数学七年级上《图形的初步认识》复习测试题(答案)

合集下载

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A. B. C. D.2、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A. B. C. D.33、把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A. B.5 C.4 D.4、下列语句错误的有①近似数0.010精确到千分位②如果两个角互补,那么一个是锐角,一个是钝角③若线段,则P一定是AB中点④A与B两点间的距离是指连接A、B两点间的线段A.4个B.3个C.2个D.1个5、如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A 点的对应点的坐标为( )A. B. C. D.6、如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为()A. B.2 C.3 D.27、若∠A=30°18′,∠B=30°15′30″,∠C=30.25°,则这三个角的大小关系正确的是()A.∠C>∠A>∠BB.∠C>∠B>∠AC.∠A>∠C>∠B D.∠A>∠B>∠C8、如图,在△ABC 中,∠ABC=40°,在同一平面内,将△ABC 绕点 B 逆时针旋转 100°到△A′BC′的位置,则∠ABC′=()A.40°B.60°C.80°D.100°9、北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,過极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道在点O南偏东70°的方向上,则这条跑道所在射线与正北方向所成角的度数为()A.160°B.110°C.70°D.20°10、下列说法中正确的有( )(1)过两点有且只有一条直线(2)连接两点的线段叫两点的距离(3)两点之间线段最短(4)如果AB=BC,则点B是线段AC的中点A.1B.2C.3D.411、如图,将绕点C顺时针旋转得到,使点A的对应点D恰好落在边上,点B的对应点为E,连接.下列结论一定正确的是()A. B. C. D.12、如图,在△ABC中,∠ACB=90°,将△ABC绕着点A逆时针旋转得到△ADE,点C落在边AD上,连接BD.若∠DAE=α,则用含α的式子表示∠CBD的大小是()A.αB.90°﹣αC.D.13、如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°14、如图1,在矩形ABCD中,AB=1,BC=.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若x=,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的()A.点AB.点BC.点CD.点D15、下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A. B. C. D.二、填空题(共10题,共计30分)16、40°的补角等于________;40°18′的余角等于________.17、如图中的图形绕着中心至少旋转________度能与自身重合.18、计算:=________度.19、如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是________.(结果保留根号).20、如图,平分,平分,,,则的度数为________.21、一个角的余角比它的补角的还少20°,则这个角是________.22、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是________.23、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=________度.24、如图,将Rt△ABC的斜边AC绕点C顺时针旋转()得到CD,直角边BC绕点C逆时针旋转()得到CE,若AC=5,BC=4,且,则DE=________.25、一个角的补角加上14°,等于这个角的余角的5倍,这个角的度数是________°.三、解答题(共5题,共计25分)26、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?27、如图1是三个直立于水面上的形状完全相同的几何体(下底面为圆面,单位:厘米),将它们拼成如图2的新几何体,求该新几何体的体积(结果保留π).28、已知:如图,线段MN=m,延长MN到点C,使NC=n,点A为MC的中点,点B为NC的中点,求线段AB的长.29、已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.30、如图,已知是的余角,是的补角,且,求、的度数.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、B6、A7、D8、B9、B10、B11、D12、A13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为()A.10°B.15°C.20°D.25°2、下列结论中,正确的是()A.﹣7<﹣8B.85.5°=85°30′C.﹣|﹣9|=9D.2a+a 2=3a 23、嘉嘉要在墙壁上固定一根横放的木条,他至少需要钉子()A.1枚B.2枚C.3枚D.随便多少枚4、若∠α=90°-m°,∠β=90°+m°,则∠α与∠β的关系是( )A.互补B.互余C.和为钝角D.和为周角5、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6B.5C.3D.26、下列说法正确的是()A.射线AB和射线BA是两条不同的射线B.过三点可以画三条直线C.两点之间,直线最短D.﹣a是负数7、下列说法中正确的有()个⑴一条射线上只有一个点,一条线段上有两个点;⑵一条射线把一个角分成两个角,这条射线叫这个角的平分线;⑶连结两点的线段叫做两点之间的距离;⑷20°50ˊ=20.5°;⑸互余且相等的两个角都是45°.A.1B.2C.3D.48、下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BC C.若AC+BC>AB,则点C一定在线段AB外 D.若A,B,C,三点不在一直线上,则AB<AC+BC9、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个10、如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点NB.点M,点QC.点N,点PD.点P,点Q11、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则()A.小强家在小红家的正东B.小强家在小红家的正西C.小强家在小红家的正南D.小强家在小红家的正北12、将21.54°用度、分、秒表示为()A. B. C. D.13、下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.相等的角是对顶角14、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线15、如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=25°,则∠AOB=( )A.100°B.75°C.50°D.20°二、填空题(共10题,共计30分)16、已知直线与直线相交于点,,垂足为.若,则的度数为________.(单位用度表示)17、如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E.若DE=1,则AC的长为________.18、如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点灯A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则点C′到BC的距离为________.19、如图,将线段AB绕点O顺时针旋转90°得到线段A'B',那么点A(-2,5)的对应点A'的坐标是________.20、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为________.21、一个角的余角比这个角的补角的一半少,则这个角的度数是________.22、 ________°.23、A、B是半径为2的⊙O上不同两点,则AB的取值范围是________ .24、如图,直线,直线交,于,两点,交直线于点,若,则________.25、如图,要从B点到C点,有三条路线:①从B到A再到C;②从B到D再到C;③线段BC.要使距离最近,你选择路线________(填序号),理由是________三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又∠B比大20°,则△ABC的三个内角的度数分别是多少?28、已知,如图,AE是的平分线,.求证:.29、用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?(π=3.14)30、一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、A5、B6、A8、A9、B10、C11、B12、D13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷考试范围:第六章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下图中的长方体是由下面A、B、C、D的四个小几何体拼成的,那么图中第四部分对应的几何体是( )A.B.C.D.2.如图,图1是一个三阶金字塔魔方,它是由若干个小三棱锥堆成的一个大三棱锥(图2),把大三棱锥的四个面都涂上颜色.若把其中1个面涂色的小三棱锥叫中心块,2个面涂色的叫棱块,3个面涂色的叫角块,则三阶金字塔魔方中“(棱块数)+(角块数)−(中心块数)”得( )A. 2B. −2C. 0D. 43.下列作图语句中,正确的是( )A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点4.已知:线段AB,点P是直线AB上一点,直线..上共有3条线段:AB,PA和PB,若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“中南点”,线段AB的“中南点”的个数是( )A. 3B. 6C. 8D. 95.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=BM=1 2AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点,其中正确的是( )A. ②④B. ①④C. ①②④D. ①②③④6.下列说法中,不正确的是A. 若点C在线段BA的延长线上,则BA=AC−BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A,B,C三点不在同一条直线上,则AB<AC+BC7.如图,下列描述正确的是( )A. 射线OA的方向是北偏东方向B. 射线OB的方向是北偏西650C. 射线OC的方向是东南方向D. 射线OD的方向是西偏南1508.已知∠1=25∘12′,∠2=25.12∘,∠3=25.2∘,下列说法正确的是( )A. ∠1=∠3B. ∠3=∠2C. ∠1=∠2D. 三个角互不相等9.借助一副三角尺不能画出的角是( )A. 95°B. 105°C. 120°D. 135°10.如图,O为直线AB上一点,OC⊥OD,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论:①∠DOG+∠BOE=180°;②∠AOE−∠DOF=45°;③∠EOD+∠COG=180°;④∠AOE+∠DOF=90°.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个11.α与β的度数分别是2m−19和77−m,且α与β都是γ的补角,那么α与β的关系是( )A. 不互余且不相等B. 不互余但相等C. 互为余角但不相等D. 互为余角且相等12.如图,∠BAC=90∘,AD⊥BC,垂足为D,则下面的结论中正确的个数为( )①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④线段CD是C点到AD的距离。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、中午12点15分时,钟表上的时针和分针所成的角是()A.90ºB.75ºC.82.5ºD.60º2、点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90° D.绕原点顺时针旋转90°3、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.4、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BE的长为()A.1B.2C.3D.45、如图,直线 AB 与 CD 相交于点 O , OE 平分∠AOC,且∠AOC=80°,则∠BOE 的度数为()A. B. C. D.6、如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°。

要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度。

A.12B.18C.22D.287、能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A. B. C. D.8、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.9、已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④10、如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是( )A.3B.2C.1D.无法确定11、有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°12、某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于()A.30°B.60°C.90°D.120°13、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分14、下列说法正确的是()A.两点之间,线段最短B.若∠AOC= ∠AOB,则OC是∠AOB的平分线 C.已知A,B,C三个不同点,过其中每两点画一条直线,可以画出3条直线 D.各边都相等的多边形是正多边形15、经过圆锥顶点的截面的形状可能是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角为53°,则这个角的余角是________17、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.18、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.19、如图,AD∥BC,AB⊥BC于点B,AD=4,将CD绕点D逆时针旋转90°至DE,连接AE、CE,若△ADE的面积为6,则BC=________.20、如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA= .则图中阴影部分的面积为________.(结果保留π)21、已知在中,,是的高,,则________.22、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE =________度,∠AOG=________度.23、已知角的余角比它的补角的还少10°,则________.24、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐2、能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3、从3时到6时,钟表的时针旋转角的度数是()A.30°B.60°C.90°D.120°4、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.5、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°6、如图,四边形ABCD中,∠DAB=30°,连接AC,将ABC绕点B逆时针旋转60°,点C与对应点D重合,得到EBD,若AB=5,AD=4,则AC的长度为()A.5B.6C.D.7、下面四幅图中,用量角器测得∠AOB度数是40°的图是()A. B. C.D.8、如图,△ABC中,AB=AC,点P为△ABC内一点,∠APB=∠BAC=120°.若AP+BP=4,则PC的最小值为()A.2B.C.D.39、将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A. B. C. D.10、如图所示,OB,OC 是∠AOD 的任意两条射线,OM 平分∠AOB,ON 平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都错误11、如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16B.30C.32D.3412、围成圆柱的面有()A.1个B.2个C.3个D.4个13、如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3B.3:4C.5:3D.3:514、如图,小明从点A向北偏东80°方向走到B点,又从B点向南偏西25°方向走到点C,则∠ABC的度数为()A.55°B.50°C.45°D.40°15、如图,小明用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离二、填空题(共10题,共计30分)16、如图,将△ABC绕点A逆时针旋转65°得△ADE,若∠E=70°,AD⊥BC,则∠BAC =________.17、计算⑴5400″=________°.⑵32°49'+25°51'=________;⑶180°﹣56°23'=________.18、如图,数轴上线段AB=2,CD=4,点A在数轴上的数是-10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同事线段CD以2个单位长度/秒的速度向左匀速运动,点P是线段AB上一点,当点B运动到线段CD上,且BD=3PC+AP,则线段PC的长为________.19、角度换算:45.18度=________度________分________秒.20、在图形的平移、旋转、轴对称变换中,其相同的性质是________.21、如图1,在直线MN的异侧有A,B两点,要在直线MN上取一点C,使AC+BC最短.小明的作法是连接线段AB交直线MN于点C,如图2.这样作图得到的点C,就使得AC+BC最短,依据是________.22、如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP'重合,若PB = 3,则PP' = ________23、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.24、数轴上与-2相距3个单位长度的点表示的数是________,长度为5个单位长的木条放在数轴上,最多能覆盖________个整数点.25、如图,将长方形纸片进行折叠,为折痕,与与与重合,若,则的度数为 ________三、解答题(共5题,共计25分)26、计算:(1)﹣22÷﹣(﹣)×(﹣3)2(2)16°51′+38°27′×3﹣35°29′.27、请估计下面角的大小,然后再用量角器测量.28、如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.29、如图,已知点M是线段AB的中点,点N在线段MB上,MN=AM,若MN=3cm,求线段AB和线段NB的长.30、如图,AD⊥BC于点D,EF⊥BC于点F,∠BDG=∠C.试说明∠1=∠2.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、C6、D7、A8、B10、A11、D12、C13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

2021-2022学年浙教版七年级数学上册《第6章图形的初步认识》单元综合测试题(附答案)

2021-2022学年浙教版七年级数学上册《第6章图形的初步认识》单元综合测试题(附答案)

2021-2022学年浙教版七年级数学上册《第6章图形的初步认识》单元综合测试题(附答案)一、选择题(本题共计9小题,每题3分,共计27分,)1.如图,直线AB、CD交于点O,OE平分∠BOC,若∠1=34°,则∠DOE等于()A.73°B.90°C.107°D.146°2.下面七个几何体中,是棱柱的有()个.A.4B.3C.2D.13.下列四种说法:①线段AB是点A与点B之间的距离;②射线AB与射线BA表示同一条射线;③两点确定一条直线;④两点之间线段最短.其中正确的个数是()A.1个B.2个C.3个D.4个4.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是()A.30°B.60°C.120°D.150°5.如图1,已知∠ABC,用尺规作它的角平分线,如图2.步骤如下:第一步:以B为圆心,任意长为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,小于的长为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.上面三个步骤中,叙述正确的是()A.第一步B.第一步和第二步C.第三步D.第一步和第三步6.如图,三条直线相交于点O,若∠AOC=∠BOC=90°,∠1=56°,则∠2=()A.30°B.34°C.45°D.56°7.下列语句中正确的是()A.在所有连接两点的线中,直线最短B.∠AOB与∠BOA表示相同的角C.一个锐角与一个钝角的和是一个平角D.两点之间的线段是两点之间的距离8.平面内三条不同直线相交最多能构成对顶角的对数是()A.4对B.5对C.6对D.7对9.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线二、填空题(本题共计8小题,每题3分,共计24分,)10.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC =.11.如果线段AB=CB,那么C是线段AB的中点..12.如图,有一个与地面成30°角的斜坡,现要在斜坡上竖起一根电线杆,设电线杆与斜坡所夹的角为∠1,当∠1的度数为时,电线杆与地面垂直.13.某小区A自来水供水路线为AB,现进行改造,沿路线AO铺设管道,并与主管道BO连接(AO⊥BO),这样路线AO最短,工程造价最低,根据是.14.如图,点C在线段AB的延长线上,BC=2AB,点D是线段AC的中点,AB=2cm,则BD的长度是.15.如图是由、长方体、圆柱三种几何体组成的物体.16.当时针指向11:10时,时针与分针的夹角是度.17.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,那么点C到AB的距离是,点A到BC的距离是,点B到CD的距离是,A,B两点间的距离是.三、解答题(本题共计7小题,共计69分,)18.一辆汽车从A点出发向北偏西25°方向行120千米到达B点,一辆货车同时从A点出发向南偏东25°方向行200千米到达C点,这两辆汽车现在相距多少千米?19.如图,已知线段AB,请用尺规按下列要求作图.(1)延长线段AB到C,使BC=AB;(2)延长线段BC到D,使CD=AC.20.如图,汽车站、码头分别位于A,B两点,直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线,并说明理由;(2)从码头B到公路b怎样走最近?画出最近路线BC,并说明理由.21.如图,已知线段AB,延长AB到C,使得BC=AB,D为AC中点且AC=30,求线段BD的长.22.如图,AB⊥CD,垂足为O.(1)比较∠AOD,∠EOB,∠AOE的大小,并用“<”号连接.(2)若∠EOC=28°,求∠EOB和∠EOD的度数.23.如图,A、O、B在一条直线上,∠AOC=∠BOC+30°,OE平分∠BOC,求∠BOE 的度数.24.已知:0为直线AB上的一点,射线OA表示正北方向,射线OC在北偏东m°的方向,射线OE在南偏东n°的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图,∠COE=°,∠COF和∠BOE之间的数量关系为.(2)若将∠COE绕点O旋转至图2的位置,射线OF仍然平分∠AOE时,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明,若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,射线OF仍然平分∠AOE时,则2∠COF+∠BOE=°.参考答案一、选择题(本题共计9小题,每题3分,共计27分,)1.解:如图,∵∠1=34°,∴∠2=∠1=34°,∠BOC=180°﹣∠1=146°.又∵OE平分∠BOC,∴∠BOE=∠BOC=73°.∴∠DOE=∠BOE+∠2=73°+34°=107°.故选:C.2.解:如图,根据棱柱的特征可得,①是三棱柱,②是球,③圆锥,④三棱锥,⑤正方体,⑥圆柱体,⑦六棱柱,因此棱柱有:①⑤⑦,故选:B.3.解:①线段AB是点A与点B之间的距离,说法错误,应是线段AB的长度是点A与点B 之间的距离;②射线AB与射线BA表示同一条射线,说法错误,端点字母不一样;③两点确定一条直线,说法正确;④两点之间线段最短,说法正确.说法正确的有2个.故选:B.4.解:∵∠A=60°,∠A与∠B互余,∴∠B=90°﹣∠A=90°﹣60°=30°,∵∠B与∠C互补,∴∠C=180°﹣∠B=180°﹣30°=150°.故选:D.5.解:第二步为:分别以D,E为圆心,大于的长为半径画弧,两弧在∠ABC内部交于点P.故选:D.6.解:∵∠BOC=90°,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°故选:B.7.解:A、在所有连接两点的线中,线段最短,故本选项错误;B、∠AOB与∠BOA表示相同的角,故本选项正确;C、一个锐角与一个钝角的和不一定是平角,故本选项错误;D、两点之间的线段的长度是两点之间的距离,故本选项错误.故选:B.8.解:如图,单个的角是对顶角有3对,两个角的复合角是对顶角有3对,所以,对顶角的对数是3+3=6对.故选:C.9.解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:D.二、填空题(本题共计8小题,每题3分,共计24分,)10.解:当点C在线段AB的延长线上时,AC=AB+BC=20cm,当点C在线段AB上时,AC=AB﹣BC=10cm,故答案为:20cm或10cm.11.解:AB=CB不能确定C是线段AB的中点,例如中就不能是线段AB的中点.故答案为错误.12.解:如图,要使CB⊥AB,则在△ABC中,∠CBA=90°,∴∠1=∠ACB=90°﹣30°=60°.故答案为:60°.13.解:沿路线AO铺设管道,并与主管道BO连接(AO⊥BO),这样路线AO最短,工程造价最低,根据是垂线段最短.故答案为:垂线段最短.14.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.故答案为:1cm.15.解:如图是由三棱柱、长方体、圆柱三种几何体组成的物体.故答案是:三棱柱.16.解:30=85°故答案为:85°.17.解:点C到直线AB的垂线段是CD,所以线段CD的长是点C到直线AB的距离,即点C到AB的距离是4.8;点A到直线BC的垂线段是AC,所以线段AC的长是点A到直线BC的距离,即点A到BC的距离是6;点B到直线CD的垂线段是BD,所以线段BD的长是点B到直线CD的距离,即点B到CD的距离是6.4;点B到点A的距离是线段AB的长,即点B到点A的距离是10.故填4.8,6,6.4,10.三、解答题(本题共计7小题,共计69分,)18.解:如图,以点A为中心,建立方位图,由图可得点A,点B,点C在一条直线上,所以BC=AB+AC=120+200=320(米).所以这两辆汽车现在相距320千米.19.解:如图所示:.20.解:(1)如图,线段AB即为所求作.(2)如图,线段BC即为所求作.21.解:∵BC=AB,∴AC=3BC,∵AC=30,∴BC=AC=×30=10,∵D为AC中点且AC=30,∴CD=AC=15,∴BD=CD﹣BC=5.22.解:∠AOD=90°,∠EOB=90°+∠EOC,∠AOE=90°﹣∠EOC ∴∠AOE<∠AOD<∠EOB(2)∠EOB=∠EOC+90°=118°∠AOE=90°﹣∠EOC=62°23.解:∵OE为∠BOC的平分线,∴∠BOE=∠COE=x,∴∠AOC=180°﹣2x,根据题意得:180°﹣2x=x+30°,解得:x=50°,则∠BOE=50°.24.解:(1)∵2m+2n=180∴m+n=90∠COE=180﹣m﹣n=90°,∠BOE=2∠COF;(2)不发生变化.证明如下:∵∠COE=90°∴∠COF=90°﹣∠EOF=90°﹣∠AOE=90°﹣(180°﹣∠BOE)=90°﹣90°+∠BOE=∠BOE∴∠BOE=2∠COF(3)360°.故答案是:(1)90°,∠BOE=2∠COF (3)360°。

2019-2020浙教版初中数学七年级上册《图形的初步认识》专项测试(含答案) (27)

2019-2020浙教版初中数学七年级上册《图形的初步认识》专项测试(含答案) (27)

15.60°,l50°
16.130
17.(1)116°23″ (2)11°40′20″
18.6cm
19.两点确定一条直线
评卷人 得分
三、解答题
20.如图,由题意,知 ∠1 =∠2,∠3=∠4. ∵∠1+∠2 +∠3 +∠4=180°,∴∠DOC=∠2+∠4 =90°. 即两折痕 BC、BD 的夹角是 90°.
25.(7 分)下列各图中,有∠1 和∠2 是对顶角的图吗?若没有请画一对对顶角.
26.(7 分)(1)利用一副三角尺的拼合,分别画出 75°,120°,l35°,l50°的角;
(2)利用一副三角尺,你能画出几个不同的角(小于 l80°)?分别是多少度的角? 用一副三角尺所画的这些角的大小有什么规律?
D.在同一平面内,两条不相交的直线叫做平行线
8.(2 分)若∠1 和∠2 互为补角,且∠1>∠2,则∠2 的余角等于( )
A. 1 (∠1-∠2) 2
B. 1 (∠1+∠2) C. 1 ∠1+∠2
2
2
9.(2 分)如图,从 A 地到 B 地,最短的路线是( )
D.∠l- 1 ∠2 2
A.A → G → E → B B.A → C → E → B C.A → D → G → E → B D.A → F → E → B
6.(2 分)已知∠AOB 与其内任意一点 P,若过点 P 画一条直线与 0A 平行,则这样的直线
()
A.有且只有一条
B.有两条
C.有无数条
D.不存在
7.(2 分)下列语句中正确的是 ( )
A.两条不相交的直线叫做平行线
B.一条直线的平行线只有一条

第4章 图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)

第4章 图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)

第4章图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图所示物体的俯视图是( )A. B. C. D.2、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是()A.<2>和<3>B.<1>和<2>C.<2>和<4>D.<1>和<4>3、下列几何体的主视图是三角形的是()A. B. C. D.4、如图,直线,,,则的度数为( )A.40°B.50°C.60°D.70°5、如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列说法不正确的是()A.与∠1互余的角只有∠2B.∠A与∠B互余C.∠1=∠BD.若∠A=2∠1,则∠B=30°6、如图,点在直线m上,点P在直线m外,点Q是直线m上异于点的任意一点,则下列说法或结论正确的是( )A.射线AB和射线BA表示同一条射线B.线段PQ的长度就是点P到直线m 的距离C.连接,则D.不论点Q在何处,AQ=AB-BQ 或AQ=AB+BQ7、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④8、∠A的补角是125°,则它的余角是()A.54°B.35°C.25°D.以上均不对9、已知,则的余角是()A. B. C. D.10、如图,直线AB与CD相交于点O,若∠AOC= ∠AOD,则∠BOD的度数为()A.30°B.45°C.60°D.135°11、将一副三角尺按不同位置摆放,下列摆放中∠1与∠2互为余角的是()A. B. C.D.12、如图,OC是平角∠AOB的平分线,OD、OE分别是∠AOC和∠BOC的平分线,图中和∠COD 互补的角有( )个A.1B.2C.3D.013、如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,问这块红地毯至少需要()A.23平方米B.90平方米C.130平方米D.120平方米14、如图,四边形ABCD为正方形,边长为4,点F在AB边上,E为射线AD上一点,正方形ABCD沿直线EF折叠,点A落在G处,已知点G恰好在以AB为直径的圆上,则CG的最小值等于()A.0B.2C.4﹣2D.2 ﹣215、如图,直线AB、CD相交于点O,OE平分∠AOC,若∠AOE=35°,则∠BOC的度数是()A.110°B.50°C.60°D.70°二、填空题(共10题,共计30分)16、如图,OD平分∠AOB,∠BOE= ∠EOC,∠DOE=60°,则∠EOC=________.17、北偏东30°与南偏东50°的两条射线组成的角的度数为________°.18、把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△在直角坐标平面内,点,,,将△进行T-变换,T-变换中心为点A,T-变换角为60°,T-变换比为,那么经过T-变换后点C所对应的点的坐标为________;19、在数轴上,与表示-3的点距离为5的点所表示的数是________.20、 43°29′+36°31′=________.21、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是根据数学原理________.22、一个角的补角等于这个角的余角的4倍,这个角是________.23、如图,∠1=30°,则射线OA表示的方位是南偏东________.24、将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有________块.25、如图,公园里,美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是________ ;三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,已知△ABC中,AD是BC边上的高,CE平分∠ACB,AD与CE相交于点F.∠B=65°,∠AFC=120°,求∠BAD和∠ACB的度数.28、如图,一个圆柱体的侧面展开图为长方形ABCD,若AB=6.28cm,BC=18.84cm,则该圆柱体的体积是多少?(π取3.14,结果精确到十分位).29、已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?30、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、A6、C7、D8、B9、A10、B11、D12、B13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析周测(2.1~2.4)

2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析周测(2.1~2.4)

线段 BC 的中点, CD =6,则线段 AD 的长为(
A. 6
B. 4
C. 2
C
)
D. 3
【解析】因为 D 是线段 BC 的中点, CD =6,所以 BC =2 CD =12.


因为 AC = AB ,所以 AC = BC =4.


所以 AD = CD - AC =6-4=2.
1
2
3
4
5
6
7
D. 点 C 可能在直线 AB 上,也可能在直线 AB 外
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
填空题
选择题
周测(2.1~2.4)
解答题
【解析】根据题意画出图形,如图,因为 AB =8, AC =5, BC =3,
所以从图中我们可以发现 AC + BC = AB ,所以点 C 在线段 AB 上.

中点的有(
A
)
A. 1个
B. 2个
C. 3个
D. 4个
1
2
3
4
其中能判断 P 是线段 AB 的
5
6
7
8
9
10
11
12
13
14
15
16
17
18
填空题
选择题
周测(2.1~2.4)
解答题
【解析】如图所示.
因为 AP = BP ,所以 P 是线段 AB 的中点,故①正确;

当点 P 在点 B 右侧时,即点P'所在位置,此时BP'= AB ,但点P'不是

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=EF,若AD= ,则弧CF的长为( )A. B. C. D.π2、一个角的度数比它的余角的度数大20°,则这个角的度数是()A.20°B.35°C.45°D.55°3、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B. =3 C.B2C=2 D.∠AC2O=45°4、若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3B.∠2>∠1>∠3C.∠1>∠3>∠2D.∠3>∠1>∠25、下列说法:其中正确的是()①若∠A+∠B=180°,则∠A,∠B互补;②若∠A+∠B=180°,则∠A,∠B是同旁内角;③若∠A,∠B互补,则∠A+∠B=180°;④若∠A,∠B是同旁内角,则∠A+∠B=180°.A.①②③④B.①③C.①③④D.①②③6、如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.35°B.55°C.65°D.70°7、若一个角的补角等于它的余角的3倍,则这个角为()A.75°B.60°C.45°D.30°8、将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.999、将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短D.两点之间,线段最短10、如图,AB//CD,点E在CA的延长线上若∠BAE =50°,则∠ACD的大小为()A.120B.130C.140D.15011、已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°12、下列几何体中,可以组成如图所示的陀螺的是()A.长方体和圆锥B.长方形和三角形C.圆和三角形D.圆柱和圆锥13、如图,E,F分别是正方形ABCD的边AB,BC上的点,BE=CF,连接CE,DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转角度为()A.45°B.60°C.90°D.120°14、如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°15、如果和互补,且,则下列表示的余角的式子中正确的有()①②③④A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C (1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为________.17、“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=78°,则∠AOB等于________度.18、如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为________.19、如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是________cm.20、如图,在△ABC中,AB=AC=4,BC=6,把△ABC绕着点B顺时针旋转,当点A与边BC上的点A′重合时,那么∠AA′B的余弦值等于________.21、在Rt△ABC中,∠C=90°,AC=1,BC= ,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=________,∠A′BC=________,OA+OB+OC=________.22、已知数轴上有A,B两点,且这两点之间的距离为,若点A表示的数为,则点B表示的数为________.23、在如图所示的网格中,每个小正方形的长度为1,点A的坐标为(﹣3,5),点B的坐标为(﹣1,1),点C的坐标为(﹣1,﹣3),点D的坐标为(3,﹣1),小强发现线段CD可以由线段AB绕着某点旋转一个角度得到,其中点A与点C对应,点B与点D对应,则这个旋转中心的坐标为________.24、把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,= = =n,我们将这种变换记为[θ,n].△ABC 中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=________,n=________.25、如图,将绕着点按顺时针方向旋转得到.若,则________ .三、解答题(共5题,共计25分)26、如图,在. 是的平分线,是边上的高,,,求的度数.27、如图,已知∠AOB=70°,∠BOC=40°,OM是∠AOC的平分线,ON是∠BOC的平分线,求∠MON的度数.28、上午9点半时,时针与分针的夹角是多少度?29、如图,已知:,OC平分,,试求的度数.30、如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、B6、D7、C8、B9、A10、B11、C12、D13、C14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的初步认识一、填空题(36分)
1、 6000″
= ′= °,12°15′36
″= °。

2、锯木料时,先在木板上画出两点,再过这两点弹出一条墨线,这是利用了的原理。

3、如图,从A地到B地走条路线最近,它根据的是 .
4、当图中的∠1和∠2满足时,能使OA⊥OB(只需填上一个条件即可).
5、在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是南偏西度.
6、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=76°,则∠BOD=°.
A B
C
D
E
O
第6题
7、小明每天下午5:30回家,这时分针与时针所成的角的度数为 °; 8、如图所示的4×4正方形网格中,∠l+∠2+∠3+∠4+∠5+∠6+∠7= °. 9、点A 、B 、C 是数轴上的三个点,且BC=2AB 。

已知点A 表示的数是-1,点B 表示的数是3,点C 表示的数是 ;
10、如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为26,则线段AC 的长度为 ;
11、如图,从点O 出发的5条射线,可以组成的角的个数是 ;
12、α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算
)(15
1
γβα++的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,
则 = °.
二、选择题(30分)
1 、下列说法中,正确的有( )
(1)过两点有且只有一条线段 (2)连结两点的线段叫做两点的距离
B C E
D A
O
αβγ++
(3)两点之间,线段最短 (4)AB =BC ,则点B 是线段AC 的中点 (5) 射线比直线短
A .1个 个 个 个 2、下列各直线的表示法中,正确的是( )
A .直线ab B.直线Ab C .直线A D.直线A
B 3、三条互不重合的直线的交点个数可能是( )
A 、0、1、3
B 、0、2、3
C 、0、1、2、3
D 、0、1、2 4、钝角减去锐角的差是( )
A 、锐角
B 、直角
C 、钝角
D 、都有可能 5、一个角的补角为158°,那么这个角的余角是( )
A 、 22°
B 、 68°
C 、 52°
D 、 112° 6、平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( )
A .点C 在线段A
B 上 B .点B 在线段AB 的延长线上
C . 点C 在直线AB 外
D .点C 可能在直线AB 上,也可能在直线AB 外
7

D
C
B
C
A
8、12:45时,钟表的时针与分针所成的角是 ( )
A.直角
B.锐角
C.钝角
D.平角
9、在图中的五个半圆,邻近的两半圆紧紧相连,两只小虫同时出发,以相同的速度从A点到B点.甲虫沿弧ADA1、A1EA2、A2FA3、A3GB路线
爬行,乙虫沿路线爬行,则下列结论正确的是( )
A.甲先到B点 B.乙先到B点 C.甲、乙同时到B点 D.无法确定
10、小华用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是( )
三、解答题(34分)
1、作图:已知∠1和∠2如下图所示,用尺规作图画出∠AOB=∠1+∠2,不写作法,但要保留作图痕迹.(5分)
2、已知∠1与∠2互为补角,且∠2的2倍比∠1大30°,求∠1的度数.(5分)
3、如图,AD=1
2DB, E 是BC 的中点,BE=15
AC=2cm,线段DE 的长,求线段DE 的长.(6分)
4、把一副三角尺如图所示拼在一起。

⑴写出图中A ∠、B ∠、BCD ∠、D ∠、AED ∠的度数;⑵用小于号“<”将上述各角连接起来。

(6分)
A
B
D
B
C
E
D
A
5、如图所示,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数。

(6分)
D
C
O A
6、(6分)小王玩游戏:一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去.当小王撕到第n次时,手中共有S张纸片.
(1)用含有n的代数式表示S;
(2)当小王手中共有70张小纸片时,小王撕纸多少次
参考答案
一、填空题
1、100,5/3,;
2、两点确定一条直线;
3、②,两点之间,线段最短;
4、互余(答案不唯一);
5、48;
6、38;
7、15;
8、315;
9、11或-5;10、4;11、10;
12、345;
二、选择题
三、解答题
1、(略)
2、解:设∠1为x度,得:2(180-x)=x+30 解得x=110
3、解:∵BE=1/5AC=2cm ∴ AC=10cm
∵ E是BC的中点∴ BC=2BE=4cm
∴AB=AC-BC=10-4=6cm
∵ AD=1/2DB ∴ DB=2AD=2/3AB=4cm
∴ DE=DB+BE=4+2=6cm
4、解:(1)∠A=300∠B=900∠BCD=1500∠D=450∠AED=1350
(2)∠A<∠D<∠B<∠AED<∠BCD
5、解:设∠AOC为x,则∠COB=2x
∵∠AOB=∠AOC+∠COB=3x
OD平分∠AOB
∴∠AOD=∠AOB=
∴∠COD=∠AOB-∠AOC=
∵∠COD=200
∴x=400
∴∠AOB=3x=1200
6、解:(1)S=3n+1
(2)∵S=70 ∴3n+1=70 ∴n=23答:小王共撕纸23次。

相关文档
最新文档