高中数学二级结论15页

合集下载

完整版)高中数学二级结论

完整版)高中数学二级结论

完整版)高中数学二级结论1.简单n面体内切球的半径为3V/S表。

其中V是简单n 面体的体积,S表是简单n面体的表面积。

2.在任意三角形ABC内,有XXX=XXX。

由此可推论,如果XXX<0,则三角形ABC为钝角三角形。

3.斜二测画法直观图面积是原图形面积的2倍。

4.在椭圆准线上过一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点。

5.在导数题中,常用放缩e≥x+1、1/(x-1)≤lnx≤x-1、ex>ex(x>1)、x/(x^2+y^2)≤1/sqrt(x^2+y^2)。

6.椭圆2/a^2+2/b^2=1(a>b)的面积为S=πab。

7.圆锥曲线的切线方程可以通过隐函数求导得到。

推论:①过圆(x-a)^2+(y-b)^2=r上任意一点P(x,y)的切线方程为(x-a)(x-x)+(y-b)(y-y)=r;②过椭圆2/a^2+2/b^2=1(a>b)上任意一点P(x,y)的切线方程为2ax/x+2by/y=2a^2.8.切点弦方程是指平面内一点引曲线的两条切线,两切点所在直线的方程。

①圆x^2+y^2+Dx+Ey+F=0的切点弦方程为xx+yy+2gx+2fy+c=0;②椭圆2/a^2+2/b^2=1(a>b)的切点弦方程为x^2/a^2+y^2/b^2=1;③双曲线2/a^2-2/b^2=1(a>b)的切点弦方程为x^2/a^2-y^2/b^2=1;④抛物线y=2px(p>0)的切点弦方程为yy=p(x+x);⑤二次曲线的切点弦方程为Axx+Bxy+Cyy+Dx+Ey+F=0,其中B≠0.9.①椭圆2/a^2+2/b^2=1(a>b)与直线Ax+By+C=0(A·B≠0)相切的条件是A^2a^2-B^2b^2=C^2;②双曲线2/a^2-2/b^2=1(a>b)与直线A x+By+C=0(A·B≠0)相切的条件是A^2a^2-B^2b^2=C^2.10.如果圆锥曲线(二次曲线)上的顺次四点A、B、C、D在同一圆上,则直线AC、BD的斜率存在且不等于零,并且有kAC+kBD=0.11.已知椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,两焦点分别为 $F_1$,$F_2$,设焦点三角形 $PF_1F_2$ 中$\angle PF_1F_2=\theta$,则 $ab\cos\theta\geq 1-2e^2(\cos\theta_{max}=1-2e^2)$。

(完整版)高中数学二级结论

(完整版)高中数学二级结论

高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx①过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=①二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222bk a mb + 21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的①ABC 在平面α内的射影为①ABO ,分别记①ABC 的面积和①ABO 的面积为S 和S′ ,记①ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则 (这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意①ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角①ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A ④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么①OAC ,①BAC ,①OAB 三角的余弦关系为:cos①OAC=cos①BAC ·cos①OAB (①BAC 和①OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+。

高中高考数学所有二级结论《[完整版]》

高中高考数学所有二级结论《[完整版]》

高中高考数学所有二级结论《[完整版]》一、几何结论1、关于点1.1 同一直线上三点,若其中两点间距相等,则三点共线;1.2 直线平分线定理:若直线Ⅰ平分线段AB,则AM/MB=1;1.3 直线的垂直平分线定理:若直线Ⅰ对AB的垂直平分线,则M是A、B中点;1.4 同一直线出发点,夹萝卜角度相等,终足点也在同一直线上;1.5 同一直线上三点,至少有2点共线;1.6 若任意一点位于AB的延长线上,则距AB同侧的距离相等;2、关于直线2.1 齐次直线:若直线上所有点满足y=ax+b,则直线称为齐次直线;2.2 相交线定理:若两条直线相交,则它们的夹角一定是锐角;2.3 相等的夹角可以定位:若两条直线的夹角为有限尺寸夹角,则它们可以定位;2.4 两平行线定理:若两条直线平行,则它们过同一直线上的任意一点都相等;2.5 同一实轴向非相交点所在直线定理:由两条实轴向非相交的直线,所形成的不规则四边形,相较相邻的两边的夹角度数之和为180°;3、关于三角形3.1 相等的边角定理:若两角的大小相等,则它们两理封闭的边也相等;3.2 对角线定理:若一个多边形的对角线相交,则其论线的和为360°;3.3 相等的三角形定理:若三角形的两边和它们之间的夹角相等,则三角形中的任何一点到另外两点的距离也相等;3.4 含有相同角的三角形定理:若两个三角形包含有相同大小的角,则其面积之比,与相应边的比值的平方成正比;3.5 三角形角度和定理:若三角形的三边的长度都不相等,那么它的三内角之和等于180°;3.6 斜边长度定理:若一个三角形的两边长度相等,那么它们所构成的内角一定是锐角;4、关于圆4.1 直径定理:若任意直线与圆相交,则此直线必经过圆心;4.2 垂足定理:若圆上存在一点,使得其到圆心的距离(即圆上点P到垂足M)尽可能的小,则M为圆上某一点P的垂足;4.3 旋转定理:把椭圆上的任意一点A旋转一定的角度,得到的椭圆上的点B,满足AB距离的平方等于AB分别到圆点的距离的积;二、代数结论1、关于一元二次方程1.1 一元二次方程的解:解一元二次方程ax2+bx+c=0(a≠0)的两个解是:x1=(-b+√(b2-4ac))/2a,x2=(-b-√(b2-4ac))/2a;1.2 求解实数解:若b2-4ac>0,那么它有实数解,若b2-4ac=0,那么它有重根,若b2-4ac<0,则无实数解;2、关于一元三次方程2.1 三次方程的解:一元三次方程ax3+bx2+cx+d=0(a ≠ 0)的三个实数解为:x1 = [-b + √(b2-3ac)]/3ax2 = [-b - √(b2-3ac)]/6a + i√3/6ax3 = [-b - √(b2-3ac)]/6a - i√3/6a;2.2 求解实数解:若b2-3ac>0,它有三个不同的实数解;若b2-3ac=0,它有重根;若b2-3ac<0,它有三个不同的实数解;3、关于系数代数方程3.1 二次代数方程:若一个二次代数方程ax2+bx+c=0有实数解,则它的解为x1=(-b+√(b2-4ac)/2a,x2=(-b-√(b2-4ac)/2a;3.2 三次代数方程:若一个三次代数方程ax3+bx2+cx+d=0有实数解,则它的解为x1=(-b+√(b2-3ac)/3a,x2=(-b-√(b2-3ac)/6a + i√3/6a,x3=(-b-√(b2-3ac)/6a - i√3/6a;4、关于函数4.1 闭区间:函数定义域上下端点其值皆有效,叫闭区间;4.2 周期:当变量满足周期函数关系,即变量与函数之间存在正反循环吻合关系时,称其为“周期函数”;4.3 偶函数:若变量x在定义域内变换了一倍角度,f(x)应等于自己,叫作偶函数;4.4 奇函数:若变量x在定义域内变换了一倍定义域,而f(x)值改变了符号,叫作奇函数;5、关于初等函数5.1 线性函数的定义:当关系式为y=ax+b,a、b为有理常数,b≠0时,它称为“线性函数”;5.2 二次曲线的定义:当关系式为y=ax2+bx+c(a≠0),a、b、c 为有理常数时,它称为“二次曲线”;5.3 对称性:定义域内一点同它的对称点在函数图像上所对应的点总是具有相同的函数值,称为函数具有“对称性”;5.4 反函数定义:当函数f(x)在它的定义域内是一一對應的,可以反求f(x)的值的函数,称为“反函数”;。

高中数学二级结论(精)

高中数学二级结论(精)

7、三角形其它边角关系

b c
b
c
a a
a为最大边时
sin A cos B
sin A cos C
② ABC为锐角三角形 b 2 c 2 a 2 a 为最大边时
sin B cos C sin B cos A
sin C cos A sin C cos B
③ A为钝角的三角形
a2 b2 c2
b2 a2
.(3)k0·k=
b2 a2
.
第 5 页 共 8 页 (李老师编)
15、与双曲线
x a
2 2
y2 b2
1
有相同渐近线的双曲线方程为
x a
2 2

y2 b2
( 0 时,焦点在 x 轴上; 0 时,焦点在 y 轴上)
七、立体几何
1、棱长为 a 的正四面体内切球半径 r= 6 a ,外接球半径 R= 6 a .
为广义型奇函数(图像关于点 a,0 中心对称),当有两个相异实数 a,b 同时满足(*)
时,f(x)为周期函数 T=2|b-a| 2、抽象函数的对称性
(1)若 f(x)满足 f(a+x)+f(b-x)=c,则函数关于( , )成中心对称(充要)
(2)若 f(x)满足 f(a+x)=f(b-x),则函数关于直线 x= 成轴对称(充要)
3、 方程f (x) k有解,则k的取值范围为f (x)的值域
4、 方程f (x) k有几个解 y f (x)的图像与直线 y k有几个交点
5、
x1,
x2
m,n,f
( x1 ) x1
f (x2 ) x2
k恒成立
x
m,n,f
( x)

高中数学常用二级结论(精编)

高中数学常用二级结论(精编)

高中数学常用二级结论一、基础常用结论1.立方差公式:a³-b³=(a-b)(a²-ab+b²);立方和公式:a³+b³=(a+b)(a²-ab+b²).2. 任意的简单n 面体内切球半径为(V 是简单n 面体的体积, S表是简单n 面体的表面积).3. 在Rt △ABC 中,C 为直角,内角A,B,C 所对的边分别是a,b,c, 则△ABC的内切圆半径为4.斜二测画法直观图面积为原图形面积的倍.5. 平行四边形对角线平方之和等于四条边平方之和6. 函数ʃ{(x)具有对称轴x=a,x=b(a≠b),则ʃ(x)为周期函数且一个正周期为2 |a-b|.7. 导数题常用放缩e²≥x+1,e*>ex(x>1).8. 点(x,y) 关于直线Ax+By+C=0 的对称点坐标二、圆锥曲线相关结论10.若圆的直径端点A(x,yi),B(x₂,y₂), 则圆的方程为(x-x₁)(x-x₂)+(y-yi)(y-y₂)=0.11. 椭圆的面积S 为S=πab.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13.圆锥曲线的切线方程求法:隐函数求导.推论:①过圆(x-a)²+(y-b)²=r²上任意一点P(xo,yo) 的切线方程为(x o-a)(x-a)+(vo-b)(y-b)=r²;②过椭圆上任意一点P(x₀,y₀)的切线方程为;③过双曲:上任意一点P(xo,yo)的切线方程为 1.14.任意满足ax”+by”=r的二元方程,过曲线上一点(x₁,yi)的切线方程为ax,x'-+by₁y°+=r.15. 切点弦方程:平面内一点引曲线的两条切线,两 切点所在直线的方程叫做曲线的切点弦方程. ①过圆x²+y²+Dx+Ey+F=0 外一点P(x ₀,y ₀) 的 切点弦方程②过椭圆外 一 点P(x ₀,yo) 的切点弦方程为;③过双曲线)外一点P(x,yo) 的切点弦方程为;④过抛物线y²=2px(p>0) 外一点P(x ₀,y ₀) 弦方程为yoy=p(x ₀+x);⑤二次曲线Ax²+Bry+Cy²+Dx+Ey+F=0点 P(x ₀,y ₀) 的 切 点 弦 方 程 为16.①椭圆与直线Ax+By+C=0(AB≠0) 相切的条件是A²a²+B²b²=C²;②双曲线与直线的切点外17.若A、B、C、D是圆锥曲线(二次曲线)上顺次的四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、BD的斜率存在且不等于零,并有kac+kaD=0 (k₄c,k₈p 分别表示AC和BD的斜率).18.已知椭圆方程为),两焦点分别为F,F2, 设焦点三角形PFF₂中∠PEF₂=θ,则cosθ≥1-2e²(cosθmm=1-2e²).19.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为x₀的点P 的距离)公式₁₂=a±ex₀.20.已知k,k₂,k₃为过原点的直线l,l₂,I₃的斜率,其中l₂是l₁和l₃的角平分线,则k,k₂,k₃满足下述转化关系:,21. 椭圆绕Ox 坐标轴旋转所得的旋转体的体积22. 过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为23.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值。

(完整版)高中高考数学所有二级结论《完整版》

(完整版)高中高考数学所有二级结论《完整版》

高中数学二级结论1.任意的简单n 面体内切球半径为(V 是简单n 面体的体积,是简单n 面体的表面积)表S V3表S 2.在任意内,都有tan A +tan B +tan C =tan A ·tan B ·tan CABC △推论:在内,若tan A +tan B +tan C <0,则为钝角三角形ABC △ABC △3.斜二测画法直观图面积为原图形面积的倍424.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩、、1+≥x e x1ln 11-≤≤-<-x x xx x )1(>>x ex e x 6.椭圆的面积S 为)0,0(12222>>=+b a by a x πabS =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆上任意一点的切线方程为222)()(r b y a x =-+-),(00y x P 200))(())((rb y b y a x a x =--+--②过椭圆上任意一点的切线方程为)0,0(12222>>=+b a b y a x ),(00y x P 12020=+b yy a xx ③过双曲线上任意一点的切线方程为)0,0(12222>>=-b a b y a x ),(00y x P 12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆的切点弦方程为022=++++F Ey Dx y x 0220000=++++++F E yy D x x y y x x ②椭圆的切点弦方程为)0,0(12222>>=+b a by a x 12020=+b y y a x x③双曲线的切点弦方程为)0,0(12222>>=-b a by a x 12020=-b y y a x x ④抛物线的切点弦方程为)0(22>=p px y )(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F y y E x x D y Cy x y y x Bx Ax 9.①椭圆与直线相切的条件是)0,0(12222>>=+b a by a x )0·(0≠=++B A C By Ax 22222Cb B a A =+②双曲线与直线相切的条件是)0,0(12222>>=-b a by a x )0·(0≠=++B A C By Ax 22222Cb B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有,(,分别表示AC 和BD 的斜率)0=+BD AC k k AC k BD k 11.已知椭圆方程为,两焦点分别为,,设焦点三角形中,则)0(12222>>=+b a by a x 1F 2F 21F PF θ=∠21F PF ()221cos e -≥θ2max 21cos e -=θ12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为的点P 的距离)公式0x 02,1ex a r ±=13.已知,,为过原点的直线,,的斜率,其中是和的角平分线,则,,满足下述1k 2k 3k 1l 2l 3l 2l 1l 3l 1k 2k 3k 转化关系:,,3222223321212k k k k k k k k +-+-=31231231312)()1(1k k k k k k k k k +++-±-=2122221123212k k k k k k k k +-+-=14.任意满足的二次方程,过函数上一点的切线方程为r by ax nn=+),(11y x ry by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则,a xx f x =∝+→)(limbax x f x =-∝+→])([lim 16.椭圆绕Ox 坐标轴旋转所得的旋转体的体积为)0(12222>>=+b a by a x πabV 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中CB AC B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴,,则f (x )为周期函数且一个正周期为a x =b x =)(b a ≠|22|b a -20.y=kx+m 与椭圆相交于两点,则纵坐标之和为)0(12222>>=+b a b y a x 22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如,,)272829AC C B B A S z A C y C B x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,)的点的集合ace =(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23.到角公式:若把直线依逆时针方向旋转到与第一次重合时所转的角是,则1l 2l θ21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线同时除以m+n )⇔OB OC n OA m OD =+=,25.过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为)0,0(12222>>=-b a by a x 2ab 26.反比例函数为双曲线,其焦点为和,k <0)0(>=k xky )2,2(k k )2,2(k k --27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线29.数列不动点:定义:方程x x f =)(的根称为函数)(x f 的不动点利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1)若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2)若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da ck +=2)定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++30.(1),⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA *N∈k (2)若,则:πC B A =++①2sin2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin222CB AC B A -=++④4sin 4sin 4sin 412sin 2sin 2sinC B A C B A ---+=++πππ⑤2sin 2sin 2sin4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cotC B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan=++AC C B B A ⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+(3)在任意△ABC 中,有:①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos≤⋅⋅C B A ③232sin 2sin 2sin ≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin222≥++C B A ⑩12tan 2tan 2tan222≥++C B A ⑪32tan 2tan 2tan ≥++CB A ⑫932tan 2tan 2tan≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A (4)在任意锐角△ABC 中,有:①33tan tan tan ≥⋅⋅C B A ②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A ④1cot cot cot 222≥++C B A 31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为,式中,和是两底面的面积,是中截面的面积(即平面γ与底面之间距离H S S S V )4(61201++=1S 2S 0S 时得到的截面的面积)2Hh = 事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2c b a -+35.立方差公式:))((2233b ab a b a b a +--=-立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OCOB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a ba 38.12)!1(!!21+++++++=n θxn xx n e n x x x et i h i n推论:212x x e x++>39.)2(≤≥--a ax ee xx 推论:①)0(ln 21>≥-t t tt ② )20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)是的重心⇔=++0OC OB OA O ABC ∆(2)为的垂心⇔⋅=⋅=⋅OA OC OC OB OB OA O ABC ∆(3)为的内心O OC c OB b OA a ⇔=++0ABC ∆为的外心O ABC ∆43.正弦平方差公式:)sin()sin(sin sin22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:(e 为圆锥曲线的离心率)θρcos 1e ep-=48.超几何分布的期望:若,则(其中为符合要求元素的频率),),,(M N n X~H N nM X E =)(NM1111()(----=N n N M N M nX D 49.为公差为d 的等差数列,为公比为q 的等比数列,若数列满足,则数列的前n {}n a {}n b {}n c n n n b a c ⋅={}n c项和为n S 2121)1(-+-=+q c c q c S n n n 50.若圆的直径端点,则圆的方程为()()1122,,,A x y B x y ()()()()12120x x x x y y y y --+--=51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n kn nC kC 53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心(4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m enm e e e e +>-->+。

(word完整版)高中高考数学所有二级结论《完整版》(2021年整理)

(word完整版)高中高考数学所有二级结论《完整版》(2021年整理)

(word完整版)高中高考数学所有二级结论《完整版》(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中高考数学所有二级结论《完整版》(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中高考数学所有二级结论《完整版》(word版可编辑修改)的全部内容。

高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C 〈0,则ABC △为钝角三角形3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E yy D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a b y a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-=14.任意满足r by ax nn=+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222bk a mb + 21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数) 双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a by a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab 26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k 〈0 27。

(完整版)高中数学二级结论

(完整版)高中数学二级结论

高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx①过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=①二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222bk a mb + 21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的①ABC 在平面α内的射影为①ABO ,分别记①ABC 的面积和①ABO 的面积为S 和S′ ,记①ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则 (这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意①ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角①ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A ④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么①OAC ,①BAC ,①OAB 三角的余弦关系为:cos①OAC=cos①BAC ·cos①OAB (①BAC 和①OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+。

高中高考数学所有二级结论《完整版》

高中高考数学所有二级结论《完整版》

高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx①过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=①二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n )25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的①ABC 在平面α内的射影为①ABO ,分别记①ABC 的面积和①ABO 的面积为S 和S′ ,记①ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意①ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++②8332cos 2cos 2cos ≤⋅⋅C B A③232sin 2sin 2sin ≤++C B A④2332cos 2cos 2cos ≤++C B A⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A⑪32tan 2tan 2tan≥++CB A ⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角①ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么①OAC ,①BAC ,①OAB 三角的余弦关系为:cos①OAC=cos①BAC ·cos①OAB (①BAC 和①OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+个人车位租赁合同范本 出租方(甲方):xxx 身份证号:xxxxxxxxx承租方(乙方):xxx 身份证号:xxxxxxxxx甲、乙双方经充分协商,现将甲方位于xxxxxxxxx 私家车位租给乙方作为车辆(车牌号:xxxxx )停放使用,并签订如下车位租赁合同条款,甲、乙双方共同遵守和执行。

高中数学二级结论大全

高中数学二级结论大全

高中数学二级结论目录函数二级结论 (1)三角函数二级结论 (3)平面向量二级结论 (6)数列二级结论 (8)圆锥曲线二级结论 (10)导数二级结论 (14)立体几何二级结论 (17)1函数二级结论1.若奇函数在原点处有定义,则,若奇函数周期为T,则;2.幂函数,当a为奇数时为奇函数,当a为偶数时为偶函数;3.形如4.形如5.形如的函数为奇函数;6.形如的函数为奇函数;7.形如的函数为偶函数;8.形如的函数关于点9.形如的函数关于形如的函数关于中心对称;10.形如的函数关于轴对称;11.若,则函数关于12.若13.函数与函数关于2);14.函数与函数中心对称;15.若满足;16.若同时关于和轴对称,则周期为;若同时关于和轴对称,则周期为;若同时关于和轴对称,则周期为;17.若函数满足:(c为常数),则周期为;;18.若函数c为常数),则周期为;特殊地:若;19.若函数满足:,则;若函数满足:,则;若函数满足:,则;若函数满足:,则;20.函数奇偶性的叠加:,21.函数f(x)具有对称轴,则f(x)为周期函数且一个正周期为22.已知函数是定义在区间D上的奇函数,,都有.特别地,若奇函数在D上有最值,则,若0∈D,则.三角函数二级结论1.当;2.射影定理:;;;3.;tan A+tan B+tan C<04.当时,;当时,;当时,;5.6.a,b,c7.8.9.余弦平方差公式:10.在锐角三角形中11.正弦平方差公式:12.(1),(2)若,则:①②⑤⑧(3)在任意△ABC中,有:⑦⑧⑨⑩⑭(4)在任意锐角△ABC中,有:②③④平面向量二级结论1.向量平方差公式:①D为BC中点,则②如图,平行四边形ABCD中,2.三角形四心的向量表达:(1)奔驰定理:已知O;(2)三角形四心的向量表达:①已知O的重心,则;②已知O的垂心,则;③已知O的外心,则;④已知O的内心,则;3.单位向量:(1)对于非零向量表示与方向相同的单位向量;(2),夹角平分线共线的向量;(3)任意单位向量可设坐标为;4.三点共线的向量表达:如图,A,B,C三点共线,O为线外一点:①,则,反之也成立;②若,则;5.向量的等和线:如图,向量不共线,若直线l与直线AB平行(或重合),称直线l为基底的等和线.若P在直线l上,且为定值,且随O与l的距离比例扩大或缩小;①当l与AB重合时,;②当l过点O时,;③当l在O与AB之间时,;④当l在O与AB同侧,O到AB这一侧时,;⑤当l在O与AB同侧,AB到O这一侧时,;6.平行四边形对角线定理:平行四边形的两条对角线平方和等于四边平方之和;7.矩形对角线定理:矩形所在平面内任意一点到矩形两对角线端点距离的平方和相等.8.A、B、C三点共线同时除以m+n)9.已知△ABC,O为其外心,H为其垂心,则10.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心(4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍11.在△ABC中,角A,B,C所对的边分别是a,b,c,则数列二级结论1.等差数列中,若;2.等差数列中,若;3.等差数列;4.等差数列和前n项和分别为和5.等差数列中,若,则;最大,6.等差数列中,,且为偶数,则当时,S最大,为奇数,则当时,S7.等差数列的公差为d,则也称等差数列,且公差为;8.等差数列的公差为d;9.等差数列前2n项和中:2n-1项和中:;10.等差数列的首项为a1,公差为d,前n项和为S n,,公差为;11.等比数列中,12.是公比为q的正项等比数列,则是公差为的等差数列;13.等比数列公比为q,前n项和为S n,n项和为,数列前n项为,则;14.等比数列公比为q,则也成等比数列,且公比为;15.等比数列公比为q,前n项连乘积为也称等比,且公比为;16.为公比不为0的等差数列,且;17.等比数列.18.{a n}为公差为d的等差数列,{b n}为公比为q的等比数列,若数列{c n}满足,则数列{c n}的前n项和S n为19.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系数列,这种方法称为不动点法满足递推关系,则定理1:若,p是的不动点,a,即是公比为a的等比数列.定理2:设,{a}满足递推关系,初值条件(1)若有两个相异的不动点p,q,则)(2)若只有唯一不动点P,则)定理3:设函数有两个不同的不动点,确定着数列,那么当且仅当时,20.三角函数数列求和裂项相消:圆锥曲线二级结论1.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点2.的面积S为;3.圆锥曲线的切线方程求法:推论:①过圆上任意一点的切线方程为②过椭圆上任意一点的切线方程为③上任意一点的切线方程为4.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆的切点弦方程为②②椭圆的切点弦方程为③双曲线的切点弦方程为④抛物线的切点弦方程为⑤二次曲线的切点弦方程为5.与直线②双曲线相切的条件是6.若A、B、C、D是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、BD的斜率存在且不等于零,(k,k BD分别表示AC和BD的斜率),F2,设焦点三角形PF1F2,7.,两焦点分别为F则8.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为x的点P的距离)公式9.已知k1,k2,k3为过原点的直线l1,l2,l3的斜率,其中l2是l1和l3的角平分线,则k1,k2,k3满足下述转化关系:,,10.任意满足的二次方程,过函数上一点11.绕Ox坐标轴旋转所得的旋转体的体积为12.y=kx+m与椭圆13.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率)的点的集合(定点F不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线14.到角公式:若把直线l1依逆时针方向旋转到与l2第一次重合时所转的角是,则15.过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面16.反比例函数17.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值18.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上19.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦20.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长)21.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点22.点(x,y)关于直线Ax+By+C=0的对称点坐标为23.圆锥曲线统一的极坐标方程:(e为圆锥曲线的离心率)24.若圆的直径端点,则圆的方程为25.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B两点,则直线AB的斜率为定值26.AB是过抛物线y2=2px(p>0)焦点F的弦(焦点弦),过A,B分别作准线的垂线,垂足分别为A1,B1,E为A1B1的中点.(1)如图①所示,以AB为直径的圆与准线l相切于点E.(2)如图②所示,以A1B1为直径的圆与弦AB相切于点F,且EF2=A1A·BB1.(3)如图③所示,以AF为直径的圆与y轴相切.27.若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点,则直线AB.同理,当以AB时,直线AB过定点.(2)对于双曲线上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点(a,0),则直线AB.同理,对于左顶点(-a,0),.(3)对于抛物线上异于顶点的两动点A,B,则弦AB所在直线过点.同理,抛物线上异于顶点的两动点A,B,,则直线AB过定点.28.在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P(非顶点)与曲线上的两动点A,B满足直线PA与PB的斜率互为相反数(倾斜角互补),则直线AB的斜率为定值.(1),定点在椭圆上,设A,B是椭圆上的两个动为定值.点,直线P A,PB的斜率分别为,且满足.直线AB的斜率k(2)已知双曲线,定点在双曲线上,设A,B是双曲线为定上的两个动点,直线P A,PB的斜率分别为,且满足.直线AB的斜率k值.(3)已知抛物线,定点在抛物线上,设A,B是抛物线上的两个动点,直线P A,PB的斜率分别为,且满足.直线AB的斜率k为定值.29.在椭圆E:中:(1)如图①所示,若直线与椭圆E交于A,B两点,过A,B,有,设其斜率为,则;(2)如图②所示,若直线与椭圆E交于A,B两点,P为椭圆上异于A,B的点,若直线PA,PB的斜率存在,且分别为k1,k2,则(3)如图③所示,若直线y=kx+m(k≠0且m≠0)与椭圆E交于A,B两点,P为弦AB的中点,设直线PO的斜率为k0,则;30.在双曲线E中,类比上述结论有:(1) (2) (3),F2分别为左、右焦点,P为椭圆上一点,的面积31.在椭圆中,F;其中.,F2分别为左、右焦点,P为双曲线上一点,的面32.在双曲线中,F,其中;导数二级结论一、基础结论1.曲线2.处取得极值,则;反之,不成立;3.对于可导函数,不等式的解集决定函数的递增(减)区间;4.函数在区间I恒成立(不恒为零);5.函数(非常数函数)在区间I上不单调等价于在区间I上有极值,则可等价于方程在区间I上有实根且为非二重根;6.函数在区间I上无极值等价于在区间I上是单调函数,等价于或在I上恒成立;7.恒成立,则;8.若,若,使得,则;9.设与的定义域的交集为D;10.;恒成立,则;恒成立,则;上的值域为A,的区间I2上值域为B,,使得,11.已知在区间I则;12.若三次函数f(x)有三个零点,则方程有两个不同的零点,且极大值大于0,极小值小于0;13.证明中常用的不等式:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)二、构造函数模型1.对于不等式,构造函数2.对于不等式,构造函数3.对于不等式,构造函数;4.对于不等式,构造函数5.对于不等式,构造函数6.对于不等式,构造函数; 7.对于不等式,构造函数 8.对于不等式,构造函数; 9.对于不等式10.对于不等式11.对于不等式,构造函数; 12.对于不等式,构造函数;13.对于不等式,构造函数14.对于不等式,构造函数三、常用函数图像四、高级不等式 1.麦克劳林公式:(1);(2 (3(4) (5)2.(待续)立体几何二级结论1.倍2.面体的表面积为S,体积为V3.设点为面上一点,过点A的斜边AO在面上的射影为AB,另外AC为面上任意一条直线,4.面积射影定理:设平面α外的△ABC所在平面α的射影为△ABO,分别记△ABC和△ABO的面积为S△ABC所在的平面与平面α所成的角为,则有5.正四面体的常用结论:假设正四面体的边长为a,则有:①②相邻两个面的二面角:③三条侧棱与底面的夹角:④外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离⑤顶点在底面的射影是底面三角形的中心(四心合一)⑥对棱相互垂直,且对棱中点的连线为对棱的公垂线,距离为点为该正四面体外接球(或内切球)的球心.6.直三棱柱的外接球半径,其中r为底面三角形的外接圆半径,l为侧棱长。

高中高考数学所有二级结论《完整版》

高中高考数学所有二级结论《完整版》

高中数学二级结论1.随意的简单n 面体内切球半径为(V 是简单 n 面体的体积,是简单n 面体的表面积)2.在随意内,都有tanA+tanB+tanC=tanA· tanB· tanC推论:在内,若tanA+tanB+tanC<0,则为钝角三角形3.斜二测画法直观图面积为原图形面积的倍4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩、、6.椭圆的面积S 为7.圆锥曲线的切线方程求法:隐函数求导推论:① 过圆上随意一点的切线方程为② 过椭圆上随意一点的切线方程为③ 过双曲线上随意一点的切线方程为8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程① 圆的切点弦方程为② 椭圆的切点弦方程为③ 双曲线的切点弦方程为④ 抛物线的切点弦方程为⑤ 二次曲线的切点弦方程为9.①椭圆与直线相切的条件是② 双曲线与直线相切的条件是10.若 A、 B、 C、 D 是圆锥曲线 (二次曲线 )上按序四点 ,则四点共圆 (常用订交弦定理 )的一个充要条件是 : 直线 AC、 BD 的斜率存在且不等于零 ,并有 ,(,分别表示 AC和 BD 的斜率 )11.已知椭圆方程为,两焦点分别为,,设焦点三角形中,则()12.椭圆的焦半径 (椭圆的一个焦点到椭圆上一点横坐标为的点P 的距离 )公式13.已知,,为过原点的直线,,的斜率,此中是和的角均分线,则,,知足下述转变关系:,,14.随意知足的二次方程,过函数上一点的切线方程为15.已知 f(x)的渐近线方程为y=ax+b,则,16.椭圆绕 Ox 坐标轴旋转所得的旋转体的体积为17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中19.函数 f(x)拥有对称轴,,则f(x)为周期函数且一个正周期为20.y=kx+m 与椭圆订交于两点,则纵坐标之和为21.已知三角形三边x, y, z,求面积可用下述方法(一些状况下比海伦公式更适用,如,,)22.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点 F 距离与到定直线间距离之比为常数e(即椭圆的偏爱率,)的点的会合 (定点 F 不在定直线上,该常数为小于1的正数 )双曲线第二定义:平面内,到给定一点及向来线的距离之比大于 1 且为常数的点的轨迹称为双曲线23.到角公式:若把直线依逆时针方向旋转到与第一次重合时所转的角是,则24.A、 B、 C 三点共线 (同时除以 m+n)25.过双曲线上随意一点作两条渐近线的平行线,与渐近线围成的四边形面积为26.反比率函数为双曲线,其焦点为和,k<027.面积射影定理:如图,设平面α外的△ ABC在平面α内的射影为△ ABO,分别记△ ABC的面积和△ ABO的面积为S第 1 页和 S′,记△ABC所在平面和平面α所成的二面角为θ,则cosθ = S′ : S28,角均分线定理:三角形一个角的均分线分其对边所成的两条线段与这个角的两边对应成比率角均分线定理逆定理:假如三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比率,那么该点与对角极点的连线是三角形的一条角均分线29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确立的数列化为等比数列或较易求通项的数列,这类方法称为不动点法定理 1:假如的不动点,知足递推关系,则,即是公比为的等比数列.定理 2:设,知足递推关系,初值条件(1)如有两个相异的不动点,则(这里)(2)若只有独一不动点,则(这里)定理 3:设函数有两个不一样的不动点,且由确立着数列,那么当且仅当时 ,30.(1),(2)若,则:①②③④⑤⑥⑦⑧(3)在随意△ ABC中,有:①⑥?②⑦?③⑧?④⑨?⑤⑩(4)在随意锐角△ ABC中,有:①③②④31.帕斯卡定理:假如一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:全部的极点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森 (Simpson)公式 ]:设拟柱体的高为H,假如用平行于底面的平面γ去截该图形,所获得的截面面积是平面γ与一个底面之间距离h 的不超出 3 次的函数,那么该拟柱体的体积V 为,式中,和是两底面的面积,是中截面的面积(即平面γ与底面之间距离时获得的截面的面积)事实上,不但是拟柱体,其余切合条件(全部极点都在两个平行平面上、用平行于底面的平面去截该图形时所获得的截面面积是该平面与一底之间距离的不超出 3 次的函数 )的立体图形也能够利用该公式求体积33.三余弦定理:设 A 为面上一点,过 A 的斜线 AO 在面上的射影为AB,AC为面上的一条直线,那么△ OAC,△ BAC,△ OAB 三角的余弦关系为:cos△OAC=cos△BAC·cos△OAB(△和BAC△OAB只好是锐角 )34.在 Rt △ ABC中, C 为直角,内角A, B, C 所对的边分别是a, b, c,则△ ABC的内切圆半径为第 2 页35.立方差公式:立方和公式:36.已知△ ABC,O 为其外心, H 为其垂心,则37.过原点的直线与椭圆的两个交点和椭圆上不与左右极点重合的任一点组成的直线斜率乘积为定值推论:椭圆上不与左右极点重合的任一点与左右极点组成的直线斜率乘积为定值38.推论:39.推论:①②40.抛物线焦点弦的中点,在准线上的射影与焦点 F 的连线垂直于该焦点弦41.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长 )42.向量与三角形四心:在△ABC中,角 A, B, C 所对的边分别是a, b ,c(1)是的重心(2)为的垂心(3)为的心里(4)为的外心43.正弦平方差公式:44.对随意圆锥曲线,过其上随意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列乞降裂项相消:46.点 (x,y) 对于直线 Ax+By+C=0的对称点坐标为47.圆锥曲线一致的极坐标方程: (e 为圆锥曲线的离心率 )48.超几何散布的希望:若,则 ( 此中为切合要求元素的频次 ) ,49. 为公差为 d 的等差数列,为公比为q 的等比数列,若数列知足,则数列的前n 项和为50.若圆的直径端点,则圆的方程为51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、 B 两点,则直线 AB 的斜率为定值52.二项式定理的计算中不定系数变成定系数的公式:53.三角形五心的一些性质:(1)三角形的重心与三极点的连线所组成的三个三角形面积相等(2)三角形的垂心与三极点这四点中,任一点是其余三点所组成的三角形的垂心(3)三角形的垂心是它垂足三角形的心里;或许说,三角形的心里是它旁心三角形的垂心(4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一极点到垂心的距离,等于外心到对边的距离的二倍54.在△ ABC中,角 A, B, C所对的边分别是 a,b, c,则55.m>n 时,第 3 页。

高中数学二级结论

高中数学二级结论

1高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yya xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yya xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a b y a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222bk a mb + 21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ=S′:S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则 (这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k (2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++CB A⑪32tan 2tan 2tan ≥++CB A⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a ba38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n 50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+。

高中高考数学所有二级结论《完整版》Word版

高中高考数学所有二级结论《完整版》Word版

高中高考数学所有二级结论《完整版》Word版1. 余弦定理:对于任意三角形ABC,有$a^2=b^2+c^2-2bc\cos{A},b^2=a^2+c^2-2ac\cos{B}, c^2=a^2+b^2-2ab\cos{C}$2. 正弦定理:对于任意三角形ABC,有$\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}$3. 高线定理:对于任意三角形ABC,设D为BC上的垂足,则AD为该三角形的高线,有$AD=\dfrac{2S}{a}, BD=\dfrac{2S}{c},CD=\dfrac{2S}{b}$,其中S为该三角形的面积。

4. 中线定理:对于任意三角形ABC,设E,F为AB,AC上的中点,则BE,CF为该三角形的中线,有$BE=\dfrac{1}{2}AC, CF=\dfrac{1}{2}AB$5. 角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A的平分线,则$\dfrac{BD}{CD}=\dfrac{AB}{AC}$。

6. 高尔夫球定理:一条直线与圆相切时,从切点到圆心的距离就是该直线的斜率。

7. 根号2定理(勾股定理):对于直角三角形ABC,设$\angle A=90^{\circ}$,BC 为斜边,则$AB^2+AC^2=BC^2$8. 等腰三角形的角平分线定理:对于等腰三角形ABC,设D为AB,AC的交点,则AD 为角A的平分线。

9. 任意三角形的角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A 的平分线,则$\dfrac{AB}{AC}=\dfrac{BD}{CD}$。

10. 三角形内角和定理:在任意三角形ABC中,$\angle A+\angle B+\angleC=180^{\circ}$。

11. 垂直平分线定理:在平面上,对于任意两点A,B,所有到A,B的距离相等的点P 构成的直线为AB的垂直平分线。

高中数学常用二级结论大全(K12教育文档)

高中数学常用二级结论大全(K12教育文档)

高中数学常用二级结论大全(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学常用二级结论大全(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学常用二级结论大全(word版可编辑修改)的全部内容。

高中数学常用二级结论大全一、基础常用结论
二、圆锥曲线相关结论
三、与角相关结论
四、数列相关结论
五、三角形与三角函数相关结论
六、三角形与向量
七、其他。

高中高考数学所有二级结论《完整版》 .

高中高考数学所有二级结论《完整版》 .

高中高考数学所有二级结论《完整版》 .一、最大值最小值和极值点1、若解三角形的函数图象上的最小值为 b,则其最大值和极值点为 (a,b)。

2、使函数 y=f(x) 在闭区间 [a, b] 内取得最小值时,有:f(x) 在区间 (a, b) 的极值点位于 x=a 或 x=b。

6、若曲线 y=f(x) 的各个极值点间段形成单调递增或递减区间,则函数 y=f(x) 在该区间上取得同一值,并且该值为最小值或最大值。

2、若函数 y=f(x) 在a≤x≤b 的范围内单调递增,则函数可能在 (a, b) 的范围内取得极大值 c,其中 a 和 b 可能也是极值点;若函数 y=f(x) 在a≤x≤b 范围内单调递减,则函数可能在 (a, b) 的范围内取得极小值 d,其中 a 和 b 可能也是极值点。

三、极限1、函数 y=f(x) 对某个数 x 求极限时,当lim x→a f(x) 存在时,就可以确定函数在 x=a 的极限值及其未定义点,即lim x→a f(x)=L。

四、不等式1、若 y=f(x) 是多元函数,则该函数满足两个单调的不等式的交汇处就是极大值点,而满足两个逆单调的不等式的交汇处就是极小值点。

2、若函数 y=f(x) 是不等式 y>f(x) 的解,则当y≤f(x) 时,函数 y=f(x) 就取得最小值,而当y≥f(x) 时,函数 y=f(x) 就取得最大值。

3、若函数有极值点,那么该函数的对应的不等式中的所有值介于函数的最大值和最小值之间。

2、当有限次多项式函数 y=f(x) 在 having T 公式的拟合函数中有极值时,Tarrance 公式会捕捉该函数的起伏特性。

3、当函数 y=f(x) 可以用 Taylor 公式进行估计时,该函数在 x=a 处可能取得最大值或最小值,即函数可能在 x=a 上取得极值。

(完整版)高中数学常用二级结论大全

(完整版)高中数学常用二级结论大全

高中数学常用二级结论大全、基础常用结论、圆锥曲线相关结论17.若A、B、C、D是圆锥曲线(二次曲线)上顺次的四点,则四点共恻(常用相交弦定理)的一个充要条件是:直线AC. BD的斜率存在且不等于零,并有k AC+^D= O(ΛJC,血ω分别表示XC和BD的斜率)・2 21«.己知椭圆方程为⅞ + ⅛ = l(^>Λ>0),两焦点分/ Zr 别为林,耳,设焦点三角形P斤坊中ZPF y F2=O,则cos 0 > 1 - 2e2(COS θmm =l-2e2).19・椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为Xo的点P的距离)公式η2=a±ex0.20.已知Λ1, k2.他为过原点的直线A,厶,厶的斜率, 其中厶是厶和厶的角平分线,则k2,柑满足下述转化关系:、k;,k二2人一人+k1 1 一疋 + 2k^k.斤禹- 1 ± J(l-*∣爲)'十仗]十*3)'1 一疋÷2Zr∣Λ2χ2 y221∙椭圆—÷⅛ = l(α>∂>0)绕OX坐标轴旋转所得的旋转体的体枳为V = ^πah.X? V222.过双曲线一y-^-r= l(α>O,Λ>O)I:任意一点作a~ b~两条渐近线的平行线•与渐近线围成的四边形而积为ah~223.过椭圆上•点做斜率互为相反数的两条直线交椭圆于/L 3两点,则直线的斜率为定值.24.过原点的直线与椭闘交于力,〃两点,椭圆上不与左右顶点璽合的任•点与点〃,〃构成的直线的斜率乘积为定值-推论:椭圆上不与左右顶点巫合的任一点与左右顶点构2成的直线斜率乘积为定值一一(α >A>0).Ir25.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦•26.双曲线焦点三角形的内切IHll员I心的横堆标为定值α(长半轴长)・27.对任意圆锥曲线,过其上任意一点作两逍线,若两直线斜率之积为定值,两直线交曲线于〃两点,则直线MB恒过定点.X V-28∙M+"与椭圆h*W">°)相交于两29.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭関的偏心率,e = -)的点的集a 合(定点F不在定直线上,该常数为小于1的正数)•双曲线第二定义:平面内,到给定一点及一也线的距离之比大于1 R为常数e的点的轨迹称为双曲线.3U.反比例函数y = -(k>Q)为双曲线.其焦点为X(J2k, J2k)和(—(2k、-(2k) , A<0.点, 则纵坐标之和为2ιnh~ a2k2^b2三、与角相关结论四、数列相关结论五、三角形与三角函数相关结论40.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.41・三余弦定理:设力为面上一点,过/的斜^Ao在面上的射影为AB9AC为面上的一条直线,那么AOM, ABAC tΛOAβ三角的余弦关系为:COS Z-OAC = COS ΛBAC∙cos Z.OAB(ZBAC和ZOAB只能是锐角)・六、三角形与向量七、其他。

高中高考数学所有二级结论《完整版》

高中高考数学所有二级结论《完整版》

高中数学二级结论1、任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积)2、在任意ABC △内,都有t a n A +t a n B +t a n C =t a n A ·t a n B ·t a n C3、若a 是非零常数,若对于函数y =f(x )定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x )是周期函数,且2|a |是它的一个周期。

①f(x +a )=f(x -a ) ②f(x +a )=-f(x ) ③f(x +a )=1/f(x ) ④f(x +a )=-1/f(x )4、若函数y =f(x )同时关于直线x =a 与x =b 轴对称,则函数f(x )必为周期函数,且T =2|a -b|5、若函数y =f(x )同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x )必为周期函数,且T =2|a -b|6、若函数y =f(x )既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x )必为周期函数,且T =4|a -b|7、斜二测画法直观图面积为原图形面积的42倍 8、过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点9、导数题常用放缩1+≥x e x 、1ln 11-≤≤-<-x x xx x、)1(>>x ex e x 10、椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =11、圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为1220=+b yy a xx ①过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为1220=-b yy a xx 12、切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E yy D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y += ①二次曲线的切点弦方程为0222000000=++++++++F y y E x x D y Cy x y y x Bx Ax 13、①椭圆)0,0(12222>>=+b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是||22222A a -B b =C14、椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±= (左加右减)15、双曲线的焦半径(双曲线上横坐标为x 的点P 到焦点的距离)公式,且F 1为左焦点,F 2为右焦点,e 为双曲线的离心率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学二级结论1.任意的简单n面体内切球半径为3V/S表V是简单n面体的体积,S表是简单n面体的表面积,2.在任意三角形内都有tanAtanBtanC=tanA+tanB+tanC,至于有什么用,,,:三个tan加起来如果是负的那就是钝角三角形了3.矩阵和矩阵逆的行列式,特征值都互为倒数,4.斜二测画法画出的图形面积变小了,为原来的√2/4倍5.过椭圆准线上一点作椭圆切线,两切点所在直线必过椭圆相应焦点,椭圆准线广义称极线,那个是极线的性质之一6.在做导数题的时候要熟练以下不等式便于放缩等。

e^x≥x+1 lnx≤x-1 泰勒基数展开,这个常用,一般前一问有提示7.球的体积:V(r)=(4/3pi)r^3求导:V'R=4pir^2=表面积,,,神奇!:这个我们老师的解释是,球的体积可以看成无穷个表面积的积分,所以体积的微分就应该是表面积8.椭圆的面积S=派ab 应该很难用上,直接换元,转换成圆,再换回去就行了9.圆锥曲线切线,隐函数求导高考不让用:用于秒杀选择填空,大题找思路以及验证等x 不用处理10.来个非常有用的,。

过椭圆x²/a²+y²/b²上任意一点(x0,y0)的切线方程为xx0/a²+yy0/b²既用xx0替换x²用yy0替换y²。

双曲线也一样这个椭圆切线的结论可以用的,同理圆、双曲线、抛物线的切线方程都可以直接用11.来个比较少用,但是选择填空一考到你可以捞大把时间的⊙▽⊙。

过椭圆外一点(x0,y0)作椭圆的两条切线,过两切点的直线方程为xx0/a²+yy0/b²=1 这个叫做切点弦方程12.分享个最最有用的。

椭圆x²/a²+y²/b²=1与直线Ax+By+C=0相切的条件是A²a²+B²b²=C²至于椭圆焦点在y轴上的情况,,。

欢迎讨论把a、b换个位置就行了个最屌,双曲线的话上面的+号变-号,秒出答案13.设双曲线方程x^2/a^2-y^2/b^2=1,双曲线焦点到渐近线距离为b14.托密勒定理有道证明题用过这个15.椭圆焦点三角形设顶角为A.焦点三角形面积为b平方tanA/2,双曲线是cot 16. 1.函数f(x)满足f(a+x)+f(b-x)=c的充要条件是函数关于((a+b)/2,c/2)中心对称2.函数f(x)满足f(a+x)=f(b-x)的充要条件是函数关于x=(a+b)/2轴对称3.L*Hospital*s rule4.三角形中射影定理:a=bcosC+ccosB5.任意三角形内切圆半径r=2S/(a+b+c)6.任意三角形外切圆半径R=abc/4S=a/2sinA7.Euler不等式:R>2r8.海伦公式的变式:设三角形内切圆分三角形三边为不相邻的线段x,y,z则S=sqrt(xyz(x+y+z))=1/4*sqrt(∑a∏(a+b-c))9.边角边面积公式:S=a^2sinBsinC/2sin(B+C)10.各种三角恒等式11.各种三角不等式:1)在锐角三角形中成立不等式:∑sinA>∑cosA2)嵌入不等式:x^2+y^2+z^2>=∑2yzcosA,x,y,z为实数12.权方和不等式13.赫尔德不等式14.卡尔松不等式(柯西不等式的推广形式)15.切比雪夫不等式16.舒尔不等式及舒尔分拆17.琴生不等式18.幂平均不等式19.pqr、uvw、sos法20.拉格朗日插值定理21.拉格朗日中值定理22.泰勒级数与迈克劳林级数23.积分放缩于常用对数不等式17.18.对与椭圆交于四点的两条直线,四点共圆的充要条件是两直线与x正半轴夹角互补曲线系19.p为椭圆上一点,∠F1PF2=θ则cos(θmax)=1-2e^220.焦半径公式也不知道高考让不让用R=a±ex 也可以用可以一步推出来他就没话说了用x0y0表示出椭圆上的点然后求其到(c,0)的距离然后将椭圆里的y^2移动到一边替代前文的距离看起来很复杂也就两个式子21.这个是无意中发现的,k2为k1、k3的角分线(其中k1、k2、k3为斜率)则有以上关系式(也就是知二求一)22.对于任意二次方程满足一下形式ax^n+by^n=r则过该函数上一点(x1,y1)的切线方程为ax1x^(n-1)+by1y^(n-1)=r 隐函数很好推的23.关于弧长的弧长L=∫(x*)^2+(y*)^2 dθ实在不行了套公式怒解吧汗少打个根号还是给微分形式吧(dL)^2=(dx)^2+(dy)^224.若已知函数f(x)的渐近线方程y=ax+b则lim(x→+∞)f(x)/x=alim(x→+∞)f(x)-ax=b 另一种渐近线就是当x的取值令函数无意义的时候那条垂直于x轴的直线也是渐近线,比如1/0就是x=0是渐近线:对勾函数25.函数的凹凸(辅助画图)当函数f(x)的二阶微分大于0时函数为凹当函数f(x)的二阶微分小于0时函数为凸椭圆绕x^2/a^2+y^2/b^2=1绕ox轴旋转所得的旋转体的面积V=4/3*πab椭圆标准方程不是关于x轴对称吗,绕着x轴旋转就行了26.若圆1与圆2相交,则联立两个方程式得到的直线方程为交点连线方程两个方程相减27.正方体体对角线是边长的根号3倍勾股定理28.洛必达法则遇到0/0 或无穷/无穷时非常实用选择题的图像题,导数的分离参数29.内角平分线定理30.在锐角三角形中成立不等式:∑sinA>∑cosA,这个里面∑是什么意思??还有还有,循环求和是什么意思?简单介绍一下吧。

谢谢啦,百度轮换式31.PS 求问焦点在y轴直接ab对换就OK了吧。

不想推了。

32.切点弦方程和图像上点的切线方程是一个方程,我最喜欢推导出能广泛使用的结论了极点极线33.若x=a与x=b均为函数对称轴则该函数为周期函数且周期为丨2a-2b丨可以说有两条垂直于x轴的对称轴的函数必为周期函数34.y=kx+m与椭圆相交于两点则交点纵坐标之和=2mb^2/(a^2k^2+b^2)35.已知三角形三边x,y,z 求周长A+B=x²B+C=y²C+A=z²2S=√(AB+BC+CA)虽然这个公式跟海伦公式等价但是给你个三角形三边√27,√28,,√29就看出差距了36.圆锥曲线的第二定义椭圆的第二定义平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数双曲线第二定义平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线。

抛物线定义:平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。

另外, F 称为"抛物线的焦点", l 称为"抛物线的准线"。

该定义等价于椭圆的离心率:e=∈c/a(0,1)(c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )抛物线的离心率:e=1双曲线的离心率:e=∈c/a(1,+∞) (c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )有的题是根据第二定义出的,熟悉之后对做题有好处37.数列不动点很好用38.39.40.帕思卡定理-非退化二次曲线41.已知向量OA=m向量OB+n向量OC时可以同除(m+n)构造成共线定理42.到角公式万能体积公式43.S=√(p(p-a)(p-b)(p-c))三角形的海伦公式推荐掌握,全国卷曾有类似的题,44.过双曲线x∧2/a∧2-y∧2/b∧2=1上任意一点作两条渐近线的平行线,围成的四边形面积为ab/245.反比例函数y=k/x(k>0)为双曲线,焦点为[(2k)∧½,(2k)½],和[-(2k)∧½,-(2k)½],k<0不解释46.柯西不等式常见形式二维形式等号成立条件:当且仅当(即)时,取"=”。

向量形式证明:(只是对二维的说明)推广:三角形式等号成立条件:(即)。

一般形式等号成立条件:,或中有一为零。

上述不等式等同于概述图中的不等式。

一般形式推广此推广形式又称卡尔松不等式,其表述是:在m×n矩阵中,各列元素之和的几何平均不小于各行元素的几何平均之和。

概率论形式积分形式一般形式设V是一线性空间,在V上定义了一个二元实函数,称为内积,记做,它具有以下性质:1、2、3、4、当且仅当并定义α的长度,则柯西不等式表述为:证明二维形式的证明等号在且仅在ad-bc=0即ad=bc时成立。

三角形式的证明两边开平方得一般形式的证明剩余几种情形都是一般情形的特例,完全可以用一般情形的证明方法来证。

应用编辑柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视,技巧以拆常数,凑常值为多巧拆常数证不等式例:设a、b、c为正数且互不相等,求证:。

证明:如果了解柯西不等式,那么很简单。

附证设,则所证不等式等价于。

因为。

所以上式显然成立。

求某些函数最值例:求函数的最大值。

函数的定义域为[5,9],y>0,则。

函数仅在,即时取到。

以上只是柯西不等式的部分示例。

相关文档
最新文档