4集合的运算1班

合集下载

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》 及答案解析

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》     及答案解析

集合的基本运算1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合的基本运算(答案解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3. 当a =5时,A ={-4,9,25},B ={0,-4,9}. 此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去. 经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x=±2或±6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±6时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得-≤a≤2.综上所述,a的取值范围是{a|-≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.依题意⎩⎪⎨⎪⎧x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.。

113集合的基本运算高一数学教学课件(人教B版2019)

113集合的基本运算高一数学教学课件(人教B版2019)
解:由A∪B = {x x > -3}可以知道 - 3 < a -1, 由A∩B = {x 0 < x 2}可以知道b = 2,a = -1.
拓展提升
1 . 设集合A={-4,2m-1,m2},
B={9,m-5,1-m},又A∩B={9},求A∪B?
解:(1) 若2m-1=9,得m=5,得 A={-4,9,25},B={9,0,-4},
A∩B
B {x | x 3}
0123
A B {x | 3 x 4}
4x
7:已知集合A {x | x 2} B {x | x -3} 求A B,A B
A B ,
A B x | x 3或x -2
8.设集合A = {x | -3 < x < -1}∪{x | x > 0},B = {x | a ≤x ≤b} 若A∪B = {x | x > -3}, A∩B = {x | 0 < x ≤ 2},求a,b的值.
【提升总结】 并集的性质
(1) A A A; (2) A A; (3) A B B A; (4) A A B,B A B,A B A B; (5) A B,则A B B .
例题分析 例1 新蔡一高所有男生组成集合A,一年级的所有学生组 成集合B,一年级的所有男生组成集合C,一年级的所有 女生组成集合D.求 A B,C D. 解:A B {x | x是该校一年级的男生} C;
实例分析 考察下列各个集合,你能说出集合C与集合A,B
之间的关系吗?
(1)A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6} (2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
总结特征 发现:集合C(阴影部分)就是由集合A中和集

集合的基本运算的教案

集合的基本运算的教案

集合的基本运算的教案这是集合的基本运算的教案,是优秀的数学教案文章,供老师家长们参考学习。

集合的基本运算的教案第1篇课型:新授课课时:1个课时。

教学目标:1、知识与技能:能理解两个集合并集与交集的含义,会求两个简单集合并集与交集,弄清“或”、“且”的含义,能理解子集的补集的含义,会求给定子集的补集,了解全集的含义、集合A与全集U的关系。

2、过程与方法:能用Venn图表示集合间的运算,体会直观图对理解抽象概念的作用、补集的思想也尤为重要。

3、情感态度与价值观:通过使用符号表示、集合表示、图形表示集合间的关系与运算,引导学生感受集合语言在描述客观现实和数学问题中的意义教学重、难点教学重点:并集、交集、补集的含义,利用维恩图与数轴进行交并补的运算。

教学难点:弄清并集、交集、补集的概念,符号之间的区别与联系。

教学方法教法:启发式教学探究式教学学法:自主探究合作交流教具准备彩色粉笔、幻灯片、投影仪教学过程(一)创设问题情境引入新课1、问题情境学校举行运动会,参加足球比赛的有100人,参加跳高比赛的有80人,那么总的参赛人数是多少?能否说是180人?这里把参加足球比赛的看作集合A,把参加跳高比赛的看作集合B,那么这两个集合会有哪些关系呢?请看下面5个图示:(用几何画板作图)2、学生根据已有的生活经验和数学知识独立探究,教师巡视、指导;3、合作讨论、交流探究的结果(请一位同学将结果写到黑板上)图(1)给出了两个集合A、B;图(2)阴影部分是A与B公共部分;图(3)阴影部分是由A、B组成;图(4)集合A是集合B的真子集;图(5)集合B是集合A的真子集;4、引导学生观察、比较、概括出引例中阴影所表示的含义,抽象得出交集、并集的概念,引入新课揭示课题:集合的基本运算(板书课题)(二)新课探究1、概念并集:一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B ,读作:“A并B”,即:A∪B={x|x∈A,或x∈B}Venn图表示:交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B ,读作:“A交B”,即:A∩B={x|∈A,且x∈B}交集的Venn图表示【问题】根据定义及维恩图能总结出它们各自的性质吗?结论是:由图(4)有A B,则A∩B=A ,由图(5)有B A,则A∪B=A2、基本练习,加深对定义的理解拓展:求下列集合A与B的并集与交集(用几何画板展示图片)3、例题讲解【例4】设A={4,5,6,8},B={3,5,7,8},求A∪B。

集合论初步知识和集合运算规律

集合论初步知识和集合运算规律

集合论初步知识和集合运算规律集合论是数学的一个基本分支,它研究了集合以及集合之间的关系和运算。

集合论的主要概念和运算规律如下:1.集合的基本概念:–集合:由明确的、相互区别的对象组成的整体,称为一个集合。

–元素:集合中的每一个对象称为该集合的元素。

–集合的表示方法:用大括号{}括起来,里面列出集合的所有元素,如{1, 2, 3}表示包含元素1、2、3的集合。

2.集合的类型:–普通集合:包含任意类型的元素的集合。

–子集:如果一个集合的所有元素都是另一个集合的元素,那么这个集合称为另一个集合的子集。

–真子集:如果一个集合是另一个集合的子集,并且这两个集合不相等,那么这个集合称为另一个集合的真子集。

–空集:不包含任何元素的集合,用符号∅表示。

–无穷集合:包含无限多个元素的集合。

3.集合运算规律:–并集(∪):两个集合的并集包含两个集合的所有元素,但不重复计算重复的元素。

–交集(∩):两个集合的交集包含两个集合共有的元素。

–补集:对于一个给定的集合S和 universal set(全体集合),S的补集是全体集合中不属于S的元素组成的集合。

–相对补集:对于两个不相交的集合S和T,S在T中的补集是T中不属于S的元素组成的集合。

–幂集:集合S的所有子集组成的集合称为S的幂集。

4.集合运算的性质和定律:–交换律:对于集合运算,交换集合的位置不改变运算结果。

–结合律:对于集合运算,多个集合进行同一运算时,运算顺序不影响结果。

–分配律:集合运算中,一个集合与多个集合的并集进行运算,等于与每个集合分别进行运算的结果。

–吸收律:集合运算中,一个集合与它自己的并集等于它自己。

–同一律:集合运算中,一个集合与它自己的交集等于它自己。

以上是集合论初步知识和集合运算规律的概述,希望对你有所帮助。

习题及方法:1.习题:判断下列哪些是集合,哪些不是集合?a){1, 2, 3}b)所有质数c)高三一班的学生d)全体自然数解答:a)、b)、c)、d)都是集合。

中专《数学》(基础模块)上册省公开课获奖课件市赛课比赛一等奖课件

中专《数学》(基础模块)上册省公开课获奖课件市赛课比赛一等奖课件
数学
(基础模块) 上册
目录
第1章 集合 第2章 不等式 第3章 函数 第4章 指数函数与对数函数 第5章 三角函数
第1章 集合
1.1 集合旳概念及表达措施 1.2 集合之间旳关系 1.3 集合旳运算 1.4 充要条件
返回
内容简介:本章主要讲述集合旳有关概念及集合旳表达措
施、集合之间旳关系、集合旳运算、充要条件,主要经过集 合语言旳学习与利用,培养学生旳数学思维能力.
提醒 用描述法表达集合能够很清楚地反应出集合元素旳特征性质,
所以在详细旳应用中要根据实际情况灵活选用.
例2.试分别用列举法和描述法表达下列集合: (1)x2-3=0方程旳全部实数根构成旳集合; (2)由不小于15不不小于25旳全部整数构成旳集合.
答案:(1){ 3, 3}
(2) 16,17,18,19, 20, 21, 22, 23, 24
全部实数构成旳集合叫做实数集,记作 R .
例1.下列各组对象哪些能构成一种集合? (1)著名旳数学家; (2)比较小旳正整数旳全体; (3)某校2023年在校旳全部高个子同学; (4)不超出20旳非负数; (5)x2-9=0方程在实数范围内旳解; (6) 旳近似值旳全体.
2
答案: (4)、(5)
解析:从集合元素旳“拟定”、“互异”、“无序”三种特征判断. “著名旳数学家”、“比较小旳正整数”、“高个子同学”对象不拟定, 所以(1)、(2)、(3)不是集合,同理(6)也不是集合.(4)、(5)可构成集合, 故答案是(4)、(5).
处理 经过上面旳三个问题旳思索,能够看出集合C中旳元素是由集合A、B旳全部元素 所构成旳,这时,将C称作是A与B旳并集
1.3.2 并集
概念
一般地,对于两个给定的集合 A,B,由集合 A 和 B 的所有 元素组成的集合叫做集合 A 与集合 B 的并集,记作

集合的运算教案

集合的运算教案

【课题】集合的运算【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集;(3)理解全集与补集的概念;(4)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集、并集和补集问题的研究,培养学生的数学思维能力.情感、态度与价值观:(1)通过生活中的实例导入集合的运算,提高学生的学习兴趣;(2)在整个授课过程中,让学体体验“讲练结合,数形结合”的学习方法.【教学重点】交集、并集和补集.【教学难点】用描述法表示集合的交集、并集和补集.【教学备品】教学课件.【课时安排】3课时.(120分钟)【教学过程1】揭示课题实数有加、减、乘、除运算,那么集合是否也可以进行“运算”呢交集一、创设情景兴趣导入问题1 汉堡由火腿、生菜、鸡蛋、面包做成,蔬菜沙拉由生菜、西兰花、卷心菜、洋葱丝做成,那么这两种食物之间有什么关系叫用我们学过的集合来表示:A={火腿,生菜,鸡蛋,面包};B={生菜,西兰花,卷心菜,洋葱丝};C={生菜}.问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系解决通过上面的两个问题的思考,可以看出集合C中的元素是由既属于集合A 又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B的交集.二、动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A BI,读作“交”.即{}I且.=∈∈A B x x A x B集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.三、巩固知识 典型例题例1 已知集合A ,B ,求A ∩B .(1) A ={1,2},B ={2,3};(2) A ={a ,b },B ={c ,d , e , f };(3) A ={1,3,5},B = ;(4) A ={2,4},B ={1,2,3,4}.分析:集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集. 解:(1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=; (3) 因为A 是含有三个元素的集合,是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2 设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求.分析:集合A 表示方程0x y +=的解集;集合表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解:解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-I . 例3 设}{21≤<-=x A ,{}30≤<=x B ,求.分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解:{}}{}{203021≤<=≤<≤<-=B A x x x x x x I Y由交集定义和上面的例题,可以得到:对于任意两个集合A ,B ,都有(1)A B B A I I =;(2)A A A =I ,∅=∅I A ;(3)B B A A B A ⊆⊆I I ,;(4)如果A B A B A =⊆I 那么,.四、运用知识 强化练习练习设{}1,0,1,2A =-,{}0,2,4,6B =,求.2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B I .3.设{}|22A x x =-<≤,}{40≤≤=x x B ,求A B I .五、归纳小结(1)本次课学了哪些内容(2)你认为本次课的重点和难点各是什么六、实践调查举出交集的生活实例【教学过程2】揭示课题并集一、创设情景 兴趣导入问题1 某汉堡由火腿、生菜、鸡蛋、面包做成,蔬菜沙拉由生菜、西兰花、卷心菜、洋葱丝做成,那么制作这两种食物都需要什么材料用我们学过的集合来表示:A={火腿,生菜,鸡蛋,面包};B={生菜,西兰花,卷心菜,洋葱丝};C={火腿,生菜,鸡蛋,面包,西兰花,卷心菜,洋葱丝}.这三个集合间有什么关系呢问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学用我们学过的集合来表示:A ={李佳,王燕,张洁,王勇};B ={王燕,李炎,王勇,孙颖};C ={李佳,王燕,张洁,王勇,李炎,孙颖}.那么这三个集合之间有什么关系解决:通过上面的两个问题的思考,可以看出集合C 中的元素是由集合A 、B 的所有元素所组成的,这时将C 称作是A 与B 的并集.二、动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、B 的所有元素所组成的集合叫做A 与B 的并集,记作B A Y (读作“A 并B ”). 即{}B x A x x B A ∈∈=或Y .集合A 与集合B 的并集可用图形表示为:(1 (2(3求两个集合并集的运算叫做并运算.三、巩固知识 典型例题例4 已知集合A ,B ,求A ∪B .(1) A ={1,2},B ={2,3};(2) A ={a , b },B ={c , d , e , f };(3) A ={1,3,5},B = ;(4) A ={2,4},B ={1,2,3,4}.分析 因为A ∪B 是由集合A 和集合B 的所有元素组成,当集合都是用列举法表示时,通过列举这两个集合的元素,可以得到并集,注意相同的元素只列举一次. 解:(1) A ∪B ={1,2}∪{2,3}={1,2,3};(2) A ∪B ={a , b }∪{c , d , e , f }={a , b , c , d , e , f };(3) 因为是不含任何元素的空集,所以A ∪B={1,3,5}∪={1,3,5}; (4) 集合A 是集合B 的真子集,A ∪B ={1,2,3,4}= B .由并集定义和上面的例题可知,对于任意的两个集合A 与B ,都有:(1)A B B A Y Y =;(2)A A A =Y ,A A =∅Y ;(3)B A B B A A Y Y ⊆⊆,;(4)如果A B ⊆,那么A B A =Y .四、运用知识 强化练习练习1.设{}1,0,1,2A =-,{}0,2,4,6B =,求A B U .2.设}{22≤<-=A x x ,}{40≤≤=B x x ,求A B U .五、归纳小结(1)本次课学了哪些内容(2)你认为本次课的重点和难点各是什么六、实践调查举出并集的生活实例【教学过程3】一、复习知识 揭示课题前面学习了集合的并运算和交运算相关问题,试着回忆下面的知识点:1.集合的并集和交集有什么区别(含义和符号){}B x A x x B A ∈∈=或Y {}B x A x x B A ∈∈=且I2.完成下面的练习:(1)设{}1,0,1,2A =-,{}0,2,4,6B =,求A B U ,A B I .(2)设}{22≤<-=x x A ,}{40≤≤=x x B ,求A B U ,A B I .下面我们将学习另外一种集合的运算.补集二、创设情景 兴趣导入问题某学习小组学生的集合为U={王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在学校应用文写作比赛与技能大赛中获得过金奖的学生集合为P ={王明,曹勇,王亮,李冰,张军},那么没有获得金奖的学生有哪些解决没有获得金奖的学生的集合为Q ={赵云,冯佳,薛香芹,钱忠良,何晓慧}. 结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合.二、动脑思考 探索新知概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做在全集U 中的补集.表示集合在全集U 中的补集记作A C U ,读作“A 在U 中的补集”.即{}A x U x x A C U ∉∈=且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将A C U 简记为CA ,读作“A 的补集”.集合在全集U 中的补集的图形表示,如下图所示:求集合在全集U 中的补集的运算叫做补运算.三、巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A C U 及B C U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合.解:}{987620,,,,,=A C U ;}{964210,,,,,=B C U . 例2 设U =R ,}{21≤<-=x x A ,求A C .分析 作出集合A 在数轴上的表示,观察图形可以得到A C .解:}{21>-≤=x x x C A 或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集CA ;因为端点2属于集合A ,所以2不属于其补集A ð.由补集定义和上面的例题,可以得到:对于非空集合A : A ∩(A C U )=,A ∪(A C U )=U ,U C U =,U C =U ,()A C C U U )=A .四、运用知识 强化练习教材 练习设{}U =小于10的正整数,}{741,,=A ,求A C U . 2.设U R =,}{42≤≤-=x x A ,求CA .五、归纳小结 强化思想本次课学了哪些内容重点和难点各是什么六、实践调查了解补集与全集在生活中的应用.。

高一数学 集合的基本运算

高一数学 集合的基本运算

集合的基本运算第1课时并集与交集学习目标 1.理解并集、交集的概念.2.会用符号、Venn图和数轴表示并集、交集.3.会求简单集合的并集和交集.知识点一并集思考某次校运动会上,高一(1)班有10人报名参加田赛,有12人报名参加径赛.已知两项都报的有3人,你能算出高一(1)班参赛人数吗?答案19人.参赛人数包括参加田赛的,也包括参加径赛的,但由于元素互异性的要求,两项都报的不能重复计算,故有10+12-3=19人.梳理(1)定义:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”).(2)并集的符号语言表示为A∪B={x|x∈A,或x∈B}.(3)图形语言:、阴影部分为A∪B.(4)性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆A∪B.知识点二交集思考一副扑克牌,既是红桃又是A的牌有几张?答案1张.红桃共13张,A共4张,其中两项要求均满足的只有红桃A一张.梳理(1)定义:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”).(2)交集的符号语言表示为A∩B={x|x∈A,且x∈B}.(3)图形语言:阴影部分为A∩B.(4)性质:A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.类型一求并集命题角度1数集求并集例1(1)已知集合A={3,4,5},B={1,3,6},则集合A∪B是()A.{1,3,4,5,6}B.{3}C.{3,4,5,6}D.{1,2,3,4,5,6}答案A解析A∪B是将两集合的所有元素合并到一起构成的集合(相同元素算一个),因此A∪B={1,3,4,5,6},故选A.(2)A={x|-1<x<2},B={x|1<x<3},求A∪B.解如图:由图知A∪B={x|-1<x<3}.反思与感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于A∪B中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练1(1)A={-2,0,2},B={x|x2-x-2=0},求A∪B.解B={-1,2},∴A∪B={-2,-1,0,2}.(2)A={x|-1<x<2},B={x|x≤1或x>3},求A∪B.解如图:由图知A∪B={x|x<2或x>3}.命题角度2点集求并集例2集合A={(x,y)|x>0},B={(x,y)|y>0},求A∪B,并说明其几何意义.解A∪B={(x,y)|x>0或y>0}.其几何意义为平面直角坐标系内去掉第三象限和x轴、y轴的非正半轴后剩下的区域内所有点.反思与感悟求并集要弄清楚集合中的元素是什么,是点还是数.跟踪训练2A={(x,y)|x=2},B={(x,y)|y=2}.求A∪B,并说明其几何意义.解A∪B={(x,y)|x=2或y=2},其几何意义是直线x=2和直线y=2上所有的点组成的集合.类型二求交集例3(1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B等于()A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3}答案A解析在数轴上将集合A,B表示出来,如图所示,由交集的定义可得A∩B为图中阴影部分,即A∩B={x|-3<x<2},故选A.(2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0}B.{1}C.{0,1,2}D.{0,1}答案D解析 M ={x |-2≤x <2},N ={0,1,2},则M ∩N ={0,1},故选D.(3)集合A ={(x ,y )|x >0},B ={(x ,y )|y >0},求A ∩B 并说明其几何意义.解 A ∩B ={(x ,y )|x >0且y >0},其几何意义为第一象限所有点的集合.反思与感悟 求集合A ∩B 的步骤(1)首先要搞清集合A ,B 的代表元素是什么;(2)把所求交集的集合用集合符号表示出来,写成“A ∩B ”的形式;(3)把化简后的集合A ,B 的所有公共元素都写出来即可.跟踪训练3 (1)集合A ={x |-1<x <2},B ={x |x ≤1或x >3},求A ∩B ;(2)集合A ={x |2k <x <2k +1,k ∈Z },B ={x |1<x <6},求A ∩B ;(3)集合A ={(x ,y )|y =x +2},B ={(x ,y )|y =x +3},求A ∩B .解 (1)A ∩B ={x |-1<x ≤1}.(2)A ∩B ={x |2<x <3或4<x <5}.(3)A ∩B =∅.类型三 并集、交集性质的应用例4 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =B ,求a 的取值范围.解 A ∪B =B ⇔A ⊆B .当2a >a +3,即a >3时,A =∅,满足A ⊆B .当2a =a +3,即a =3时,A ={6},满足A ⊆B .当2a <a +3,即a <3时,要使A ⊆B ,需⎩⎪⎨⎪⎧ a <3,a +3<-1或⎩⎪⎨⎪⎧a <3,2a >5, 解得a <-4,或52<a <3. 综上,a 的取值范围是{a |a >3}∪{a |a =3}∪{a |a <-4,或52<a <3} ={a |a <-4,或a >52}. 反思与感悟 解此类题,首先要准确翻译,诸如“A ∪B =B ”之类的条件.在翻译成子集关系后,不要忘了空集是任何集合的子集.跟踪训练4 设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B . 解 ∵A ∩B ={12},∴12∈A , ∴2×(12)2+3p ×12+2=0,∴p =-53,∴A ={12,2}. 又∵A ∩B ={12},∴12∈B , ∴2×(12)2+12+q =0,∴q =-1. ∴B ={12,-1}. ∴A ∪B ={-1,12,2}.1.已知集合M ={-1,0,1},N ={0,1,2},则M ∪N 等于( )A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2}D.{0,1} 答案 B2.已知集合A ={x |x 2-2x =0},B ={0,1,2},则A ∩B 等于( )A.{0}B.{0,1}C.{0,2}D.{0,1,2} 答案 C3.已知集合A ={x |x >1},B ={x |0<x <2},则A ∪B 等于( )A.{x |x >0}B.{x |x >1}C.{x |1<x <2}D.{x |0<x <2} 答案 A4.已知A ={x |x ≤0},B ={x |x ≥1},则集合A ∩B 等于( )A.∅B.{x |x ≤1}C.{x |0≤x ≤1}D.{x |0<x <1} 答案 A5.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( )A.0或 3B.0或3C.1或 3D.1或3答案 B1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A ,或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A 、B 两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B 没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.课时作业一、选择题1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案D解析∵-2∈N,但-2∉M,∴A,B,C三个选项均不对.2.若集合M={x|-3≤x<4},N={-3,1,4},则M∩N等于()A.{-3}B.{1}C.{-3,1,4}D.{-3,1}答案D解析M={x|-3≤x<4},N={-3,1,4},则M∩N={-3,1},故选D.3.已知集合A={x|-1≤x≤1}和集合B={y|y=x2},则A∩B等于()A.{y|0<y<1}B.{y|0≤y≤1}C.{y|y>0}D.{(0,1),(1,0)}答案B解析∵B={y|y=x2},∴B={y|y≥0},A∩B={y|0≤y≤1}.4.点集A={(x,y)|x<0},B={(x,y)|y<0},则A∪B中的元素不可能在()A.第一象限B.第二象限C.第三象限D.第四象限答案A解析A∪B={(x,y)|x<0或y<0},表示的区域是平面直角坐标系中第二、三、四象限和x,y轴的负半轴,故不可能在第一象限.5.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3},B={y|y≥1},则A*B 等于()A.{x|1≤x<3}B.{x |1≤x ≤3}C.{x |0≤x <1或x >3}D.{x |0≤x ≤1或x ≥3}答案 C解析 由题意知,A ∪B ={x |x ≥0},A ∩B ={x |1≤x ≤3},则A *B ={x |0≤x <1或x >3}.6.若集合A ={x |x ≥0},且A ∩B =B ,则集合B 可能是( )A.{1,2}B.{x |x ≤1}C.{-1,0,1}D.R 答案 A解析 ∵A ∩B =B ,∴B ⊆A ,四个选项中,符合B ⊆A 的只有选项A.二、填空题7.若集合A ={0,1,2,x },B ={1,x 2},A ∪B =A ,则满足条件的实数x 有________个.答案 2解析 ∵A ={0,1,2,x },B ={1,x 2},A ∪B =A ,∴B ⊆A ,∴x 2=0或x 2=2或x 2=x ,解得x =0或2或-2或1.经检验当x =2或-2时满足题意.8.已知集合P ={x ||x |>x },Q ={x |y =1-x },则P ∩Q =________.答案 {x |x <0}解析 |x |>x ⇒x <0,∴P ={x |x <0},1-x ≥0⇒x ≤1,∴Q ={x |x ≤1},故P ∩Q ={x |x <0}.9.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________.答案 a ≤1解析 A ={x |x ≤1},B ={x |x ≥a },要使A ∪B =R ,只需a ≤1.如图.10.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________. 答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.三、解答题11.已知集合A ={x |⎩⎪⎨⎪⎧3-x >0,3x +6>0,},集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3, 则A ={x |-2<x <3},解不等式3>2m -1得m <2,则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.12.已知集合A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)若A ∩B ={x |1≤x ≤3},求实数m 的值;(2)若A ∩B =∅,求实数m 的取值范围.解 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B ={x |1≤x ≤3},∴⎩⎪⎨⎪⎧ m -2=1,m +2≥3,解得m =3.(2)A ∩B =∅,A ⊆{x |x <m -2或x >m +2}.∴m -2>3或m +2<-1.∴实数m 的取值范围是{m |m >5或m <-3}.13.已知集合A ={x |x 2-8x +15=0},B ={x |x 2-ax -b =0}.(1)若A ∪B ={2,3,5},A ∩B ={3},求a ,b 的值;(2)若∅B A ,求实数a ,b 的值.解 (1)因为A ={3,5},A ∪B ={2,3,5},A ∩B ={3},所以3∈B,2∈B ,故2,3是一元二次方程x 2-ax -b =0的两个实数根,所以a =2+3=5,-b =2×3=6,b =-6.(2)由∅B A ,且A ={3,5},得B ={3}或B ={5}.当B ={3}时,解得a =6,b =-9;当B ={5}时,解得a =10,b =-25.综上,⎩⎪⎨⎪⎧ a =6,b =-9或⎩⎪⎨⎪⎧a =10,b =-25. 四、探究与拓展14.已知集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )|y =x ,x ∈R },则A ∩B 中的元素个数为________. 答案 2解析 由⎩⎪⎨⎪⎧ y =x 2,y =x ,得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1. 15.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?解设参加数学、物理、化学小组的人数构成的集合分别为A、B、C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.第2课时补集及综合应用学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?答案老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理思考实数集中,除掉大于1的数,剩下哪些数?答案剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}答案C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn 图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=∅,(∁U A)∪A=U,所以可以借助圈内推知圈外,也可以反推.跟踪训练2如图所示的V enn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.答案 {x |0≤x ≤1或x >2}解析 A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0},由图可得A *B =∁(A ∪B )(A ∩B )={x |0≤x ≤1或x >2}.命题角度2 补集性质在解题中的应用)例3 关于x 的方程:x 2+ax +1=0,①x 2+2x -a =0,②x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围.解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧ -2<a <2,a <-1,-2<a < 2. 解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根,即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题;(2)求解反面问题对应的参数的取值范围;(3)求反面问题对应的参数的取值集合的补集.跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围.解 假设集合A 中含有2个元素,即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98,且a ≠0, 则集合A 中含有2个元素时,实数a 的取值范围是{a |a <98且a ≠0}. 在全集U =R 中,集合{a |a <98且a ≠0}的补集是 {a |a ≥98或a =0}, 所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}. 类型三 集合的综合运算例4(1)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)等于() A.{3} B.{4}C.{3,4}D.∅答案A解析∵∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴∁U B={3,4},A中必有3,可以有1,2,一定没有4.∴A∩(∁U B)={3}.(2)已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.答案a≥2解析∵∁R B={x|x<1或x>2}且A∪(∁R B)=R,∴{x|1≤x≤2}⊆A,∴a≥2.反思与感悟解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn图,与不等式有关的可借助数轴.跟踪训练4(1)已知集合U={x∈N|1≤x≤9},A∩B={2,6},(∁U A)∩(∁U B)={1,3,7},A∩(∁U B)={4,9},则B等于()A.{1,2,3,6,7}B.{2,5,6,8}C.{2,4,6,9}D.{2,4,5,6,8,9}答案B解析根据题意可以求得U={1,2,3,4,5,6,7,8,9},画出Venn图(如图所示),可得B={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.UB.{1,3,5}C.{3,5,6}D.{2,4,6}答案C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4}B.{3,4}C.{3}D.{4}答案D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}答案C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U NB.N∩∁U NC.∁U(∁U∅)D.∁U Q答案A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}答案B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.课时作业一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析 ∁U A ={0,4},所以(∁U A )∪B ={0,2,4},选C.2.已知全集U =R ,集合M ={x |x 2-4≤0},则∁U M 等于( )A.{x |-2<x <2}B.{x |-2≤x ≤2}C.{x |x <-2或x >2}D.{x |x ≤-2或x ≥2} 答案 C解析 ∵M ={x |-2≤x ≤2},∴∁U M ={x |x <-2或x >2}.3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( )A.0或2B.0C.1或2D.2 答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2. 4.图中的阴影部分表示的集合是( )A.A ∩(∁U B )B.B ∩(∁U A )C.∁U (A ∩B )D.∁U (A ∪B ) 答案 B解析 阴影部分表示集合B 与集合A 的补集的交集.因此,阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( )A.∁U N ⊆∁U MB.M ⊆∁U NC.∁U M ⊆∁U ND.∁U N ⊆M 答案 C解析 由M ∩N =N 知N ⊆M .∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( )A.∅B.{2}C.{5}D.{2,5}答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5},所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}.二、填空题7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________. 答案 {x |0<x <1} {x |0<x <1}解析A∪B={x|x≤0或x≥1},∁U(A∪B)={x|0<x<1}.∁U A={x|x>0},∁U B={x|x<1},∴(∁U A)∩(∁U B)={x|0<x<1}.8.若全集U={(x,y)|x∈R,y∈R},A={(x,y)|x>0,y>0},则点(-1,1)________∁U A.(填“∈”或“∉”)答案∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.9.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案a≤1解析∁U A={x|x≤1},∵(∁U A)∪B=R,∴B⊇{x|x>1},∴a≤1.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.12.已知U=R,集合A={x|x2-x-2=0},B={x|mx+1=0},B∩(∁U A)=∅,求实数m的值.解A={-1,2},B∩(∁U A)=∅等价于B⊆A.当m=0时,B=∅⊆A;当m≠0时,B={-1m}.∴-1m =-1,或-1m =2,即m =1或m =-12. 综上,m 的值为0,1,-12. 13.设全集为R ,A ={x |3<x <7},B ={x |4<x <10}.(1)求∁R (A ∪B )及(∁R A )∩B ;(2)若C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.解 (1)∵A ∪B ={x |3<x <10},∴∁R (A ∪B )={x |x ≤3或x ≥10}.又∵∁R A ={x |x ≤3或x ≥7},∴(∁R A )∩B ={x |7≤x <10}.(2)∵A ∩C =A ,∴A ⊆C .∴⎩⎪⎨⎪⎧ a +4≥7,a -4≤3⇒⎩⎪⎨⎪⎧a ≥3,a ≤7⇒3≤a ≤7. ∴a 的取值范围为{a |3≤a ≤7}.四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A.(∁I A ∩B )∩CB.(∁I B ∪A )∩CC.(A ∩B )∩(∁I C )D.(A ∩∁I B )∩C答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M ={(x ,y )|y -3x -2=1},P ={(x ,y )|y ≠x +1},求∁U (M ∪P ). 解 集合M 表示的是直线y =x +1上除去点(2,3)的所有点,集合P 表示的是不在直线y =x +1上的所有点,显然M ∪P 表示的是平面内除去点(2,3)的所有点,故∁U (M ∪P )={(2,3)}.。

集合的运算教案

集合的运算教案

集合的运算教案【篇一:集合的运算教案】1【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(1) 某学校数控班学生的全体; (2) 正数的全体;(3) 平行四边形的全体; (4) 数轴上所有点的坐标的全体 1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母a,b,c,…表示,它的元素通常用小写英文字母 a,b,c,? 表示. 2. 元素与集合的关系.(1) 如果 a 是集合 a 的元素,就说a属于a,记作a∈a,读作“a属于a”. (2)如果a不是集合a的元素,就说a不属于a,记作a ? a.读作“a不属于a”. 3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象. 4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集. (2) 无限集:含有无限个元素的集合叫做无限集. 5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 n;(2) 正整数集:非负整数集内排除0的集合,记作 n+或 n*; (3) 整数集:整数全体构成的集合,记作 z; (4) 有理数集:有理数全体构成的集合,记作 q; (5) 实数集:实数全体构成的集合,记作 r.【稳固】例1 判断以下语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生; (3) 英文的 26 个大写字母; (4) 非常接近 1 的实数.练习1 判断以下语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素; (2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集; (4) 如果a ∈ q,b ∈ q,则 a+b ∈ q.例2 用符号“∈”或“?”填空:n,n,-,n;,z,-z,;,q,-,;,,-r,.练习2 用符号“∈”或“?”填空:1(1) -;q;(3) z;31(4) -;(5);2【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材p4,练习a组第1~3题浙江省衢州中等专业学校课时工作计划2【引课】1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“∈”与“?”填空白:n;(2) -2 q; (3)-2 .师:刚刚复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.【新授】1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,?,99}.例1 用列举法表示以下集合:(1) 所有大于3且小于10的奇数构成的集合;(2) 方程 x2-5 x+6=0的解集.解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示以下集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体; (4) 大于3.5且小于12.8的整数的全体. 2. 性质描述法.给定 x 的取值集合 i,如果属于集合 a 的任意元素 x 都具有性质p(x),而不属于集合 a 的元素都不具有性质p(x),则性质 p(x)叫做集合a的一个特征性质,于是集合 a 可以用它的特征性质描述为{x∈i | p(x)} ,它表示集合 a是由集合 i 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意: (1) 特征性质明确;(2) 假设元素范围为 r,“x∈r”可以省略不写.【稳固】例2 用性质描述法表示以下集合:(1) 大于3的实数的全体构成的集合;【篇二:集合间的基本运算教案】集合间的基本运算教学设计〔〕授课人:伊西凡学号:2013012402数学与统计学院2013级集合间的基本运算教学设计〔〕【篇三:1.2.2集合的运算教案】1.2.2 集合的运算〔第一课时〕〔一〕教学目标1.知识与技能〔1〕理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.〔2〕能使用venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

集合与分类小班数学教案

集合与分类小班数学教案

集合与分类小班数学教案一、教学目标1. 了解集合的基本概念和符号表示法。

2. 学会使用Venn图进行集合的分类和对比。

3. 掌握基本的集合运算,如并集、交集和补集。

4. 能够熟练使用集合运算解决相关问题。

二、教学准备1. 教师准备:教材、课件、黑板、彩色粉笔、Venn图示例。

2. 学生准备:参考书、作业本、铅笔、橡皮擦。

三、教学过程步骤一:导入/前置知识激活(5分钟)教师出示一张Venn图示例,并向学生提问:你们平时在哪些情况下使用过这样的图形呢?学生回答后,教师引导学生回忆并总结集合的基本知识点。

步骤二:讲解集合的基本概念和符号表示法(10分钟)1. 教师简要介绍集合的概念:集合是由确定的元素组成的,无序且不重复。

2. 教师展示集合的符号表示法:用大写字母A、B等表示集合,用小写字母a、b等表示元素。

3. 教师通过例子展示如何用符号表示具体的集合,如集合A={a, b, c}。

步骤三:学习使用Venn图进行集合的分类和对比(15分钟)1. 教师引导学生观察并理解Venn图的构成:Venn图由圆和交叉部分组成,每个圆代表一个集合。

2. 教师示范如何使用Venn图分类和对比集合,例如:a. A与B的并集:将A和B的圆合并在一起。

b. A与B的交集:观察A和B的交叉部分。

c. A的补集:观察A圆以外的部分。

d. A和B的差集:观察A圆去掉与B的交叉部分。

3. 教师随机选择一些集合进行练习,让学生通过观察Venn图来进行分类和对比。

步骤四:掌握基本的集合运算(10分钟)1. 教师讲解并示范集合的并集运算:如果A={1, 2, 3},B={2, 3, 4},则A∪B={1, 2, 3, 4}。

2. 教师讲解并示范集合的交集运算:如果A={1, 2, 3},B={2, 3, 4},则A∩B={2, 3}。

3. 教师讲解并示范集合的补集运算:如果A={1, 2, 3},则A'={4, 5, 6},即A的补集是除了A中元素以外的其它元素的集合。

大班数学活动教案《4的加法》

大班数学活动教案《4的加法》

大班数学活动教案《4的加法》大班数学活动教案《4的加法》「篇一」教学目标:1.让幼儿来理解加法的含义2.让幼儿掌握4的加法3.使幼儿学会解答简单的口述加法应用题,培养幼儿初步的分析问题的能力教学准备:1、苹果卡片4个、动物卡片:小鸟、小兔各4张,画有4个图案的图片四张;2、数卡若干(1-----4)3、幼儿用书教学过程:一、碰球游戏:复习4的组成二、出示直观教具,学习4的加法1、小兔去拔萝卜,先来了一只小兔(出示一只小兔图片)过了一会又来了三只小兔(出示三只小兔图片)问 1只小兔再添上三只小兔是几只小兔呢?2、幼儿列算式1 3=4请幼儿说出1、3、4的含义3、依次出示小鸟、小狗、表示加法算式2 2=4、3 1=4(方法同上)4、引导幼儿观察1 3=4和3 1=4两道算式,发现他们的秘密。

三、引导幼儿看图编4以内的加法应用题四、玩“谁最快”游戏教师出题,幼儿用数卡摆算式,看谁摆得又快又对五、看图写算式1、让幼儿书写加法算式2、教师检查,对书写有错误的幼儿给予帮助六、教师进行小结活动反思:本节课是在幼儿已有了4以内分与合的基础上,如何让幼儿理解加法的含义真是不易的事情。

因此,在教学中,我根据本节课教学重点,确立以情境教学为主线,游戏活动为辅助形式,带领幼儿在情境中结合图意理解加法的含义,在玩中掌握算法,正确进行4的加法计算。

大班数学活动教案《4的加法》「篇二」活动目标:1、看三幅图列算式,感知加法算式表达的数量关系,学习4的加法。

2、进一步理解"又来了"、"一共"的实际意义,运用正确的词汇表达图意。

3、通过游戏复习4以内的组成及加减法。

活动准备:1、实物图6幅。

2、材料纸人手一张,放大材料纸一份。

3、鱼池4个,标有算式或分合式的鱼人手1条。

4、音乐《郊游》、《欢乐舞》。

活动过程:1、导入活动,复习4以内的组成。

今天,老师要带小朋友去动物王国玩,你们说好吗?哎呀!通往动物王国的路上有一条河,我们先坐着碰碰船去吧。

《集合》(教案)人教版三年级下册数学

《集合》(教案)人教版三年级下册数学

《集合》(教案)人教版三年级下册数学我今天要给大家讲解的是人教版三年级下册数学的《集合》这一章节。

教学内容:我们今天的学习重点是理解集合的概念,学会用集合的符号来表示集合,并且能够求出两个集合的并集和交集。

具体来说,我们会学习集合的表示方法,包括列举法和描述法,以及集合的基本运算,包括并集和交集。

教学目标:通过今天的学习,我希望大家能够掌握集合的基本概念和表示方法,能够熟练地运用集合的符号来表示集合,并且能够正确地求出两个集合的并集和交集。

教学难点与重点:重点是集合的概念和表示方法,难点是集合的运算。

教具与学具准备:我会准备一些集合的卡片,上面会有不同的物品,大家需要用这些卡片来进行集合的表示和运算。

教学过程:我会通过一些实际的情景来引入集合的概念,比如我会给大家一些苹果和橙子,让大家分组,一组是苹果,一组是橙子,这样大家就能直观地理解集合的概念。

然后,我会给大家讲解集合的表示方法,包括列举法和描述法。

我会用一些例子来让大家理解这两种方法的用法。

在讲解的过程中,我会随时提问,让大家能够及时地巩固所学的知识。

板书设计:我会在黑板上写出集合的表示方法和基本运算的规则,这样大家就能够直观地看到这些知识点。

作业设计:我会给大家布置一些练习题,让大家能够通过实际的操作来巩固所学的知识。

课后反思及拓展延伸:通过今天的教学,我觉得大家对于集合的概念和表示方法掌握得比较好,但是在集合的运算上还有一些困难。

在课后,大家可以通过更多的练习来加强对集合运算的理解。

同时,大家也可以尝试自己找出一些实际的情景来应用集合的知识,这样能够更好地理解和掌握集合的概念。

重点和难点解析:在今天的教学中,我认为有几个重点和难点是我们需要特别关注的。

集合的概念和表示方法是整个章节的基础,因此我们需要花时间去理解和掌握。

集合的运算,尤其是并集和交集的计算,是整个章节的核心,也是大家学习的难点。

关于集合的概念,我们需要明白集合是由一些确定的、互不相同的对象组成的整体。

高中数学集合复习教案

高中数学集合复习教案

高中数学集合复习教案一、教学目标1. 理解集合的概念,掌握集合的表示方法。

2. 能够运用集合的基本运算(并集、交集、补集)解决实际问题。

3. 理解集合的性质,如无序性、确定性、互异性。

4. 能够运用集合的知识解决数学问题,提高逻辑思维能力。

二、教学内容1. 集合的概念与表示方法集合的定义集合的表示方法(列举法、描述法)2. 集合的基本运算并集:两个集合的并集包含所有属于两个集合的元素。

交集:两个集合的交集包含属于两个集合的元素。

补集:一个集合的补集是除去该集合之外的所有元素构成的集合。

3. 集合的性质无序性:集合中的元素没有先后顺序。

确定性:集合中的元素是明确的,没有重复。

互异性:集合中的元素彼此不同。

4. 集合的应用运用集合的基本运算解决实际问题。

运用集合的性质解决数学问题。

三、教学重点与难点1. 重点:集合的概念与表示方法,集合的基本运算,集合的性质。

2. 难点:集合的应用,解决实际问题。

四、教学方法1. 采用讲解法,引导学生理解集合的概念和表示方法。

2. 采用示例法,通过具体例子讲解集合的基本运算。

3. 采用练习法,让学生通过练习题巩固集合的知识。

4. 采用讨论法,引导学生运用集合的知识解决实际问题。

五、教学准备1. 教案、教材、PPT。

2. 练习题及答案。

3. 教学工具(黑板、粉笔)。

六、教学过程1. 导入:通过简单的例子引入集合的概念,激发学生的兴趣。

2. 讲解:讲解集合的概念、表示方法、基本运算和性质。

3. 练习:让学生完成一些练习题,巩固所学知识。

4. 应用:引导学生运用集合的知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调重点和难点。

七、课堂练习1. 选择题:下列哪个选项是集合的表示方法?A. {1, 2, 3}B. {1, 2, 3, 4}C. {1, 2, 3} U {4, 5, 6}D. {1, 2, 3} ∩{4, 5, 6}2. 填空题:设A = {1, 2, 3},B = {3, 4, 5},求A ∪B 的结果是______。

高中数学中的集合与集合运算法则

高中数学中的集合与集合运算法则

高中数学中的集合与集合运算法则数学是一门精密而又严谨的学科,其中的集合论更是数学的基础。

在高中数学中,集合与集合运算法则是我们必须掌握的重要知识点。

本文将从集合的定义、集合的表示方法和集合运算法则三个方面来探讨高中数学中的集合与集合运算法则。

一、集合的定义集合是由一些确定的、互不相同的对象所组成的整体。

集合中的对象称为元素。

集合用大写字母表示,元素用小写字母表示。

例如,集合A={1,2,3,4,5}表示由1、2、3、4、5这五个元素组成的集合A。

二、集合的表示方法集合可以用列举法、描述法和符号法来表示。

1. 列举法:直接列举集合中的元素。

例如,集合A={1,2,3,4,5}。

2. 描述法:通过描述集合中元素的特点来表示。

例如,集合A={x|x是自然数,1≤x≤5}表示由自然数1、2、3、4、5组成的集合A。

3. 符号法:用特定的符号表示集合。

例如,集合A={1,2,3,4,5}可以用A={x|x是自然数,1≤x≤5}来表示。

三、集合运算法则集合运算是指对集合进行操作的过程。

常用的集合运算有并集、交集、差集和补集。

1. 并集:并集运算是指将两个集合中的所有元素合并成一个新的集合。

并集运算的符号是“∪”。

例如,集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集:交集运算是指两个集合中共有的元素组成的新集合。

交集运算的符号是“∩”。

例如,集合A={1,2,3},集合B={3,4,5},则A∩B={3}。

3. 差集:差集运算是指从一个集合中减去与另一个集合相同的元素所得到的新集合。

差集运算的符号是“-”。

例如,集合A={1,2,3},集合B={3,4,5},则A-B={1,2}。

4. 补集:补集运算是指一个集合中不属于另一个集合的元素所组成的新集合。

补集运算的符号是“'”。

例如,集合A={1,2,3},集合B={3,4,5},则A'={4,5}。

集合题目讲解

集合题目讲解

集合题目讲解一、集合的概念集合呢,就是把一些确定的、不同的对象看成一个整体。

比如说,咱们班所有的同学就可以看成一个集合。

这里面每个同学都是这个集合里的元素。

就像你有一堆不同颜色的笔,把这些笔放在一起,这堆笔就可以看作一个集合,每一支笔就是这个集合的元素啦。

二、集合的表示方法1. 列举法就是把集合里的元素一个一个地列出来,放在大括号里面。

比如集合A = {1, 2, 3},这里1、2、3就是集合A的元素,这种方法很直接,就像把你的好朋友一个个点名一样。

2. 描述法用集合所含元素的共同特征来表示集合。

比如说,所有大于5的整数组成的集合,就可以写成B = {x x > 5且x是整数}。

这就像是给一群有共同特点的东西下了个定义,让你知道这个集合里的元素都满足什么条件。

三、集合之间的关系1. 子集如果集合A的所有元素都是集合B的元素,那我们就说A是B的子集,记作A⊆B。

这就好比小集合是大集合里的一部分,就像数学小组的同学肯定都是咱们班同学的一部分一样。

2. 真子集如果A是B的子集,但是A不等于B,那A就是B的真子集,记作A⊂B。

这就像是说小集合完全在大集合里面,但是又比大集合小一点。

四、集合的运算1. 交集集合A与集合B的交集,就是由既属于A又属于B的所有元素组成的集合,记作A∩B。

就像两个小组的共同成员组成的新小组一样。

比如说A = {1, 2, 3},B = {2, 3, 4},那A∩B = {2, 3}。

2. 并集集合A与集合B的并集是由所有属于A或者属于B的元素组成的集合,记作A∪B。

就像把两个小组的成员全部放在一起组成一个大组。

还是上面的例子,A∪B = {1, 2, 3, 4}。

3. 补集如果有一个全集U,集合A是U的子集,那A在U中的补集就是由属于U但不属于A的所有元素组成的集合,记作∁UA。

这就像是在一个大范围内,除了A里面的东西,剩下的那些东西组成的集合。

答案与解析:一、概念部分(20分)1. 集合概念(10分)答案:把确定的、不同的对象看成一个整体。

高一数学第3课时交集、并集课件人教新课标

高一数学第3课时交集、并集课件人教新课标
高一数学
1.3 交集、并集(1)
一、复习回顾
已知集合S和A,求CSA: 1、S={本班学生},A={本班男生}; 2、S=Z,A=N*; 3、S={0},A={0}; 4、S=R,A={x|x>1}; 5、S={x|1<x<5,x∈Z},A={x|x=2或x=3}.
二、继续讨论
求集合A在一个S中的补集CSA的过程实际是由两个 集合得到一个集合的过程,称为集合的运算。
CU (A∪B), CU (A ∩B) . 解:∵ (CUA) ={1,2,6,7,8},
(CUB) ={1,2,3,5,6}, ∴(CUA)∩(CUB) ={1,2,6},
(CUA)∪(CUB) ={1,2,3,5,6,7,8}, ∵A∪B={3,4,5 ,7,8} , A ∩B={4} ∴ CU (A∪B) = {1,2,6},
上述每组集合中A,B,C之间有怎样的关系?
AB={x|xA且xB }
A
B
交集的性质: AB=BA, ABA ABB
下列每组集合中A,B,D之间有怎样的关系?
1、A={-1,1,2,3},B={-1,-2,1},D={-1,1,2,3, -2};
2、A={x|x为高一(4)班语文测验优秀者}, B={x|x为高一(4)班英语测验优秀者},D={x|x为 高一(4)班语文或英语测验至少有一门优秀者}。
CU (A ∩B) = {1,2,3,5,6,7,8}.
摩根定律:
(CUA)∩(CUB) = CU (A∪B) (CUA)∪(CUB) = CU (A∩B)
(CUA)∪ (CUB) = CU(A∩B)
(CUA)∩(CUB) = CU(A∪B)
例7:学校举行了排球赛,某班45名同学中有 12名同学参赛,后来又举行了田径赛,这个 班有20名同学参赛,已知两项都参赛的有6 名同学,两项比赛中,这个班共有多少名同 学没有参加过比赛?

高一数学集合与常用逻辑用语试题

高一数学集合与常用逻辑用语试题

高一数学集合与常用逻辑用语试题1.已知集合,集合,则集合()A.B.C.D.【答案】B【解析】两集合的公共元素组成的集合,所以【考点】集合的运算2.(12分)已知集合,集合,集合(1)求;(2)若,求实数的取值范围;【答案】(1);(2)【解析】(1)首先求集合和集合,再求两集合;(2)第一步,先解集合,第二步,根据,得,画数轴得到的取值范围.试题解析:解:(1),,(4分)(6分)(2)由,得,即.(12分)【考点】1.集合的运算;2.集合的关系;3.不等式的解法.3.若集合,则()A.B.C.D.【答案】C【解析】由题意,,,故选C。

【考点】集合的运算4.满足条件的集合M的个数为()A.6B.7C.8D.9【答案】B【解析】的非空子集有个,故选B.【考点】集合的关系(子集).5.设,则下列正确的是()A.B.C.D.【答案】C【解析】集合A表示的是奇数集,故选C.【考点】描述法表示集合及元素与集合的关系.6.设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}【答案】D【解析】由A∩B={2}可知集合A,B中都含有2,【考点】集合的交并运算7.已知集合()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5}D.{x|-1<x≤5}【答案】B【解析】集合的并集是由两集合所有的元素构成的集合,因此{x|-1≤x≤5}【考点】集合的并集8.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.【答案】12【解析】设有人既喜爱篮球也喜爱乒乓球,则,解得,所以喜爱篮球运动但不喜爱乒乓球运动的人数为.【考点】集合的运算.9.集合,若,则a+b= .【答案】3【解析】因为,所以,则b=2,所以a+b=3.【考点】交集运算.10.已知集合,集合,若,则实数的取值范围是.【答案】【解析】,由可得【考点】集合的交集运算(A∪B)=()11.(2012秋•白城期末)设集合U={1,2,3,4},A={1,2},B={2,3},则∁UA.{1,2,3} B.{4} C.{2} D.{1,4}【答案】B【解析】利用集合的并集和补集的定义求解.解:∵集合U={1,2,3,4},A={1,2},B={2,3},∴A∪B={1,2,3},C(A∪B)={4}.U故选:B.【考点】交、并、补集的混合运算.12.已知,求的值.【解析】试题分析:根据题意可得,即方程有两个相等实根为2,有韦达定理即可得a,b的值.试题解析:∴方程有两个相等实根为2【考点】1.集合间的关系;2.一元二次方程的根.13.已知函数的定义域为集合,集合,集合,是的真子集,求(1);(2)的值.【答案】(1);(2)1.【解析】(1)明确集合A,C的元素,由交集定义可得;(2)求出集合B,及,由真子集的定义可得的不等式,由是正整数可得结论.试题解析:(1)由题意,,∴.(2),,,∵,∴,又,∴,,∴.【考点】集合的运算,集合的包含关系.14.已知集合A={x|a≤x≤a+4},B={x|x2﹣x﹣6≤0}.B);(1)当a=0时,求A∩B,A∪(∁R(2)若A∪B=B,求实数a的取值范围.B)={x|x<﹣2或x≥0};(2)实数a的范围是{a|﹣【答案】(1)A∩B={x|0≤x≤3},A∪(∁R2≤a≤﹣1}.【解析】(1)求出B中不等式的解集确定出B,把a=0代入确定出A,找出A与B的交集,求出A与B补集的并集即可;(2)根据A与B的并集为B,得到A为B的子集,由A与B确定出a的范围即可.解:(1)由B中不等式变形得:(x﹣3)(x+2)≤0,解得:﹣2≤x≤3,即B={x|﹣2≤x≤3},∴∁B={x|x<﹣2或x>3},R把a=0代入得:A={x|0≤x≤4},B)={x|x<﹣2或x≥0};则A∩B={x|0≤x≤3},A∪(∁R(2)∵A∪B=B,∴A⊆B,则有,解得:﹣2≤a≤﹣1,则实数a的范围是{a|﹣2≤a≤﹣1}.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.15.下列命题正确的是()A.“”是“”的必要不充分条件B.对于命题:,使得,则:,均有C.若为假命题,则,均为假命题D.命题“若,则”的否命题为“若,则”【答案】B【解析】对于A,即或,所以当时,,充分性成立,但当时,不一定成立,故A不正确;对于B,特称命题:,,它的否定:,,可得B正确;对于C,当为假命题时,,中至少有一个为假命题,所以,均为假命题不一定成立,故C不正确;对于D,原命题“若,则”的否命题为“若,则”,则命题“若,则”的否命题为“若,则”,故D不正确.【考点】常用逻辑用语.16.已知集合M={y|y=lgx,0<x<1},N={y|y=()x,x>1},则M∩N=()A.{y|y<0}B.{y|y<}C.{y|0<y<}D.∅【答案】D【解析】求出M中y的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.解:由M中y=lgx,0<x<1,得到y<0,即M=(﹣∞,0),由N中y=()x,x>1,得到0<y<1,即N=(0,1),则M∩N=∅,故选:D.【考点】交集及其运算.17.已知集合B={x|﹣3<x<2},C={y|y=x2+x﹣1,x∈B}(1)求B∩C,B∪C;(2)设函数的定义域为A,且B⊆(∁RA),求实数a的取值范围.【答案】(1),(﹣3,5)(2)[8,+∞)【解析】集合B={x|﹣3<x<2},由于x∈B,可得y=x2+x﹣1=﹣∈,可得C.(1)利用集合的运算性质可得:B∩C,B∪C.(2)函数的定义域为A=,可得∁R A=,利用B⊆(∁RA),即可得出.解:集合B={x|﹣3<x<2},∵x∈B,∴y=x2+x﹣1=﹣∈,∴C=.(1)∴B∩C=,B∪C=(﹣3,5).(2)函数的定义域为A=,∴∁RA=,∵B⊆(∁RA),∴2,解得a≥8.∴实数a的取值范围是[8,+∞).【考点】集合的包含关系判断及应用;并集及其运算;交集及其运算.18.已知集合M={(a,b)|a≤﹣1,且 0<b≤m},其中m∈R.若任意(a,b)∈M,均有alog2b﹣b﹣3a≥0,求实数m的最大值.【答案】2【解析】如图所示,由alog2b﹣b﹣3a≥0,化为:.由于≥﹣m,b≤m时,可得log2m≤3﹣m.结合图形即可得出.解:如图所示,由alog2b﹣b﹣3a≥0,化为:.∵≥﹣m,b≤m时,∴log2m≤3﹣m.当m=2时取等号,∴实数m的最大值为2.【考点】对数的运算性质.19.已知集合,,则()A.B.[0,1]C.[0,3]D.【答案】C【解析】因为由得:,又,所以,故选C.【考点】集合的交集运算.20.已知集合,且,求实数a的值。

三年级上册数学教案《 第九单元【第二课时】集合练习课 》人教新课标

三年级上册数学教案《 第九单元【第二课时】集合练习课 》人教新课标

三年级上册数学教案《第九单元【第二课时】集合练习课》人教新课标一. 教材分析本节课为人教新课标三年级上册数学第九单元《集合》的第二课时练习课。

学生在第一课时中已经学习了集合的基本概念和表示方法,本课时将通过一系列的练习题,让学生巩固和应用所学的知识,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析三年级的学生已经具备了一定的数学基础,对集合的概念和表示方法有一定的了解。

但学生在实际应用中,可能会对一些复杂的问题感到困惑,对集合的交集、并集等运算可能还不够熟练。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。

三. 教学目标1.知识与技能:学生能够运用集合的知识,解决一些实际问题,提高解决问题的能力。

2.过程与方法:通过练习题目的解答,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和交流沟通能力。

四. 教学重难点1.重点:学生能够运用集合的知识,解决一些实际问题。

2.难点:学生对集合的交集、并集等运算的熟练应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动参与课堂,培养学生的逻辑思维能力和解决问题的能力。

六. 教学准备1.教具准备:黑板、粉笔、练习题等。

2.教学环境:教室。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生回顾集合的基本概念和表示方法。

例如:某班有男生20人,女生30人,请问这个班有多少人?2.呈现(15分钟)教师呈现一组练习题,让学生独立完成。

练习题包括集合的交集、并集等运算。

教师在学生解答过程中进行巡视指导,对遇到问题的学生进行针对性的辅导。

3.操练(15分钟)教师学生进行小组讨论,共同解决一些关于集合的难题。

教师引导学生积极参与,培养学生的团队合作意识和交流沟通能力。

4.巩固(10分钟)教师选取一些学生的作业,进行讲解和分析,让学生进一步理解和掌握集合的知识。

数学高一下册知识点归纳

数学高一下册知识点归纳

数学高一下册知识点归纳一、集合1. 集合的概念集合就像是一个装东西的大袋子,不过这个袋子里装的是具有某种特定性质的对象哦。

比如说,咱们班所有同学就可以组成一个集合。

这里面每个同学都是这个集合里的元素。

元素具有确定性,就像你知道哪些同学在咱们班,哪些不在,这是很确定的事儿。

还有互异性,一个同学在这个集合里只能算一个元素,不能重复计算。

无序性呢,就是不管你先想到哪个同学,他们在这个集合里的地位都是一样的,没有先后顺序之分。

2. 集合的表示方法列举法就像是点名册一样,把集合里的元素一个一个写出来,用大括号括起来。

比如说{1,2,3}就是一个用列举法表示的集合。

描述法就有点像给这个集合下定义啦,用一个式子或者一句话来说明这个集合里元素的特征。

比如{x x是大于5的整数},这就表示这个集合里的元素x是那些比5大的整数。

3. 集合间的关系子集就像是小集合在大集合里面安了家。

如果集合A中的所有元素都在集合B中,那么A就是B的子集,记作A⊆B。

真子集呢,就是A是B的子集,但是A和B又不完全一样,那就说A是B的真子集,记作A⊂B。

还有集合相等,如果A⊆B且B⊆A,那么A = B,就像两个一模一样的袋子,里面装的东西也都一样。

4. 集合的运算交集就像是找两个集合里共同的朋友。

集合A和集合B的交集,就是既在A里又在B里的那些元素组成的集合,记作A∩B。

并集就像是把两个集合的朋友都聚在一起,不管是A里独有的,B里独有的,还是它们共有的,都放在一起,记作A∪B。

补集呢,是相对于一个全集来说的,全集就像是一个大的范围,在这个全集里,除了集合A里的元素,剩下的那些元素组成的集合就是A相对于这个全集的补集,记作∁UA。

二、函数1. 函数的概念函数就像是一个神奇的机器,你给它一个输入值,它就会按照一定的规则给你一个输出值。

比如说y = 2x,x就是输入值,y就是输出值。

对于每一个确定的x,都有唯一确定的y与之对应,这就是函数的重要特性哦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精彩点评(10分钟)
展示问题
你对交集的理解
目标:
(1)点评对错、规 范(布局、书写)、思 路分析(步骤、易错 点),总结规律方法 用彩笔, (2)其它同学认真 倾听、积极思考,重 点内容记好笔记。有 不明白或有补充的要 大胆提出。 (3)力争全部达成 目标,A层多拓展、 质疑,B层注重总结, C层多整理,记忆。 科研小组成员首先要 质疑拓展。
学习目标
• 1.理解交集与并集的概念并会应用,提高应 用概念解决问题的能力; • 2.自主学习、合作交流,探究两集合交集与 并集运算的规律和方法; • 3.激情投入,高效学习,培养严谨的数学思 维品质。
合作探究(10分钟)
内容:
1. 你是如何理解集合的交集和并集的? 2. 对于集合中元素个数有限的集合求交集和并集怎么 求? 重点讨论:问题导学2的思考,例1,例2
展示问题
你对交集的理解 你对并集的理解
展示位置 前黑板 前黑板 前黑板 前黑板
后黑板 后黑板 后黑板
小组 8组 7组 5组
1组 2组 4组 3组
例1(1) 例1(2) 例1拓展训练 例2 例2拓展
目标: (1)展示人规范 快速,总结 规律(用彩 笔); (2)其他同学讨 论完毕总结 完善,A层注 意拓展,不 浪费一分钟; (3)小组长要检 查落实,力 争全部达标
【规律方法总结】 进行集合的交集与并集运算时,首先要看清集 合的代表元素(也就是集合的元素)是什么,明 确该集合是点集、数集、方程的解集还是不等式 的解集,然后再根据两集合的交集或并集的定义 进行计算 。
拓展提升
设A={x|-1≤x≤2},B={x|1<x<3}, 求(1)A∩B (2)A∪B 解:
B A
2.并集定义:而由所有属于集合A或属于集合B的 元素所组成的集合,叫做A与B的并集,记作 A∪B(读作“A并B”),即 A∪B={x | x∈A,或x∈B}
A A BB
已知集合A、B,用阴影部分表示A∩B 与A∪B,如图.
B A
A
B
A∩B
A∪B
A
B
A
B
A∩B =φ
A∪B = B∪A
A
B
A
小结:
1.在求交集时,要将两集合的公共元素找全, 防止漏掉元素. 2.在求A,B并集时,要将两集合的元素进行分 类:只在A中,只在B中,在A∩B中的,然 后将这三类元素都列举出来构成A∪B,特别 注意在A∩B中的元素只能列举一遍. 3.集合的交集、并集的结果还是集合。 4.灵活运用交集、并集的性质的进行求交、 求并运算.
位置 前黑板
展示 8组
点评
1组
你对并集的理解
前黑板
前黑板 前黑板后黑板Fra bibliotek7组5组
1组
例1(1) 例1(2) 例1拓展
6组
2组
4组 3组
7组 9组
例2
例2拓展
后黑板
后黑板
基础知识梳理
1.交集定义:一般地,由属于集合A又属于集 合B的所有元素所组成的集合,叫做A与B的 交集,记作A∩B(读作“A交B”),即 A∩B={x | x∈A,且x∈B}
B
A∩B =B
A∪B =A
A
B
A
B
A∩B =A
A∪B =B
A (B)
A (B)
A∩B =A=B
A∪B =A=B
交集的性质 归纳总结:
A∩B= B ∩ A A∩A= A A∩φ= φ∩A= φ 若A B,则 A∩B= A
并集的性质 归纳总结:
A ∪ B= B ∪ A A ∪ A= A A ∪φ= φ ∪ A= A 若A B,则 A ∪ B= B
学科班长:1.回扣目标 总结收获 2.评出优秀小组和个人
课后完成训练学案并整理巩固
1、课本、导学案、非常学案、 练习本、双色笔 2、分析错因,自纠学案 3、标记疑难,以备讨论
学案反馈
优秀小组:1,8 优秀个人:方琪 王艺郭炳琦 韩丽梅 郑艺璇 陈 嘉昊王晓宁 张德民
存在的问题:
1、对于交集和并集的概念理解不到位,符号混淆。
2、讲过的知识落实不到位,尤其是集合的表示。 3、一元二次方程不会解。
目标:
(1)小组长首先安排讨论任务,人人参与,热烈讨论,积极表达 自己的观点,提升快速思维和准确表达的能力。 (2)小组长调控节奏,先一对一分层讨论,再小组内集中讨论, AA力争拓展提升,BB、CC解决好全部展示问题。 (3)讨论时,手不离笔、随时记录,未解决的问题,组长记录好, 准备展示质疑。
高效展示
-1 1 2 3
A B {x | 1 x 2}
A B {x | 1 x 3}
-1
1
2
3
拓展总结
利用数轴可以直观的展示集合的交、并运 算,并且清楚地展示出端点的取舍情况.
【当堂检测】
求A∩B,A∪B.
整理巩固 要求:整理巩固探究问题
落实基础知识 完成知识结构图
课堂评价
相关文档
最新文档