单闭环直流调速系统simulink仿真课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一、摘要.......................................................... - 3 -
二、课程设计任务.................................................................................................................. - 3 -
三、课程设计内容.................................................................................................................. - 3 -
1、PID控制原理及PID参数整定概述............................................................................. - 3 -
2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ................................ - 5 -
3、利用Simulink建立仿真模型...................................................................................... - 8 -
4、参数整定过程.............................................................................................................. - 12 -
5、调试分析过程及仿真结果描述.................................................................................. - 16 -
四、总结.................................................................................................................................. - 17 -
五、参考文献......................................................................................................................... - 17 -
PI控制单闭环直流调速系统仿真设计
班级:自动化学号:姓名:
一、摘要
本文通过利用Matlab仿真平台设计单闭环直流调速系统,,包括单闭环直流调速系统的基本构成和工作原理、对所设计系统的静态性能指标和动态性能指标进行分析、根据动态性能指标设计调节器、根据设计任务书的具体要求设计出系统的Simulink仿真模型,验证所设计系统的性能,通过稳定边界法(临界比例度法)整定PID参数,从而达到较好的控制性能要求,在这种实践的学习和调试中,使学生更系统地掌握所学知识并能够应用运动控制系统设计规范、Matla-simulin建模方法步骤、计算手册和计算机辅助设计软件进行运动控制系统的结构设计和参数计算。
在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB 仿真进行正确性的验证。
二、课程设计任务
已知单闭环直流调速系统如图所示
(1)请采用试凑法或稳定边界法整定两个PI控制器的参数,使系统稳定的前提下快速性好,并对整个系统进行仿真。
(2)请采用试凑法或稳定边界法整定两个PI控制器的参数,使系统稳定的前提下超调量小,并对整个系统进行仿真。
三、课程设计内容
1、PID控制原理及PID参数整定概述
PID控制原理:在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID
控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。偏差一旦产生,控制器立即就发生作用即调节控制输出,使被控量朝着减小偏差的方向变化,偏差减小的速度取决于比例系数Kp,Kp越大偏差减小的越快,但是很容易引起振荡,尤其是在迟滞环节比较大的情况下,Kp减小,发生振荡的可能性减小但是调节速度变慢。但单纯的比例控制存在稳态误差不能消除的缺点。这里就需要积分控制。
积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。实质就是对偏差累积进行控制,直至偏差为零。积分控制作用始终施加指向给定值的作用力,有利于消除静差,其效果不仅与偏差大小有关,而且还与偏差持续的时间有关。简单来说就是把偏差积累起来,一起算总帐。
微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
PID参数整定概述:PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID 控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,