≥0; ②当0<α<β<π时,α·sin β>β·sin α;③若n <sin x x <m 对∀x ∈⎝⎛⎭⎫0,π2恒成立,则m -n 的最小值等于1-2π; ④已知k ∈[]0,1,当x i ∈()0,2π时,满足|sin x i |x i =k 的x i 的个数记为n ,则n 的所有可能取值构成的集合为{0,1,2,3}. 其中正确的序号为________.14.已知函数f (x )=2ln x 和直线l :2x -y +6=0,若点P 是函数f (x )图象上的一点,则点 P 到直线l 的距离的最小值为________.15.(2019·衡水调研)已知函数f (x )=12x 2+tan θx +3⎝⎛⎭⎫θ≠π2,在区间⎣⎡⎦⎤-33,1上是单调函数,其中θ是直线l 的倾斜角,则θ的所有可能取值区间为________.16.(2019·厦门模拟)若实数a ,b ,c 满足(a -2b -1)2+(a -c -ln c )2=0,则|b -c |的最小值是________.B 组 能力提高17.已知a ∈Z ,若∀m ∈(0,e),∃x 1,x 2∈(0,e)且x 1≠x 2,使得(m -2)2+3=ax 1-ln x 1=ax 2-ln x 2,则满足条件的a 的取值个数为( ) A .5 B .4 C .3 D .218.(2019·洛阳统考)若函数f (x )=e x -(m +1)ln x +2(m +1)x -1恰有两个极值点,则实数m 的取值范围为( ) A .(-e 2,-e) B.⎝⎛⎭⎫-∞,-e2 C.⎝⎛⎭⎫-∞,-12 D.()-∞,-e -1。
导数的概念几何意义与运算
导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。
对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。
导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。
导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。
二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。
特定点处的切线斜率表示了函数在该点的变化速度。
2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。
导数的正负性能够直观地反映函数的增减趋势。
3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。
导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。
三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。
2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。
3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。
四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。
二次导数s''(t)则表示在时间t的瞬时加速度。
导数的概念及运算 知识点+例题 全面分类
由2x 0=2得x 0=1,故切线方程为y -1=2(x -1),即2x -y -1=0.5.曲线y =x 3在点(1,1)处的切线与x 轴及直线x =1所围成的三角形的面积为_________.答案 16解析 求导得y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3在点(1,1)处的切线方程为y -1=3(x -1),结合图象易知所围成的三角形是直角三角形,三个交点的坐标分别是(23,0),(1,0),(1,1), 于是三角形的面积为12×(1-23)×1=16,故选B. 6.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2x ·f ′(2),则f ′(5)=________.答案 6解析 对f (x )=3x 2+2xf ′(2)求导,得f ′(x )=6x +2f ′(2).令x =2,得f ′(2)=-12.再令x =5,得f ′(5)=6×5+2f ′(2)=6.7.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是__________.答案 x -y -2=0解析 根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.8.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交,且在交点处有共同的切线,则切线方程为________.答案 y =12e x +e 2解析 f ′(x )=12x,g ′(x )=a x (x >0), 由已知得⎩⎪⎨⎪⎧x =a ln x ,12x =a x ,解得a =e 2,x =e 2. ∴两条曲线交点的坐标为(e 2,e),切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e(x -e 2), 即y =12e x +e 2. 9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.11。
高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业
导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。
导数综合运算知识点总结
导数综合运算知识点总结一、导数的定义及意义:1. 导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为极限$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$其中f'(a)表示函数f(x)在点x=a处的导数。
2. 导数的几何意义:函数f(x)在点x=a处的导数f'(a)表示函数f(x)在点x=a处的切线斜率。
也即在点x=a处,函数f(x)的变化率。
3. 导数的物理意义:如果函数f(x)表示某一物理量y关于另一物理量x的变化规律,那么函数f'(x)表示物理量y关于物理量x的变化率。
4. 导数的符号:函数f(x)在点x=a处的导数f'(a)的符号表示函数f(x)在点x=a处的增减情况。
当f'(a)>0时,函数f(x)在点x=a处是增加的;当f'(a)<0时,函数f(x)在点x=a处是减小的;当f'(a)=0时,函数f(x)在点x=a处是不变的。
二、导数的运算法则:1. 基本导数法则:(常数函数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则、反三角函数规则、双曲函数规则)。
2. 复合函数的导数法则:函数f(g(x))的导数等于f'(g(x))g'(x)。
链式法则。
3. 反函数的导数法则:如果函数y=f(x)在区间I上单调、可导,并且在区间I上f'(x)≠0,则有反函数x=f^(-1)(y)在区间J上也可导,并且在区间J上f^(-1)'(y)=1/f'(f^(-1)(y))。
4. 参数方程的导数:如果x=f(t)、y=g(t)是参数方程,且函数f(t)、g(t)在t处可导,则参数方程x=f(t)、y=g(t)的导数dx/dt=f'(t)、dy/dt=g'(t)。
5. 隐函数的导数:若函数F(x,y)=0表示隐函数,且F(x,y)在点P(x0,y0)的邻域内具有连续偏导数,则隐函数y=f(x)的导数dy/dx可用偏导数表示:dy/dx=-∂F/∂x/∂F/∂y。
导数的概念及几何意义导数的运算
,由y=ln(x+1)得y'=
1 x 1
,∴k=
1 x1
=
1 x2 1
,∴x1=
1 k
,x2=
1 k
-1,∴y1=-ln
k+2,y2=-ln
k.
即A
1 k
, ln
k
2 ,B
1 k
1, ln k
,∵A、B在直线y=kx+b上,
∴
2
ln ln k
k
k
k 1 b, k
1 k
1
b
⇒
b k
当x0>1时, g '(x0)<0,函数g(x0)为减函数.
∴g(x0)在x0=1处取极大值,亦即x0>0时t取最大值.
e
∴tmax=g(1)=
1 e
=e
+
1
.
2 2 2e
评析 本题考查导数的几何意义、直线方程、导数的应用等相关知识,知识点较多,难度偏大, 考查学生的运算求解能力、分析问题、解决问题的综合能力.
的切线方程是
.
答案 y=-2x-1
解析 令x>0,则-x<0, f(-x)=ln x-3x,又f(-x)=f(x), ∴f(x)=ln x-3x(x>0),则f '(x)= 1 -3(x>0),∴f '(1)=-2,∴在点(1,-3)处的切线方程为y+3=-2(x-1),即y=
x
-2x-1.
思路分析 根据函数f(x)是偶函数,求出x>0时函数f(x)的解析式,根据导数的几何意义,用点斜 式求出切线方程. 评析 本题主要考查函数的奇偶性及导数的几何意义,求出x>0时f(x)的解析式是解题关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题22 导数的概念及其意义、导数的运算
一、单选题
1.(2020·蚌埠田家炳中学高二开学考试(理))已知(1)1f '=,0(13)(1)
lim x f x f x
∆→+∆-∆等于( )
A .1
B .-1
C .3
D .13
2.(2020·黄冈中学第五师分校高二期中(理))设函数()f x 在1x =处存在导数为2,则
0(1)(1)
lim
3x f x f x
∆→+∆-=∆( ).
A .23
B .6
C .
13
D .
12
3.(2020·江西省奉新县第一中学高二月考(理))函数()ln x
f x e x =在1x =处的切线方程是( ) A .()1y e x =-
B .1y ex =-
C .()21y e x =-
D .e y x =-
4.(2020·蚌埠田家炳中学高二开学考试(理))曲线1x y xe -=在点(1,1)处切线的斜率等于( ).
A .2e
B .e
C .2
D .1
5.(2020·江西省奉新县第一中学高二月考(理))若f ′(x 0)=-3,则()()
000
3lim
h f x h f x h h
→+--等于( )
A .-3
B .-6
C .-9
D .-12
6.(2020·江西省奉新县第一中学高二月考(理))已知()y f x =的导函数为()y f x '=,且在1x =处的切线方程为3y x =-+,则()()11f f '-=( ) A .2
B .3
C .4
D .5
7.(2020·黄冈中学第五师分校高二期中(理))函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )
A .()()()()02332f f f f ''<<<-
B .()()()()03322f f f f ''<<-<
C .()()()()03232f f f f ''<<<-
D .()()()()03223f f f f ''<-<<
8.(2020·湖北省高二期中)若函数()cos f x a x =与()2
3g x x bx =++图象在交点()0,m 处有公切线,则
a b m ++=( )
A .6
B .4
C .3
D .2
二、多选题
9.(2020·江苏省高二期中)直线1
2
y x b =+能作为下列( )函数的图像的切线. A .1()f x x
=
B .4()f x x =
C .()cos f x x =
D .()ln f x x =
10.(2019·山东省高二期中)设点P 是曲线2
3
x
y e =+上的任意一点,P 点处的切线的倾斜角为α,则角α的取值范围包含下列哪些( ) A .2,3ππ⎡⎫
⎪⎢
⎣⎭
B .5,26
ππ
⎡⎫⎪⎢
⎣⎭
C .0,
2π⎡⎫
⎪⎢⎣⎭
D .50,
,26πππ⎡⎫
⎡⎫
⎪⎪⎢⎢⎣⎭⎣⎭
11.(2020·南京市江宁高级中学高二期中)已知点2(1
)A ,在函数()3f x ax =的图象上,则过点A 的曲线():C y f x =的切线方程是( )
A .640x y --=
B .470x y -+=
C .470x y -+=
D .3210x y -+=
12.(2020·江苏省高二期中)在平面直角坐标系xOy 中,点P 在曲线1
(0)y x x x
=+
>上,则点P 到直线3420x y --=的距离可以为( )
A .
45
B .1
C .
65
D .
75
三、填空题
13.(2020·江西省石城中学高二月考(文))曲线32
()44f x x x =-+在点(1,1)处的切线方程为__________.
14.(2020·横峰中学高二开学考试(文))曲线()1e x
y ax =+在点()01,
处的切线的斜率为2-,则a =________.
15.(2020·甘肃省高三二模(文))已知曲线4sin cos y a x x =-在点(0,1)-处的切线方程为1y x =-,则
tan()6
a π
π-=______.
16.(2020·浙江省高三其他)德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时,他将切线问题理解为“求一条切线意味着画一条直线连接曲线上距离无穷小的两个点”,
这也正是导数定义的内涵之一.现已知直线y x b =+是函数()ln f x x =的切线,也是函数()x k
g x e +=的切
线,则实数b =____,k =_____. 四、解答题
17.(2020·江苏省邗江中学高一期中)求下列函数的导数:
(1)()2cos f x x x =+ (2)2
(2)()1
x f x x -=
+ 18.(2020·福建省南安市侨光中学高二月考)求下列函数的导数: (1)2
(ln sin )y x x x =+; (2)2cos x x
y x -=;
(3)y x =
.
19.(2020·阳江市第三中学高二月考)已知函数()2
ln f x x x x =+ (Ⅰ)求这个函数的导数()f x '; (Ⅱ)求这个函数在1x =处的切线方程.
20.(2020·定远县育才学校高二月考(理))已知函数32()f x x bx cx d =+++的图象过点(0,2)P ,且在点
(1;(1))M f --处的切线方程为670x y -+=.
(I )求(1)f -和(1)f 的值. (II )求函数()f x 的解析式.
21.(2020·江苏省高二期中)设()55f =,()53f '=,()54g =,()51g '=,()2
()()
f x h x
g x +=
.
(1)求()5h 及()5h '; (2)求曲线()sin
6
y h x π
=+在5x =处的切线方程.
22.(2020·攀枝花市第十五中学校高二期中(文))设函数()b
f x ax x
-=,曲线()y f x =在点(2,(2))f 处的切线方程为3240x y --=. (1)求()f x 的解析式;
(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形的面积为定值,并求此定值.。