常用概率分布(习题与答案)
概率习题答案3
第三章多维随机变量及其分布 3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1 2 31 1/6 1/9 1/182 1/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为(2)在X=2的条件下,Y的条件分布律.表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度函数为fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它,因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为(3)(4)={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。
随机变量及其分布方法总结经典习题及解答
随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X、Y等或希腊字母ξ、η等表示。
2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。
解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。
2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。
考试练习题 常用概率分布
第四章选择题:1.二项分布的概率分布图在 条件下为对称图形。
A .n > 50B .π=0.5C .n π=1D .π=1E .n π> 52.满足 时,二项分布B (n,π)近似正态分布。
A .n π和n (1-π)均大于等于5B .n π或n (1-π)大于等于5C .n π足够大D .n > 50E .π足够大3. 的均数等于方差。
A .正态分布B .二项分布C .对称分布D .Poisson 分布E .以上均不对4.标准正态典线下,中间95%的面积所对应的横轴范围是 。
A .-∞到+1.96B .-1.96到+1.96C .-∞到+2.58D .-2.58到+2.58E .-1.64到+1.645.服从二项分布的随机变量的总体均数为 。
A .n (1-π)B .(n -1)πC .n π(1-π)D .n π 6.服从二项分布的随机变量的总体标准差为 。
B .(1-π)(1-π)( -)π1 C . π17.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以 为方差的Poisson 分布。
A .B .λ2λ12+2λ2λ1+C .D . 2λ2λ1+() 2λ2λ1+()E .λ2λ12+28.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。
A .λ无限大B .λ>20C .λ=1D .λ=0E .λ=0.59.满足 时,二项分布B (n ,π)近似Poisson 分布。
A .n 很大且π接近0B .n →∞C .n π或n (1-π)大于等于5D .n 很大且π接近0.5E .π接近0.510.关于泊松分布,错误的是 。
A .当二项分布的n 很大而π很小时,可用泊松分布近似二项分布B .泊松分布均数λ唯一确定C .泊松分布的均数越大,越接近正态分布D .泊松分布的均数与标准差相等E .如果X 1和X 2分别服从均数为λ1和λ2的泊松分布,且相互独立。
高中概率分布题
高中概率分布题概率分布是概率论中的重要概念,用于描述随机试验中各个事件的可能性。
在高中数学中,我们学习了多种概率分布形式,如离散型概率分布和连续型概率分布。
本文将从这两个方面进行详细探讨。
一、离散型概率分布离散型概率分布是指随机变量取有限个或可列个数取值的概率分布形式。
其中,最常见的是二项分布和泊松分布。
1. 二项分布二项分布适用于具有固定试验次数、每次试验结果只有成功与失败两种可能性、且各次试验之间相互独立的情况。
例如,投掷硬币、掷骰子、抽样检验等。
若设随机变量X表示成功次数,则X服从参数为n和p的二项分布,记为X ~ B(n,p)。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,C(n,k)表示从n次试验中成功k次的组合数。
2. 泊松分布泊松分布适用于实验区间内出现次数的概率分布。
例如,描述单位时间或单位面积内事件发生次数的概率。
若设随机变量X表示事件发生的次数,则X服从参数为λ的泊松分布,记为X ~ P(λ)。
泊松分布的概率质量函数为:P(X=k) = (e^(-λ) * λ^k) / k!其中,e为自然对数的底数。
二、连续型概率分布连续型概率分布是指随机变量的取值是无限多的实数集合,通常用概率密度函数来描述。
高中数学中常见的连续型概率分布有均匀分布、正态分布和指数分布。
1. 均匀分布均匀分布是指在一个区间内,随机变量取值的概率是相等的。
例如,抛一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
均匀分布的概率密度函数为:f(x) = 1 / (b-a),a ≤ x ≤ b其中,a为区间下界,b为区间上界。
2. 正态分布正态分布是最重要的连续型概率分布之一,也称为高斯分布。
正态分布在自然界中广泛存在,并且具有许多重要性质和应用。
例如,测量误差、身高体重分布等。
正态分布的概率密度函数为:f(x) = 1/(σ * √(2π)) * e^(-(x-μ)^2 / (2σ^2))其中,μ为均值,σ为标准差。
第4章概率分布习题答案
65.5
66.0
66.5
59.0
59.5
61.5
63.5
64.0
66.0
66.5
67.0
61.0
61.5
63.5
65.5
66.0
68.0
68.0
69.0
61.5
62.0
64.0
66.0
66.5
68.5
69.0
69.5
62.0
62.5
64.5
66.5
67.0
69.0
69.5
70.0
(4)样本均值的正态概率图如下:
详细答案:
(1) , 。
(2)共有64个样本。
(3).5
56.5
58.5
59.0
61.0
61.5
62.0
54.5
55.0
57.0
59.0
59.5
61.5
62.0
62.5
56.5
57.0
59.0
61.0
61.5
63.5
64.0
64.5
58.5
59.0
61.0
63.0
从正态概率图可以看出,样本均值近似服从正态分布。
(5) , 。样本均值的平均数等于总体平均数,样本均值的标准差等于总体标准差的 。
第4章 概率分布
教材习题答案
4.1消费者协会经过调查发现,某品牌空调器有重要缺陷的产品数出现的概率分布如下:
X
0
1
2
3
4
5
6
7
8
9
10
P
0.041
0.130
0.209
概率论分布列期望方差习题及答案
概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。
高中数学概率与统计概率分布练习题及答案
高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。
求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。
b) 中奖号码是偶数的概率为15/30,即1/2。
c) 中奖号码是质数的概率为8/30,即4/15。
问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。
求销售量的概率分布表。
解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。
求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。
b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。
问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。
若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。
解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。
以上是高中数学概率与统计概率分布的练习题及答案。
练习题答案05
第五章 概率、概率分布与临床决策练 习 题一、最佳选择题1.若事件A 和事件B 互不相容,则一定有( )。
A. P (A +B )=P (A )+P (B )B. P (A +B )=P (AB )C. P (AB )= P (A ) P (B )D. P (A │B )= P (A )E. P (B │A )= P (B )2.若人群中某疾病发生的阳性数X 服从二项分布,则从该人群随机抽取n 个人,阳性数X 不小于k 人的概率为( )。
A. P (k )+ P (k +1)+…+ P (n )B. P (k +1)+ P (k +2)+…+ P (n )C. P (0)+ P (1)+…+ P (k )D. P (0)+ P (1)+…+ P (k -1)E. P (1)+ P (2)+…+ P (k -1)3.Poisson 分布的标准差σ和平均数λ的关系是( )。
A.λ=σ B. λ<σ C. λ=σ2 D. λ= E. λ>σ4.当n 很大,二项分布在下列条件下可用Poisson 分布近似( )。
A. λπ≈nB. λ≈n X /C. λππ≈-)1(nD. λππ≈-)1(E. λππ≈-n /)1(5.对于任何两个随机变量X1和X2,一定有( )。
A. E (X 1+X 2)=E (X 1)+E (X 2)B. V (X 1+X 2)=V (X 1)+ V (X 2)C. E (X 1+X 2)=E (X 1)·E (X 2)D. V (X 1+X 2)=V (X 1)·V (X 2)E. E (X 1+X 2)=E (X 1X 2)二、问答题1.简述概率的统计定义。
2.举例说明医学观察结果中的离散型随机变量和连续型随机变量。
3.举例说明医学现象中的先验概率和后验概率。
4.简述二项分布的应用条件。
5.简述Poisson 分布的性质特征。
6.简述概率和概率分布在临床决策中的运用。
概率论与数理统计+第二章+随机变量及其分布+练习题答案
滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](概率分布)
圣才电子书 十万种考研考证电子书、题库视频学习平台
个标准差之间,包含总面积的 99%;-3 到+3s 范围之间,包含总面积的 99.74%;取值 在±4s 之间的概率为 0.9999,即包含总面积 99.99%。
(2)二项分布,
其特点有: ①二项分布是离散型分布,概率直方图是跃阶式。因为 x 为不连续变量,用概率条图表 示更合适,用直方图表示只是为了更形象 a 当 p=q 时图形是对称的。 b 当 p≠q 时,直方图呈偏态,p<q 与 p>q 的偏斜方向相反。如果 n 很大,即使 p≠q, 偏态逐渐降低,最终成正态分布,二项分布的极限分布为正态分布。当 p<q 且 np≥5,或 p>q 且 nq≥5,这时,二项分布就可以当做一个正态分布的近似形,二项分布的概率可用 正态分布的概率作为近似值。 ②二项分布的平均数与标准差 如果二项分布满足 p<q,np≥5(或 p>q,nq≥5)时,二项分布接近正态分布。这时, 二项分布的 X 变量(即成功的次数)具有如下性质: np , npq ,即 X 变量为 np , npq 的正态分布。公式中 n 为独立试验的次数,p 为成功事件的概率,q=1-p。 由于 n 很大时二项分布逼近正态分布,其平均数、标准差是根据理论推导而来,故用μ 和σ而不用 X 和 s 表示。它们的含义是指在二项试验中,成功次数的平均数 np ,成功次 数的离散程度 npq 。
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.概率分布的类型有哪些?简述心理与教育统计中常用的概率分布及其特点。 答:概率分布(probability distribution)是指对随机变量取值的概率分布情况用数学 方法(函数)进行描述。只有了解随机变量的概率分布,才能使统计分析与推论有可能,为 统计分析提供依据,因此它在对数据进行统计处理时具有十分重要的意义。 概率分布依不同的标准可以分为不同的类型。 (1)离散分布与连续分布; (2)经验分布与理论分布; (3)基本随机变量分布与抽样分布。 常用的概率分布图有 (1)正态分布图,其特点有: ①正态分布的形式是对称的(但对称的不一定是正态的),它的对称轴是经过平均数点 的垂线。正态分布中,平均数、中数、众数三者相等,此点 y 值最大(0.3989)。左右不 同间距的 y 值不同,各相当间距的面积相等,y 值也相等。 ②正态分布的中央点(即平均数点)最高,然后逐渐向两侧下降,曲线的形式是先向内 弯,然后向外弯,拐点位于正负 1 个标准差处,曲线两端向靠近基线处无限延伸,但终不 能与基线相交。 ③正态曲线下的面积为 1,由于它在平均数处左右对称,故过平均数点的垂线将正态曲 线下的面积划分为相等的两部分,即各为 0.50。正态曲线下各对应的横坐标(即标准差) 处与平均数之间的面积可用积分公式计算:
概率习题及答案第二章第二章习题
第二章 随机变量及其分布练习题1. 设X 为随机变量,且kk X P 21)(==( ,2,1=k ), 则 (1)判断上面的式子是否为X 的概率分布; (2)若是,试求)为偶数X P (和)5(≥X P .2.设随机变量X 的概率分布为λλ-==e k C k X P k!)(( ,2,1=k ), 且0>λ,求常数C .3. 设一次试验成功的概率为)10(<<p p ,不断进行重复试验,直到首次成功为止。
用随机变量X 表示试验的次数,求X 的概率分布。
4. 设自动生产线在调整以后出现废品的概率为p =0.1,当生产过程中出现废品时立即进行调整,X 代表在两次调整之间生产的合格品数,试求(1)X 的概率分布; (2))5(≥X P 。
5. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的。
求某学生靠猜测能答对至少4道题的概率是多少?6. 为了保证设备正常工作,需要配备适当数量的维修人员。
根据经验每台设备发生故障的概率为0.01,各台设备工作情况相互独立。
(1)若由1人负责维修20台设备,求设备发生故障后不能及时维修的概率;(2)设有设备100台,1台发生故障由1人处理,问至少需配备多少维修人员,才能保证设备发生故障而不能及时维修的概率不超过0.01?7. 设随机变量X 服从参数为λ的Poisson(泊松)分布,且21)0(==X P ,求(1)λ; (2))1(>X P .8. 设书籍上每页的印刷错误的个数X 服从Poisson(泊松)分布。
经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率。
9. 在长度为的时间间隔内,某急救中心收到紧急呼救的次数服从参数为的Poisson 分布,而与时间间隔的起点无关(时间以小时计),求(1)某一天从中午12时至下午3时没有收到紧急呼救的概率; (2)某一天从中午12时至下午5时收到1次紧急呼救的概率; 10. 已知X 的概率分布为:X-2 -10 1 2 3 P2a101 3aaa2a试求(1)a ; (2)12-=X Y 的概率分布。
概率分布的正态分布与均匀分布练习题
概率分布的正态分布与均匀分布练习题1. 问题描述:设随机变量X服从正态分布N(μ1, σ1^2),随机变量Y服从均匀分布U(a, b)。
根据给定的参数,回答以下问题:1.1 正态分布题a) 若X的均值μ1为10,标准差σ1为2,求P(X < 8)。
b) 若X的均值μ1为10,标准差σ1为2,求P(X>6)。
c) 若X的均值μ1为10,标准差σ1为2,求P(8<X<12)。
d) 若X的均值μ1为10,标准差σ1为2,求P(|X - 10| ≤ 2)。
1.2 均匀分布题a) 若Y服从均匀分布U(0, 2),求P(Y>1)。
b) 若Y服从均匀分布U(-1, 1),求P(Y ≥ -0.5)。
c) 若Y服从均匀分布U(2, 6),求P(3<Y<5)。
d) 若Y服从均匀分布U(3, 9),求P(Y - 6 ≤ 1)。
2. 解答:2.1 正态分布题a) 根据正态分布的性质,转化为标准正态分布求解:Z = (X - μ1) / σ1 = (8 - 10) / 2 = -1标准正态分布表中查得P(Z < -1) = 0.1587因此,P(X < 8) = P(Z < -1) = 0.1587b) 同样转化为标准正态分布求解:Z = (X - μ1) / σ1 = (6 - 10) / 2 = -2标准正态分布表中查得P(Z > -2) = 0.9772因此,P(X > 6) = P(Z > -2) = 0.9772c) 根据性质转化为标准正态分布求解:Z1 = (8 - μ1) / σ1 = (8 - 10) / 2 = -1Z2 = (12 - μ1) / σ1 = (12 - 10) / 2 = 1P(8<X<12) = P(-1<Z<1)在标准正态分布表中查得P(-1<Z<1) = 0.6827因此,P(8<X<12) = P(-1<Z<1) = 0.6827d) 将不等式转化为两个等式,并根据性质求解: |X - 10| ≤ 2 --> -2 ≤ X - 10 ≤ 2X - 10 ≥ -2 --> X ≥ 8X - 10 ≤ 2 --> X ≤ 12P(|X - 10| ≤ 2) = P(8 ≤ X ≤ 12)P(8 ≤ X ≤ 12) = P((8 - μ1) / σ1 ≤ Z ≤ (12 - μ1) / σ1)P(8 ≤ X ≤ 12) = P((-1) ≤ Z ≤ 1)在标准正态分布表中查得P(-1 ≤ Z ≤ 1) = 0.6827因此,P(8 ≤ X ≤ 12) = P((-1) ≤ Z ≤ 1) = 0.68272.2 均匀分布题a) 根据均匀分布的概率密度函数,计算概率: P(Y>1) = (b - 1) / (b - a)P(Y>1) = (2 - 1) / (2 - 0) = 1/2b) 同样利用概率密度函数求解:P(Y ≥ -0.5) = (1 - (-0.5)) / (1 - (-1))P(Y ≥ -0.5) = 1.5 / 2 = 3/4c) 根据概率密度函数计算概率:P(3<Y<5) = (5 - 3) / (6 - 2)P(3<Y<5) = 2 / 4 = 1/2d) 利用概率密度函数求解:P(Y - 6 ≤ 1) = (1 - (3 - 6)) / (9 - 3)P(Y - 6 ≤ 1) = (1 + 3) / 6 = 4/6 = 2/3以上就是给定问题的解答,涉及到正态分布和均匀分布的概率计算及性质运用。
概率统计习题集(含答案)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
概率论解析答案习题解答
第二章 随机变量及其分布I 教学基本要求1、了解随机变量的概念以及它与事件的联系;2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质;3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用;4、会求简单随机变量函数的分布.II 习题解答A 组1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω=以X 表示两个产品中的合格品数.(1) 写出X 与样本点之间的对应关系;(2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→;(2) 12(1)(1)2(1)p X C p p p p ==-=-.2、下列函数是否是某个随机变量的分布函数?(1) 021()2021x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩; (2) 21()1F x x =+ ()x -∞<<+∞. 解:(1) 显然()F x 是单调不减函数;0()1F x ≤≤,且()0F -∞=、()1F +∞=;(0)()F x F x +=,故()F x 是某个随机变量的分布函数.(2) 由于()01F +∞=≠,故()F x 不是某个随机变量的分布函数. 3、设X 的分布函数为(1)0()00x A e x F x x -⎧-≥=⎨<⎩求常数A 及(13)p X <≤?解:由()1F +∞=和lim (1)xx A e A -→+∞-=得1A =;(13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-.4、设随机变量X 的分布函数为200()0111x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求常数A 及(0.50.8)p X <≤?解:由(10)(1)F F +=得1A =;(0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=.5、设随机变量X 的分布列为()ap X k N==(1,2,,)k N =L 求常数a ?解:由11ii p+∞==∑得11Nk aN ==∑ 1a ⇒=.6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、5,且0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、3210905100(3)C C p X C ==、4110905100(4)C C p X C ==、5010905100(5)C C p X C ==于是X 的分布列为510905100()k k C C p X k C -== (0,1,,5)k =L . 7、设10件产品中有2件次品,进行连续无放回抽样,直至取到正品为止,以X 表示抽样次数,求(1) X 的分布列; (2) X 的分布函数?解:(1) 由题意知X 是离散型随机变量,其所有可能取值为1、2、3,且84(1)105p X ===、288(2)10945p X ==⨯=、2181(3)109845p X ==⨯⨯=于是X(2) 由(1)可知的分布函数为014125()44234513x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.8、设随机变量X 的分布函数为010.211()0.3120.52313x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ 求X 的分布列?解:X 9、求在同一时刻(1) 恰有2个设备被使用的概率; (2) 至少有3个设备被使用的概率; (3) 至多有3个设备被使用的概率?解:设X 表示被同时使用的供水设备数,则~(5,0.1)X b (1) 恰有2个设备被使用的概率为2235(2)(0.1)(0.9)0.0729p X C ===;(2) 至少有3个设备被使用的概率为(3)(3)(4)(5)p X p X p X p X ≥==+=+=33244550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=;(3) 至多有3个设备被使用的概率为(3)1(4)(5)p X p X p X ≤=-=-=44550551(0.1)(0.9)(0.1)(0.9)0.99954C C =--=.10、经验表明:预定餐厅座位而不来就餐的顾客比例为20%,如今餐厅有50个座位,但预定给了52位顾客,求到时顾客来到餐厅而没有座位的概率是多少?解:设X 表示预定的52位顾客中不来就餐的顾客数,则~(52,0.2)X b ,由于“顾客来到餐厅没有座位”等价于“52位顾客中至多有1位不来就餐”,于是所求概率为005211515252(1)(0)(1)(0.2)(0.8)(0.2)(0.8)p X p X p X C C ≤==+==+0.0001279=.11、设某城市在一周内发生交通事故的次数服从参数为的泊松分布,求 (1) 在一周内恰好发生2次交通事故的概率; (2) 在一周内至少发生1次交通事故的概率?解:设X 表示该城市一周内发生交通事故的次数,则~(0.3)X P (1) 在一周内恰好发生2次交通事故的概率20.30.3(2)0.03332!p X e -===;(2) 在一周内至少发生1次交通事故的概率00.30.3(1)1(0)10.2590!p X P X e -≥=-==-=.12、设X 服从泊松分布,已知(1)(2)p X p X ===,求(4)p X =? 解:由(1)(2)p X p X ===得22ee λλλλ--=2λ⇒=422(4)0.09024!p X e -⇒===.13、一批产品的不合格品率为,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,分别用以下方法求拒收的概率:(1) 用二项分布作精确计算;(2) 用泊松分布作的似计算?解:设X 表示抽取的40件产品中的不合格品数,则~(40,0.02)X b (1) 拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-=0040113940401(0.02)(0.98)(0.02)(0.98)0.1905C C =--=;(2) 由于400.020.8λ=⨯=,于是拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-= 0.80.810.80.1912e e --≈--=.14、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它求X 的分布函数?解:由()()xF x f t dt -∞=⎰得当0x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当01x ≤≤时2200()()02|x xxF x f t dt dt tdt t x -∞-∞==+==⎰⎰⎰当1x >时0121001()()020|1x xF x f t dt dt tdt dt t -∞-∞==++==⎰⎰⎰⎰于是所求分布函数为200()0111x F x x x x <⎧⎪=≤≤⎨⎪>⎩. 15、设随机变量X 的密度函数为212(1)12()0x f x x⎧-≤≤⎪=⎨⎪⎩其它求X 的分布函数?解:由()()xF x f t dt -∞=⎰得当1x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当12x ≤≤时1121111()()02(1)2()|2(2)xxx F x f t dt dt dt t x t t x-∞-∞==+-=+=+-⎰⎰⎰ 当2x >时122121211()()02(1)02()|1xx F x f t dt dt dt dt t t t-∞-∞==+-+=+=⎰⎰⎰⎰于是所求分布函数为011()2(2)1212x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩. 16、设随机变量X 的密度函数为cos ()220A x x f x ππ⎧-≤≤⎪=⎨⎪⎩其它求(1) 常数A ;(2) X 的分布函数;(3) (0)4p X π<≤?解:(1) 由()1f x dx +∞-∞=⎰得2222220cos 0sin |21dt A xdx dt A x A ππππππ-+∞--∞-++===⎰⎰⎰12A ⇒=; (2) 当2x π<-时()()00xxF x f t dt dt -∞-∞===⎰⎰当22x ππ-≤≤时2221111()()0cos sin |sin 2222x xxF x f t dt dt tdt t x πππ---∞-∞-==+==+⎰⎰⎰当2x π>时22222211()()0cos 0sin |122xx F x f t dt dt tdt dt t ππππππ---∞-∞-==++==⎰⎰⎰⎰ 于是所求分布函数为0211()sin 222212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩;(3) (0)()(0)()(0)444p X p X p X F F πππ<≤=≤-≤=-1111sin sin 0242224π=+--=. 17、设随机变量X 的分布函数为1()ln 11x F x xx e x e<⎧⎪=≤≤⎨⎪>⎩求(1) (03)p X <≤、(2)p X <、(2 2.5)p X <<;(2) X 的密度函数?解:(1) (03)(3)(0)(3)(0)101p X p X p X F F <≤=≤-≤=-=-=(2)(2)(2)(2)ln 2p X p X p X F <=≤-===5(2 2.5)(2 2.5)(2.5)(2)ln 2.5ln 2ln 4p X p X F F <<=<≤=-=-=;(2) 由于在()F x 的可导点处,有()()f x F x '=,于是X 的密度函数为11()0x ef x x⎧≤≤⎪=⎨⎪⎩其它.18、设~(1,6)K U ,求方程210x Kx ++=有实根的概率? 解:由~(1,6)K U 得K 的密度函数为116()5k f k ⎧<<⎪=⎨⎪⎩其它又由于方程210x Kx ++=有实根等价于240K -≥,即||2K ≥,于是方程有实根的概率为22(||2)(2)(2)()()p K p K p K f k dk f k dk -+∞-∞≥=≤-+≥=+⎰⎰621455dk ==⎰. 19、调查表明某商店从早晨开始营业起直至第一个顾客到达的等待时间X (单位:分钟)服从参数为0.4的指数分布,求下述事件的概率(1) X 至多3分钟; (2) X 至少4分钟;(3) X 在3分钟至4分钟之间; (4) X 恰为3分钟?解:(1) X 至多3分钟的概率为0.43 1.2(3)(3)11p X F e e -⨯-≤==-=-;(2) X 至少4分钟的概率为0.44 1.6(4)1(4)1(4)1(1)p X p X F e e -⨯-≥=-<=-=--=;(3) X 在3分钟至4分钟之间的概率为(34)(4)(3)(4)(3)p X p X p X F F ≤≤=≤-<=- 0.440.43 1.2 1.6(1)(1)e e e e -⨯-⨯--=---=-;(4) X 恰为3分钟的概率为(3)0p X ==.20、设~(0,1)X N ,求下列事件的概率( 2.35)p X ≤;( 1.24)p X ≤-;(|| 1.54)p X ≤?解:( 2.35)(2.35)0.9906p X ≤=Φ=;( 1.24)( 1.24)1(1.24)10.89250.1075p X ≤-=Φ-=-Φ=-=; (|| 1.54)( 1.54 1.54)(1.54)( 1.54)p X p X ≤=-≤≤=Φ-Φ- (1.54)[1(1.54)]2(1.54)120.938210.8764=Φ--Φ=Φ-=⨯-=.21、设~(3,4)X N ,(1) 求(25)p X <≤、(||2)p X >、(3)p X >;(2) 确定c ,使得()()p X c p X c >=≤;(3) 若d 满足()0.9p X d >≥,则d 至多为多少?解:(1) 23353(25)()222X p X p ---<≤=≤≤ (1)(0.5)(1)(0.5)10.84130.691510.5328=Φ-Φ-=Φ+Φ-=+-=23323(||2)1(||2)1()222X p X p X p ---->=-≤=-≤≤1(0.5)( 2.5)1(0.5)(2.5)=-Φ-+Φ-=+Φ-Φ10.69150.99380.6977=+-= 333(3)1(3)1()22X p X p X p -->=-≤=-≤ 1(0)10.50.5=-Φ=-=;(2) 由()()p X c p X c >=≤得1()()p X c p X c -≤=≤3330.5()()()222X c c p X c p ---⇒=≤=≤=Φ 3032c c -⇒=⇒=; (3) 由()0.9p X d >≥得3330.9()1()1()1()222X d d p X d p X d p ---≤>=-≤=-≤=-Φ 33()0.11()0.122d d--⇒Φ≤⇒-Φ≤ 33()0.9 1.2820.43622d d d --⇒Φ≥⇒≥⇒≤.22、从甲地飞住乙地的航班,每天上午10:10起飞,飞行时间X 服从均值为4h ,标准差为20min 的正态分布.(1) 该航班在下午2:30以后到达乙地的概率; (2) 该航班在下午2:20以前到达乙地的概率;(3) 该航班在下午1:50至2:30之间到达乙地的概率? 解:(1) 该航班在下午2:30以后到达乙地的概率为240260240240(260)()1(1)202020X X p X p p ---≥=≥=-< 1(1)10.84130.1587=-Φ=-=;(2) 该航班在下午2:20以前到达乙地的概率为240250240(250)()(0.5)0.69152020X p X p --≤=≤=Φ=; (3) 该航班在下午1:50至2:30之间到达乙地的概率为220240240260240(220260)()202020X p X p ---≤≤=≤≤(1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.23、某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从2(72,)N σ,已知96分以上的人数占总数的%,试求考生的成绩在60分至84分之间的概率?解:设考生的外语成绩为X ,则2~(72,)X N σ 由96分以上的人数占总数的%得0.023(96)p X =>729672240.977(96)()()X p X p σσσ--⇒=≤=≤=Φ242σ⇒=12σ⇒=于是,考生的成绩在60分至84分之间的概率为6072728472(6084)()121212X p X p ---≤≤=≤≤ (1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.24求cos Y X =的分布列?解:由X于是Y25求2Y X =的分布列?解:由26、设随机变量的密度函数为2311()2X xx f x ⎧-<<⎪=⎨⎪⎩其它求随机变量3Y X =+的密度函数?解:由题意知,当2y ≤时,有()()0Y F y p Y y =≤=当24y <<时,有()()(3)(3)(3)Y X F y p Y y p X y p X y F y =≤=+≤=≤-=-当4y ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数02()(3)2414Y X y F y F y y y ≤⎧⎪=-<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(3)240X F y y '-<<⎧=⎨⎩其它23(3)2420y y ⎧-<<⎪=⎨⎪⎩其它.27、设随机变量~(0,1)X U ,求随机变量XY e =的密度函数? 解:由题意知,当1y ≤时,有()()0Y F y p Y y =≤=当1y e <<时,有()()()(ln )(ln )X Y X F y p Y y p e y p X y F y =≤=≤=≤=当y e ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数1()(ln )11Y X y F y F y y e y e≤⎧⎪=<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(ln )10XF y y e'<<⎧=⎨⎩其它110y ey ⎧<<⎪=⎨⎪⎩其它.28、随机变量X 的密度函数为()0xX e x f x x -⎧>=⎨≤⎩ 求随机变量2Y X =的密度函数?解:由于20Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;当0y ≥时,有2()()()(Y F y p Y y p X y p X =≤=≤=≤≤0()1x X f x dx dx e -===-即Y 的分布函数10()0Y e y F y y ⎧-≥⎪=⎨<⎪⎩于是,Y 的密度函数0()()00Y Y y f y F y y >'==≤⎩.29、设随机变量~(0,1)X N ,试求随机变量||Y X =的密度函数? 解:由于||0Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=; 当0y ≥时,有()()(||)()2()1Y F y p Y y p X y p y X y y =≤=≤=-≤≤=Φ-即Y 的分布函数2()10()00Y y y F y y Φ-≥⎧=⎨<⎩于是,Y 的密度函数()()Y Y f y F y '=2()00y y y 'Φ>⎧=⎨≤⎩22000yy y ->=≤⎩.B 组1、A2、B3、D4、B5、B6、B7、C8、C9、C10、C11、设随机变量X 的分布函数为0111()21232x a x F x a x a b x <-⎧⎪-≤<⎪⎪=⎨-≤<⎪⎪+≥⎪⎩且1(2)2p X ==,求常数a 、b ? 解:由()1F +∞=及()()(0)p X a F a F a ==--得()121(2)(2)(20)()()32F a b p X F F a b a +∞=+=⎧⎪⎨==--=+--=⎪⎩1726a b a b +=⎧⎪⇒⎨+=⎪⎩1656a b ⎧=⎪⎪⇒⎨⎪=⎪⎩.12求常数a ?解:由11ii p+∞==∑得20.5121a a +-+=12a ⇒=±再由11202a a -≥⇒≤,可得12a =-. 13、口袋中有5个球,编号为1、2、3、4、5,从中任取3个,以X 表示取出的3个球中的最大号码.(1) 求X 的分布列; (2) 求X 的分布函数?解:(1) 由题意知X 是离散型随机变量,其所有可能取值为3、4、5,且22351(3)10C p X C ===、23353(4)10C p X C ===、24356(5)10C p X C ===于是X(2) 由(1)可知的分布函数为030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩.14、设随机变量X 的密度函数为||()x af x Ce -= (0)a >求(1) 常数C ;(2) X 的分布函数;(3) (||2)p X <?解:(1) 由()1f x dx +∞-∞=⎰得||0()2221x x aaf x dx C e dx C e dx aC +∞+∞+∞---∞====⎰⎰⎰12C a⇒=; (2) 当0x <时 ||111()()222t t xa a a x x x F x f t dt e dt e dt e a a --∞-∞-∞====⎰⎰⎰当0x ≥时||||0011()()22t t a a xx F x f t dt e dt e dt a a---∞-∞==+⎰⎰⎰ 001111222t t x a a a x e dt e dt e a a ---∞=+=-⎰⎰于是102()1102xa x a e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩;(3) 22211(||2)(22)(2)(2)1122a a a p X p X F F e e e ---<=-<<=--=--=-. 15、设随机变量X 的密度函数为201()0xx f x ≤≤⎧=⎨⎩其它以Y 表示对X 的三次独立重复观察中事件1{}2X ≤出现的次数,求(2)P Y =?解:由题意知:事件1{}2X ≤在一次观察中出现的概率为1112222001()02|4p f x dx dt xdx x -∞-∞==+==⎰⎰⎰ 且~(3,)Y b p ,于是223139(2)()()4464P Y C ===. 16、设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从指数分布,其密度函数为510()5x e x f x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,求(1)p Y ≥?解:由题意知:顾客在窗口等待服务的时间超过10分钟的概率为5521010101()|5x x p f x dx e dx e e +∞+∞--+∞-===-=⎰⎰且~(5,)Y b p ,于是02025255(1)1(0)1()(1)1(1)0.5167P Y P Y C e e e ---≥=-==--=--=.17、设随机变量2~(2,)X N σ且(24)0.3p X <<=,求(0)p X <? 解:由2~(2,)X N σ得224242(24)()()(0)0.3p X p X σσσ---<<=<<=Φ-Φ=2()0.8σ⇒Φ=0222(0)()()1()10.80.2p X p X σσσ-⇒<=<=Φ-=-Φ=-=.18、设随机变量X 的分布函数为()F x ,试求随机变量()Y F X =的密度函数? 解:由于0()1F X ≤≤,故当0Y <时,有()()0Y F y p Y y =≤=; 当01y ≤≤时,有11()()(())(())(())Y F y p Y y p F X y p X F y F F y y --=≤=≤=≤==当1y >时,有()()1Y F y p Y y =≤= 即Y 的分布函数00()0111Y y F y yy y <⎧⎪=≤≤⎨⎪>⎩于是,Y 的密度函数()()Y Y f y F y '=101y <<⎧=⎨⎩其它即随机变量Y 服从区间(0,1)上的均匀分布.。
高中概率分布函数经典习题及答案
高中概率分布函数经典习题及答案一、二项分布1.某电视综艺节目每期设三道竞猜题,每题有两个选项,已知某观众对其中一题的正确率为60%,现在有一位观众对三道题均参与竞猜,求他正确全部竞猜的概率。
解:设他每道题的正确率为p,则每道题的错误率为1-p,他全部竞猜正确的概率为P(X=3)=[C(3,3)]*0.6^3*0.4^0=21.6% 所以,他全部竞猜正确的概率为21.6%。
2.在某加工厂中,总体不合格率为p,从全体产品中任意抽10件产品,以不合格件数X为随机变量,试求不合格件数X的概率分布、期望值及方差。
解:因为是抽10件产品,所以是一个10次伯努利试验,每一次试验中,产品合格的概率为1-p,不合格概率为p,所以该实验的概率分布可以用二项分布表示。
则不合格件数X的概率分布为P(X=k)=C(10,k)*p^k*(1-p)^(10-k),其中k取值为0,1,2, (10)其期望值为E(X)=np=10p,方差为D(X)=np(1-p)=10p(1-p)。
二、泊松分布1.某货场在单位时间内平均有6辆货车到达,求:(1)在一个时间段内恰有3辆货车到达的概率。
(2)在一个时间段内不超过4辆货车到达的概率。
解:(1)设单位时间内X辆货车到达的概率服从泊松分布,则X~Poisson(6),则恰有3辆货车到达的概率为P(X=3)=e^(-6)*6^3/3!=0.0504。
(2)P(X<=4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=e^(-6)*[6^0/0!+6^1/1!+6^2/2!+6^3/3!+6^4/4!]=0.8153。
三、指数分布1.规定20个装配工人在生产线上流水作业,平均每人处理一个产品需要10分钟,且加工时间服从指数分布,求:(1)生产线上平均每分钟加工的产品数量。
(2)任意一个人处理时间小于2分钟的概率。
(3)有3个人处理时间小于2分钟的概率。
解:(1)因为20个装配工人同时流水作业,所以生产线每分钟平均加工的产品数量为20/10=2件。
统计学习题答案 第3章 概率与概率分布
第3章 概率与概率分布——练习题(全免)1 .某技术小组有12人,他们的性别和职称如下,现要产生一名幸运者。
试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师,(4)女性或工程师。
并说明几个计算结果之间有何关系?解:设A =女性,B =工程师,AB =女工程师,A+B =女性或工程师(1)P(A)=4/12=1/3(2)P(B)=4/12=1/3(3)P(AB)=2/12=1/6(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/22. 某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。
试求这种零件的次品率。
解:求这种零件的次品率,等于计算“任取一个零件为次品”(记为A )的概率()P A 。
考虑逆事件A =“任取一个零件为正品”,表示通过三道工序都合格。
据题意,有:()(10.2)(10.1)(10.1)0.648P A =---=于是 ()1()10.6480.352P A P A =-=-=3. 已知参加某项考试的全部人员合格的占80%,在合格人员中成绩优秀只占15%。
试求任一参考人员成绩优秀的概率。
解:设A 表示“合格”,B 表示“优秀”。
由于B =AB ,于是)|()()(A B P A P B P ==0.8×0.15=0.124. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。
某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。
求该选手两发都脱靶的概率。
解:设A =第1发命中。
B =命中碟靶。
求命中概率是一个全概率的计算问题。
再利用对立事件的概率即可求得脱靶的概率。
)|()()|()()(A B P A P A B P A P B P +==0.8×1+0.2×0.5=0.9脱靶的概率=1-0.9=0.1或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.15.已知某地区男子寿命超过55岁的概率为84%,超过70岁以上的概率为63%。
生物统计学(第3版)杜荣骞 课后习题答案 第三章 几种常见的概率分布律
第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。
()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为0.218 75。
3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+ 表型共有1+5+10+10+5+1 = 32种。
(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。
3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。
概率论课后习题第3章答案
第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
常用概率分布(习题与答案)
第五章 常用概率分布习题(附答案)一、选择题1. 估计正常成年女性红细胞计数的95%医学参考值范围时,应用( A. )。
A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +<2. 估计正常成年男性尿汞含量的95%医学参考值范围时,应用(E )。
A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 3.若某人群某疾病发生的阳性数X 服从二项分布,则从该人群随机抽出n 个人, 阳性数X 不少于k 人的概率为( A )。
A. )()1()(n P k P k P ++++B. )()2()1(n P k P k P +++++C. )()1()0(k P P P +++D. )1()1()0(-+++k P P PE. )()2()1(k P P P +++4.Piosson 分布的标准差σ和均数λ的关系是( C )。
A. σλ>B. σλ<C. λ=2σD. λ=σE. λ与σ无固定关系5.用计数器测得某放射性物质5分钟内发出的脉冲数为330个,据此可估计该放射性物质平均每分钟脉冲计数的95%可信区间为( E )。
A. 33096.1330± B. 33058.2330± C. 3396.133± D. 3358.233± E. 5/)33096.1330(±6.Piosson 分布的方差和均数分别记为2σ和λ,当满足条件( E )时,Piosson 分布近似正态分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 常用概率分布习题(附答案)
一、选择题
1. 估计正常成年女性红细胞计数的95%医学参考值范围时,应用( A. )。
A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +<
2. 估计正常成年男性尿汞含量的95%医学参考值范围时,应用(E )。
A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 3.若某人群某疾病发生的阳性数X 服从二项分布,则从该人群随机抽出n 个人, 阳性数X 不少于k 人的概率为( A )。
A. )()1()(n P k P k P ++++
B. )()2()1(n P k P k P +++++
C. )()1()0(k P P P +++
D. )1()1()0(-+++k P P P
E. )()2()1(k P P P +++
4.Piosson 分布的标准差σ和均数λ的关系是( C )。
A. σλ>
B. σλ<
C. λ=2σ
D. λ=σ
E. λ与σ无固定关系
5.用计数器测得某放射性物质5分钟内发出的脉冲数为330个,据此可估计该放射性物质平均每分钟脉冲计数的95%可信区间为( E )。
A. 33096.1330± B. 33058.2330± C. 3396.133± D. 3358.233± E. 5/)33096.1330(±
6.Piosson 分布的方差和均数分别记为2
σ和λ,当满足条件( E )时,Piosson 分布近似正态分布。
A. π接近0或1
B. 2σ较小
C. λ较小
D. π接近0.5
E. 202≥σ
7.二项分布的图形取决于( C )的大小。
A. π
B. n
C.n 与π
D. σ
E. μ
8.在参数未知的正态总体中随机抽样,≥-μX ( E )的概率为5%。
A. 1.96σ
B. 1.96
C. 2.58
D. S t ν,2/05.0
E. X S t ν,2/05.0
9.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L ,标准差
为4g/L ,则其总体均数的95%可信区间为( B )。
A. 10458.274÷⨯±
B. 10496.174÷⨯±
C. 458.274⨯±
D. 4474⨯±
E. 496.174⨯±
二、简单题
1、二项分布的应用条件
2、正态分布、二项分布、poisson 分布的区别和联系
三、计算分析题
1、某市2002年测得120名11岁男孩的身高均数为146.8cm ,标准差为7.6cm ,同时测得120名11岁女孩的身高均数为148.1cm ,标准差为7.1cm ,试估计该地11岁男、女童身高的总体均数,并进行评价。
2、按人口的1/20在某镇随机抽取312人,做血清登革热血凝抑制抗体反应检验,得阳性率为8.81%,求该镇人群中登革热血凝抑制抗体反应阳性率的95%可信区间。
(答案)
一、选择题
1.A
2.E
3.A
4.C
5.E
6.E
7.C
8.E
9.B
二、简答题
1、二项分布的应用条件:
(1)各观察单位只能具有两种相互独立的一种结果
(2)已知发生某结果的概率为π,其对立结果的概率为(1-π)
(3)n 次试验是在相同条件下独立进行的,每个观察单位的观察结果不会影响到其他观察单位的结果。
2、区别:二项分布、poisson 分布是离散型随机变量的常见分布,用概率函数描述其分布情况,而正态分布是连续型随机变量的最常见分布,用密度函数和分布函数描述其分布情况。
联系:
(1)二项分布与poisson 分布的联系,当n 很大,π很小时,λπ=n 为一常数时,二项分布)(πn B 近似服从poisson 分布)(πn P
(2)二项分布与正态分布的联系,当n 较大,π不接近0也不接近1,特别是当n π和)1(π-n 都大于5时,二项分布近似正态分布
(3)poisson 分布与正态分布的联系,当20≥λ时,poisson 分布近似正态分布。
三、计算分析题
1、本题男、女童样本量均为120名(大样本),可用正态近似公式X V S u X ,2α
±估计男、女
童身高的总体均数的95%置信区间。
男童的95%CI 为)16.148,44.145(1206
.7*96.18.146=± 女童的95%CI 为)37.149,83.146(1201
.7*96.11.148=± 2、
本题中,p S =5284)1( ,5280881.0312>=->=⨯=p n np ,因此可用正态近似法p V S u p ,2α±进行估计。
登革热血凝抑制抗体反应阳性率的95%可信区间为 )119.0,0568.0()016.0*96.10881.0(=±。