1.1 建立一元二次方程模型

合集下载

苏科课标版初中数学九年级上册第一章一元二次方程1.1一元二次方程教案

苏科课标版初中数学九年级上册第一章一元二次方程1.1一元二次方程教案

苏科课标版初中数学九年级上册第一章一元二次方程11教学内容与学情本节课的教学内容是苏科版«义务教育教科书·数学»九年级上册第一章第1节〝一元二次方程〔第1课时〕〞.在七、八年级先后学习了一元一次方程、二元一次方程组、一元一次不等式〔组〕和分式方程,先生对〝元〞、〝次〞、〝方程〞、〝解〔根〕〞、〝解方程〞等概念已比拟明晰,并且知道方程是描写理想生活中数量关系的有效模型;一元二次方程是提醒理想世界数量关系的又一个重要的数学模型,它既是方程自身内容进一步丰实的需求,也是后续学习二次函数以及高中数学的基础.2教学目的〔1〕了解一元二次方程的概念,了解一元二次方程的解和解一元二次方程的意义;〔2〕能依据的一元二次方程编写相应的生活情境,也能依据实践效果中的数量关系列方程,从中感受一元二次方程是提醒理想世界数量关系的一个有效的数学模型;〔3〕阅历一元二次方程概念的生成与逻辑建构进程,体会由特殊到普通、分类和化归等数学思想方法,感受概念学习的基本方式,逐渐构成数学阅历体系.3教学重点、难点重点:了解一元二次方程的概念,感受一元二次方程是提醒理想世界数量关系的一个重要的数学模型;难点:阅历具表达实原型与笼统数学模型之间的数学化进程,用一元二次方程描画复杂效果中数量之间的相等关系.4教学进程设计4.1 概念构成〔是什么?〕概念构成普通阅历4个阶段:〝感知看法阶段〞、〝分化实质属性阶段〞、〝概括构成定义阶段〞和〝运用与强化阶段〞.4.1.1 感知看法本节课我们末尾学习〝一元二次方程〞,你能写出1个一元二次方程吗?你能再写出类型不同的一元二次方程吗?【有效性剖析】先生对〝元〞、〝次〞、〝方程〞的概念已比拟明晰,类比地写出几个一元二次方程,让先生构成直观感受;概念笼统需求典型实例,经过〝类型不同〞引发先生深度参与,逐渐向数学对象的实质属性迫近.4.1.2 分化实质以下方程是不是一元二次方程?为什么?①y 2=-3;② x 2+1x +2=0; ③ x 〔x -1〕=x 2;④ax 2+3x+1=0.【有效性剖析】应用正例和反例变换非实质属性特征,笼统特性特征,概括实质特征.〝群众化〞的方程没有争议,以无实根型、分式方程、化简后不含x 2型以及二次项系数不确定型等有〝特性〞的方程引发认知抵触,从而促进一种共同的认知愿望:必需明白〝一元二次方程〞的定义,这既是一个思想实质性参与进程,又是一个孕育概念生长点的进程.4.1.3 概括定义效果1:你以为什么叫做一元二次方程?⑴文字定义:只含有1个未知数,并且未知数的最高次数是2的方程叫做一元二次方程. ⑵符号定义:形如ax 2+bx+c=0〔a 、b 、c 是常数,a ≠0〕的方程叫做一元二次方程. 我们把ax 2+bx+c=0〔a 、b 、c 是常数,a ≠0〕叫做一元二次方程的普通方式,其中ax 2叫做二次项、bx 叫做一次项、c 叫做常数项,a 、b 区分叫做二次项系数、一次项系数.思索:①如何了解〝未知数的最高次数是2〞这个条件?②在普通方式中,假设b=0或c=0,那么一元二次方程具有怎样的方式?【有效性剖析】有以前学习方程的阅历和看法基础,先生具有由详细思想向方式化思想转变、归结一元二次方程定义的才干.数学思想方法孕育于知识的发作开展进程中,思索的两个效果是等价的,凸出了概念的外延和外延,一方面看法到一元二次方程方式的多样性,另一方面也加深了对概念实质的了解.4.1.4 运用强化例1 关于x 的方程〔m 2-4〕x 2+〔m +2〕x -m+2=0.⑴当m______时,该方程为一元二次方程;⑵假定该方程为一元一次方程,那么m=______.【有效性剖析】引导先生育成从基本概念动身思索效果、处置效果的习气,突出一元二次方程基本概念所包括的思想方法,在感受数学分类的必要性的同时,训练思想的缜密性. 4.2 建构活动〔学什么?〕效果2〔先留空〕:你以为,这个效果应该是什么? 或许说,此刻我们应该提出什么效果?【有效性剖析】先生自动提出效果也是需求引导的.这个留空效果的出现,激起先生思索,我们曾经知道了一元二次方程的定义〔从哪里来〕,接上去当然应该研讨一元二次方程的其它内容〔到哪里去〕,这是认知的自然趋向;先生应该有这种自主建构学习内容体系的学习倾向和自动提出效果的看法,这种把自动权还给先生的做法有益于促进学习方式的改动.经过回想与重构,〝我们应该如何学习一元二次方程?〞或许〝接上去我们应该学习一元二次方程的哪些内容?〞这类效果呼之欲出,〝⒈定义;2.解;3.解方程;4.列方程处置效果.〞的认知框架水到渠成.为了强化自动提出效果的看法,积聚提出效果的阅历,教员可以追问:〝你是怎样想到这样提出效果的?〞〝提这样的效果合理吗?〞.4.3 数学探求〔怎样学?〕4.3.1自主探求结合我们自己写出来的方程,同窗们先独立思索:刚才我们所提出的几个效果中,哪些你能处置?哪些你可以尝试处置?【有效性剖析】一元二次方程的方式多样、系数复杂,招致解方程的方法多样性与复杂性共存,这些需求先生自主看法与感受;这里不在于能否处置了效果,而在于思想的层次与实质——发现了悬而未决的效果,这既是突出中心概念的进程,也是打破难点的进程.4.3.2协作交流⑴一元二次方程的解的意义各组代表陈说〔可以结合已写出的方程,也可以重新写〕,突出以下几个效果:①什么叫〝一元二次方程的解〞?②如何验证一个值能否为一元二次方程的解?你发现一元二次方程的解与我们以前学过的方程的解有何异同?⑵解一元二次方程的感受如何确定〔或找到〕一元二次方程解?先生对照自己写出的方程说明.例如对9x2=4型的可以经过开平方,对〔x-1〕〔x+2〕=0或x2-5x=0型的可以经过因式分解,而x2=-5型的没有实数根;当然,像2x2-5x=1等型的方程目前尚难处置,这正是我们本章要学习的内容,前面将有十分巧妙的解法等候着我们!反过去,假设解,你能编写出一元二次方程吗?能编出不同的一元二次方程吗?①你能写出一个以1和-2为根的一元二次方程吗?许多先生会写出〔x-1〕〔x+2〕=0型的方程,教员可以用〝你是怎样想到这样编写的?〞初步构成编写的阅历.②你能写出一个只以3为根的一元二次方程吗?③你能写出一个没有实数根的一元二次方程吗?④你能写出一个有3个实数根的一元二次方程吗?【有效性剖析】先生阅历编写进程〔逆向思想〕,或容许以翻开解方程〔找方程的解〕的渠道,让数学活动由方程的〝解〞向〝解方程〞自然过渡;在尝试解方程的进程中感受化归求简的思想方法.⑶列一元二次方程处置效果的尝试在我们所写的一元二次方程中选择1个你喜欢的方程,举1个相应的生活效果,使得该方程可以描画其中数量之间的相等关系〔能处置其中的效果〕.先生能够会选择以下方程编写生活效果:①〔x -1〕2=2,应用正方形面积来编;一个正方形的边长减小1,失掉的新正方形的面积为2,那么这个一元二次方程就可以描画原正方形的边长与新正方形面积之间的数量关系;②x 〔x+1〕= 6,应用长方形面积来编;长方形的长比宽多1cm ,面积为6cm 2,假设设宽为xcm ,那么这个一元二次方程就可以描画长方形的宽与面积之间的数量关系.③x 2+〔x -1〕2=25,应用勾股定理来编;一个直角三角形两条直角边的差为1cm ,斜边长为5cm ,那么这个一元二次方程就可以描画直角边的长与斜边长之间的数量关系.教学时,还可以补充一些典型效果,例如:例2 某种品牌电脑延续两次降价〔降价率相反〕,单价由原来的6400元降到4900元,求每次降价率.独立作答,然后由1名同窗讲述.设每次降价率为x ,那么〔1—x 〕2=4964,这是一元二次方程,同窗们可以尝试去解它.【有效性剖析】这些效果源于生活,回归教材;例2经过一个相对完整的处置效果的进程,表达一元二次方程的适用价值,领悟到〝为什么要学?〞4.4 教学小结效果3:阅历了一元二次方程的〝第1节课〞,我们取得了哪些学习阅历?【有效性剖析】反思自己的学习进程,积聚学习阅历,用阅历了解数学,在了解中学会,在学会中会学.阅历提升:学习一个数学对象,我们往往先对它有一个结构性的看法,以以下方式展开,逐渐提醒它的实质.4.5 目的检测〔5分钟训练〕见«目的检测».5 教学设计说明与教后反思5.1 〝第1节课〞的义务作为本章〝第1节课〞,这节课的教学性质是以效果趋动的概念教学课,不是章头导学课,更不是单元教学课.〝第1节课〞的义务主要有三点:〔1〕胸中有〝森林〞,就是感知本章〔或单元〕的逻辑结构和学习蓝图,让学习一直坚持在〝抬头看路〞的微观形状;〔2〕眼前有〝树木〞,就是了解一些自然生成的数学对象和基本概念;〔3〕脑海有〝套路〞,就是阅历本章〔或单元〕框架的生成与构建进程,全体掌握知识间的逻辑关系,体会概念学习的基本套路.5.2 效果情境的价值效果情境的价值不外乎为教学活动提供三个方面的效劳:取得研讨的对象、提出研讨的效果、找到研讨的方法.数学对象有时是内隐的,人们对它的看法需求由具象〔生活原型〕到表象〔过渡雏形〕,再到笼统〔数学模型〕;数学对象不一定来自生活原型,有时来自先生实践,来自先生的阅历.下面回答两个疑问:⑴本节课的效果情境是什么?一元一次方程、二元一次方程组、分式方程的学习都表达了〝从效果到方程〞的看法观,本节课跳过生活实例〔预设的〝相关〞情境〕,直入课题,对〝元〞、〝次〞、〝方程〞、〝解〔根〕〞、〝解方程〞等概念停止回想与迁移,在罗列和区分一元二次方程的进程中构成认知抵触,一元二次方程的定义成为迫切的需求.数学概念来源于两方面:一是对生活效果的直接笼统;二是在已有知识和阅历上的逻辑建构.本节课的效果情境就是先生已有的知识与认知阅历,以及在自主建构中所构成的认知抵触.这种情境迎合先生的学习内趋,更能表达数学的实质,更能将留意力集结到主题下去.一个徒具方式的〝把先生塞进汽车〞的情境并不比开门见山值得一定.⑵对一元二次方程认知的笼统逻辑建构以及从效果情境动身突出方程模型思想的功用,哪个更有价值?对一个新的数学对象,我们普通阅历从外表到实质、从笼统到详细、从孤立到系统的看法进程.教学活动要特别关注知识的〝生长点〞和〝归结点〞,先生以往学习方程的阅历有利于一元二次方程新认知的异化,但一元二次方程对方程的认知既有量的添加,又有质的变化,先生会发生新的疑问:为什么一元二次方程有多种解法?为什么要研讨一元二次方程根的判别式?等等,这些新的疑问促使先生对原有认知结构停止改造〔新认知的顺应〕.让先生在自主建构进程中开掘数学概念包括的价值观资源,提高解读概念所反映的数学思想方法的才干,这是数学教育的价值所在.无须置疑,用方程描写效果成为先生的一种自觉的需求〔方程模型思想〕,是方程教学的中心价值.为了力图完成这一价值,本节课设计了两个不同思想层次的〝编写〞,先是编写方程,但先生所编写的方程未必从生活效果中来,不乏x2+x=0这些〝裸方程〞,后是依据方程编写效果情境,这时先生必需回到生活效果中去,经过逆笼统体会效果情境的价值.5.3 坚持为了解而教〔1〕了解数学开展的规律.数学概念、数学方法和数学思想的来源与开展都是自然的,一是知识的逻辑顺序自然,二是先生的心思认知自然.数学概念教学要让先生了解概念的背景和引入它的理由,知道它在树立、开展实际或处置效果中的作用,甚至要让先生体验数学家们发现数学规律的心路历程,这一历程闪耀着人类智慧的光芒,它对人类的贡献不只仅在于数学结论,更重要的是孕育了一种肉体质量和这种肉体质量的教育功用.〔2〕了解数学思想的方式.数学教学是对特定数学对象构成序列概念性看法的思想活动,数学学习是数学思想方式的学习.数学思想方式孕育于知识的发作开展进程中,在教学活动中,教员要引导先生从数学角度看效果,擅长自动提出效果,有条理地停止理性思想、严密求证、逻辑推理和明晰准确地表达,不时反思〝这么想对吗?〞、〝为什么应该这么想?〞,逐渐构成合理的数学思想方式.〔3〕了解数学教育的价值.数学教育的中心价值是经过数学教育人思想.教员要引导先生经过对数学迷信与人类社会开展之间的相互作用的了解,体会数学的迷信价值、运用价值和人文价值,培育严谨态度和探求肉体,以及能引发发明动力的价值观念,这种观念在以后仔细学习数学与运用数学处置效果的进程中将逐渐生成并强固起来,受益终身.。

建立一元二次方程的模型.ppt

建立一元二次方程的模型.ppt

设计意图:突破难点,训练学生的“分类讨论”的数学思想, 使学生掌握学习方法,成为“善学”的能手
过程4
目标自查,检测新知
1、已知x=1是关于x的一元二次方程2 x2+kx-1=0的一个根,则实数k=_____ 2、一元二次方程(x+1)2-x=3(x2-2)化为一般形式是___________,其中二次项系数 为_____,一次项系数为_____,常数项为______.
3t,小亮行驶的路程为
, 2t 可列方程3t = 2t
1 0.01 t 2 2
1 0.01 t 2 2
整理得:0.005t2- t =0

设计意图:教学生如何分析问题,使学生“会学”,培养 学生处理信息的能力和抽象思维能力。
过程2
自主交流,探索新知
x2+12x-540=0 ① 和 0.005 t2-t=0 ②
【情感、态度、价值观目标】
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动, 增进对方程的认识,提高学生分析问题、解决问题的能力
三、教法· 学法分析
1、教法
基于本节课内容的特点和初三学生的基础,我以 “启发式”教学 法为主进行教学。教师作引导,学生为主体,以学生的互动学习为主, 提高学生的观察、分析、概括能力, 在合作、交流的气氛下进行师生 互动,培养学生的自学能力和创新意识。
采用多媒体辅助教学,由实际问题建立一元二次方程的模型;将判 断题以游戏抢答的形式出现,充分的调动学生的积极性,激发学生的学 习热情;
四、教学媒体设计
为学生探究和发现新知提供技术支持
多媒体课件辅助教学
为教师进行教学提供技术平台
五、教学过程设计
根据本节课的教学内容,新课程标准的要求,学生的实际 情况,我采用“创设情境—自主探索—应用拓展”的模式, 将整节课分为六个环节,制订以下教学流程:

一元二次方程的应用课件

一元二次方程的应用课件
34
运用求根公式就可以解每一个具体的一元二 次方程,取得一通百通的效果,于是解一元二次 方程的算法如下:
35
一元二次方程
是否可以
直接用因式分解法或直接开
平方法
写成一般形式
ax2+bx+c=0(a≠0)
解两个一元一次方程
计算b2-4ac
b2-4ac≥0
用求根公式:
x b
b24ac 2a
无实数解
36
38
中考 试题
营销问题
例:课本P30 B4T
例1 某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天
可售出20件,每件盈利40元,为了迎接“六一”国际儿童节,商 场决定采取适当的降价措施,扩大销量,增加盈利,减少库存. 经市场调查发现:如果每件童装每降价4元,那么平均每天就可 多售出8件,要想平均每天在销售这种童装上盈利1200元,那么 每件童装应降价多少元?
27
例6 某校图书馆的藏书在两年内从5万册增加到7.2
万册,平均每年增长的百分率是多少?
解: 设平均每年增长的百分率是x.
根据题意,得 5(x+1)2 = 7.2. 整理,得 x2+2x -0.44=0. 解得,x1=0.2,x2=-2.2(不合题意,舍去). 答:该校图书馆的藏书平均每年增长的百
本课内容 一元二次方程的应用 1.3 第一课时
学习目标: 1、能运用一元二次方程解决一些简单
的代数问题 2、一元二次方程的根的判别式的应用
1
一、建立一元二次方程模型解数与代数问题
例1 当x取什么值时,一元二次多项式x2-x-2与
一元一次多项式2x-1的值相等?
例2 当y取什么值时,一元二次多项式

24.1 一元二次方程课件024—2025学年冀教版数学九年级上册

24.1 一元二次方程课件024—2025学年冀教版数学九年级上册

1

3
=6
2

- 4=5
2+ =1
一元一次方程:只含有一个未知
数;未知数的指数是一次的;方
程两边都是整式.
如图,某学校要在校园内墙边的空地上修建一个长方形的存车处,存
车处的一面靠墙(墙长22 m),另外三面用90 m长的铁栅栏围起来.如
果这个存车处的面积为700 m2,求这个长方形存车处的长和宽.
2024年秋季
数学 冀教版
九年级上册
1. 了解一元二次方程及其根的概念,掌握把一元二次方程化为一般形式
的方法.
2.会设未知数,列一元二次方程.
重点
一元二次方程的概念及一般形式.
难点
通过提出问题,建立一元二次方程的明.
2.下列哪些方程是一元一次方程?
2-
并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得
3x2-3x=5x+10.
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0.
其中二次项系数为3,一次项系数为-8,常数项为-10.
不要忘记每一项(系
数)前面的符号.

知识点3
一元二次方程的解
使方程左右两边相等的未知数的值就是这个一
(3)确定等量关系;
(4)根据等量关系列出一元二次方程,有时要化为一般形式.
1

1.下列方程:①2x2+3y=0;②x2+ =2;③-x2+2x-9=0;④6x2-3x=2(3x2-2),
其中是一元二次方程的有( A )
A.1个
B. 2个
C.3个
D.4个
2. 一元二次方程4x2=6x+2的二次项系数和一次项分别是( C

初三年级上册数学教案

初三年级上册数学教案

精心整理初三年级上册数学教案重点难点重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。

难点:把实际问题转化为一元二次方程的模型。

教学过程(一)创设情境前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。

本s3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:4x2-140x+32③0.01t2-2t=0④(二)探究新知1、观察上述方程③和④,启发学生归纳得出:如果一个方程通过移项可以使右边为0,而左边是只含有一个未项。

化简,得2x2+x-16=0。

二次项系数是2,一次项系数是1,常数项是-16。

点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。

此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?(1)2x+3=5x-2;(2)x2=25;(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。

(六)思考与拓展当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

布置作业难点:用因式分解法将一元二次方程转化为一元一次方程。

教学过程(一)复习引入1、提问:(1)解一元二次方程的基本思路是什么?(2)现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?2、用两种方法解方程:9(1-3x)2=25(二)创设情境,,x2=-。

《一元二次方程》教学设计

《一元二次方程》教学设计

《1.1一元二次方程》教学设计一、教学内容分析“1.1一元二次方程”是苏科版教材九年级(上)第1章第一节内容,在初中数学中占有重要地位。

从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习其它数学知识的基础。

这节课是一元二次方程的概念课,通过丰富的实例,让学生建立一元二次方程,并通过观察类比归纳出一元二次方程的概念。

本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和类比概括的能力,为接下来的学习起到很好的铺垫作用。

二、学情分析:九年级的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。

当他们在解决实际问题时,发现列出的方程不再是熟悉的一元一次方程或可化为一元一次方程的其它方程时,他们自然会想需要进一步研究和探索有关方程的问题。

而从学生的知识结构上看,前面已经系统的研究了整式、分式、二次根式、一元一次方程、二元一次方程和分式方程,已经具备了继续探究一元二次方程的基础。

三、教学目标根据《数学课程标准》中关于“一元二次方程”的相关教学要求,结合教材特点和九年级学生的好奇心、求知欲及已有的知识经验,我特制订如下的教学目标:知识技能:1、理解一元二次方程的概念。

2、掌握一元二次方程的一般形式,会正确识别一元二次方程的项和系数。

数学思考:1、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。

2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。

解决问题:在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感态度:1、培养学生自主自主学习、探究知识和合作交流的意识。

2、通过对问题的分析,激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。

苏科版九年级上册数学第1章 一元二次方程 认识一元二次方程

苏科版九年级上册数学第1章 一元二次方程 认识一元二次方程

知4-练
(1)4个完全相同的正方形的面积之和是25,求正
方形的边长x;
(2)一个矩形的长比宽多2,面积是100,求矩形的
长x;
(3)把长为1的木条分成两段,使较短一段的长与
全长的积,等于较长一段的长的平方,求较短
一段的长x.
感悟新知
知2-练
解:(1)列方程4x2=25,移项,得4x2-25=0. (2)列方程x(x-2)=100,去括号,得x2-2x=100,移 项,得x2-2x-100=0. (3)列方程x•1=(1-x)2,去括号,得x=x2-2x+1,移 项,合并同类项,得x2-3x+1=0.
感悟新知
总结
知4-讲
建立一元二次方程模型解决实际问题时,既 要根据题目条件中给出的等量关系,又要抓住题目 中隐含的一些常用关系式(如面积公式、体积公式、 利润公式等)进行列方程.
感悟新知
1 随州市尚市“桃花节”观赏人数逐年增加, 知4-练 2 据有关部门统计,2014年约为20万人次,2016年约
感悟新知
下列例方1 程:①x2+y-6=0;②x2+=2;
③x2-x-2=0;④x2-2+5x3-6x=0;
1 x
⑤2x2-3x=2(x2-2),其中是一元二次方程的
有( )
A.1个 BA. 2个 C.3个 D.4个
知1-练
导引: ①含有两个未知数; ②不是整式方程; ③符合一元二次方程的“三要素” ④未知数的最高次数不是2 ⑤整理后未知数的最高次数不是2
知4-讲
(1)审题,认真阅读题目,弄清未知量和已知量之
间的关系;
(2)设出合适的未知数,一般设为x;
(3)确定等量关系;
(4)根据等量关系列出一元二次方程,有时要化为

九年级数学备课组2024工作计划(4篇)

九年级数学备课组2024工作计划(4篇)

九年级数学备课组2024工作计划一、指导思想根据学校工作要求,本期全面推行课堂教学改革,加大教学研究力度,着力提倡集体备课创新,加强团队合作。

我备课组将以全面提高教育教学质量这一总目标为宗旨,聚焦课堂教学,聚焦校本教研,聚焦学校数学教学的长远发展,坚持课题引领下的课堂教学的改进和优化,努力提高工作效益,切实提高我校九年级数学教育教学水平。

二、工作目标及措施(一)、目标1、紧扣教材,细读课标,以生为本。

备课组必须深挖教材,研读课标并以学生的实际为切入点,集体探讨一种学生易接受、易掌握的教学方法,努力使绝大部分同学都理解并掌握,力争使每个学生都学有所获。

2、发挥集体智慧,资源共享,并保持集体备课的持久性、高效性,以达到提高课堂教学效率的目的。

3、抓好教学研讨工作,积极开展听评课活动。

抓教学问题汇聚,严格执行教学反思制度,杜绝不良现象重复出现。

4、抓学生的学习方法。

在教学过程中,使他们形成自主学习的习惯,并为其终身学习打下基础。

5、知识与能力并举,在教学过程中,巩固所学知识,并强化能力的培养。

通过小组合作交流,给学生提供一个展示自我的平台,开发课程资源,以达到活跃课堂的目的。

6、抓好培优工程,力争在各级数学竞赛中争得上席之位。

(二)、主要措施:1、加强集体备课,积极进行教研教改组内教师必须按学校要求进行集体备课,即做到“五定”、“五议”、“五统一”。

“五定”即定时间(每周星期四下午)、定地点(初三办公室)、定每周进度、定教学内容、定中心发言人。

“五议”即议学生学习状况、议备课中疑难问题、议可供的教学方法手段、议课后心得体会、议教改动态信息)。

“五统一”即统一教学进度和内容、统一教学目的和要求、统一教学重难点和“双基”要求、统一课堂主要范例、练习与作业内容、统一考查试题。

备课中要重视突出教师如何引导学生学习知识,如何突破重点和难点;对学生学习知识方法的指导;设计的数学学习内容和数学例题、习题尽可能联系生活实际,体现学生的各个层次,同时要充分利用各种途径,指导学生收集、整理、阅读、了解数学家事迹、数学成就、数学史等,增强学生学习数学的热情和激励学生发扬积极向上的精神。

初中数学教材目录表---湘教版

初中数学教材目录表---湘教版

湘教版初中数学目录表七年级上册第一章有理数一、有理数的理解1.1具有相反意义的数1.2数轴、相反数与绝对值1.2.1数轴1.2.2相反数1.2.3绝对值1.3有理数大小的比较二、有理数的运算1.4~1.8有理数的加法、减法、乘法、除法、乘方1.9有理数的混合运算1.10用计算器计算第二章代数式2.1用字母表示数2.2列代数式2.3多项式2.4合并同类项2.5代数式的值2.6一次式的加法和减法第三章图形欣赏与操作3.1图形欣赏3.2平面图形与空间图形3.3观察物体3.4图形操作第四章一元一次方程模型与算法4.1一元一次方程模型4.2解一元一次方程的算法4.3一元一次方程的应用第五章一元一次不等式5.1不等式的基本性质5.2一元一次不等式的解法5.3一元一次不等式的应用第六章数据的收集与描绘6.1数据的收集6.2统计图6.3平均数、中位数和众数七年级下册第一章一元一次不等式组1.1一元一次不等式组1.2一元一次不等式组的解法1.3一元一次不等式且的应用第二章二元一次方程组2.1二元一次方程组2.2二元一次议程组的解法2.3二元一次方程组的应用第三章平面上直线的位置关系和度量关系3.1线段、直线、射线3.2角3.3平面直线的位置关系3.4图形的平移3.5平行线的性质和判定3.6垂线的性质和判定第四章多项式的计算4.1多项式的加法和减法4.2多项式的乘法4.3乘法公式第五章轴对称图形5.1轴与轴对称图形5.2线段的垂直平分线5.3三角形5.4三角形的内角和5.5角平分线的性质5.6等腰三角形5.7等边三角形第六章数据的分析与比较6.1加权平均数6.2极差、方差(最大值和最小值之差、极差)数据中的各数与平均数的偏差的平方的平均值、方差6.3两组数据的比较八年级上册第一章实数1.1平方根1.2立方根1.3实数1.4平面直角坐标系第二章一次函数2.1函数和它的表示法2.2一次函数和它的图象2.3建立一次函数模型第三章全等三角形3.1旋转3.2图案设计3.3全等三角形的判定定理3.4三角形全等的判定定理3.5直角三角形3.5.1直角三角形的性质和判定3.5.2直角三角形全等的判定3.6勾股定理3.7作三角形第四章频数与频率4.1 频数与实例、意义、应用4.2数据的分布4.2.1数据组的频数分布和频率分布4.2.2统计数据的整理4.2.3编制频数分布表4.2.4频数分布直方图八年级下册第一章因式分解1.1多项式的因式分解1.2提公因式1.3公式法第二章分式2.1分式和它的基本性质2.2分式的乘除法2.3整数指数幂2.4分式的加减法2.5分式方程第三章四边形3.1平行四边形与中心对称图形3.1.1平行四边形的性质和中心对称图形3.1.2中心对称图形(续)3.1.3平行四边形的判定3.1.4三角形的中位线3.2菱形3.3矩形3.4正方形3.5梯形3.6多边形的内角和与外角和第四章二次根式4.1二次根式和它的化简4.2二次根式的乘、除法4.3二次根式的加、减法第五章概率的概念5.1 概率的概念5.2概率的含义九年级上册第1章一元二次方程1.1建立一元二次方程模型1.2解一元二次方程的算法1.3一元二次方程的应用第2章命题与证明2.1定义2.2命题2.3公理与定理2.4证明第3章图形的相似3.1相似的图形3.2线段的比3.3相似三角形的性质和判定3.4相似多边形3.5图形的放大与缩小,位似变换第4章锐角三角形4.1正弦和余弦4.2正切4.3解直角三角形及其应用第5章概率的计算5.1用频率估计概率5.2用列举法计算概率九年级下册第1章反比例函数1.1建立反比例函数模型1.2反比例函数的图象与性质1.3实际生活中的反比例函数第2章二次函数2.1建立二次函数模型2.2二次函数的图象与性质2.3二次函数的应用第3章圆3.1圆3.2点、直线与圆的位置关系,圆的切线3.3圆与圆的位置关系3.4弧长和扇形的面积,圆锥的侧面展开图3.5平行投影和中心投影第4章统计估计4.1总体与样本4.2用样本估计总体。

初中数学知识点精讲精析 建立一元二次方程模型

初中数学知识点精讲精析 建立一元二次方程模型

第1节 建立一元二次方程模型要点精讲(一)一元二次方程的概念1. 只含有一个未知数,并且未知数的最高次数是二次的整式方程,叫一元二次方程。

2. 满足一元二次方程的三个条件:(1)整式方程;(2)只含有一个未知数;(3)未知数的最高次项的次数为2,且该系数不能为0。

3. 能准确判断一元二次方程1. a ≠0是一元二次方程成立的先决条件。

2. 一般形式中各部分的名称:c ——常数项3. 任何一个一元二次方程经整理后都能化为一般形式我们只强调a ≠0,才是一元二次方程,但b 、c 可为0。

元二次方程。

典型例题【例1】将方程(8-2x )(5-2x )=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.【答案】二次项系数为4,一次项系数为-26,常数项为22【解析】一元二次方程的一般形式是ax 2+bx+c=0(a ≠0).因此,方程(8-2x )•(•5-2x )=18必须运用整式运算进行整理,包括去括号.移项等.解:去括号,得:40-16x-10x+4x 2=18移项,得:4x 2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.【例2】将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项.二次项系数;一次项.一次项系数;常数项.【答案】二次项2x 2,二次项系数2;一次项2x ,一次项系数2;常数项-4【解析】通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax 2+bx+c=0(a ≠0)的形式.解:去括号,得:如:,123023222x x x x x x ++=+=-+250230222x x y k x x k +-=+-=,(为常数)32202122x x x +-==,(二)一元二次方程的一般形式:ax bx c a 200++=≠()ax a 2——二次项,其中是二次项系数bx b ——一次项,其中是一次项系数如:形如,,等都是一ax bx a ax c a ax a 222000000+=≠+=≠=≠()()()x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.。

北师大版九年级上册数学第二章一元二次方程

北师大版九年级上册数学第二章一元二次方程
你还能找到其他的五个连续整数,使前三个数的平方和等 于后两个数的平方和吗?
解:如果设五个连续整数中的第一个数为x,那么后面四个数依 次可表示为: x+1 , x+2 , x+3 , x+4 . 根据题意,可得方程:
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2. x2 - 8x - 20=0(一般式).
当堂练习
1.下列方程哪些是一元二次方程? 为什么?
(1)7x2 - 6x = 0

(2)2x2 - 5xy + 6y = 0
方程中同时出现x、y两个未知数
(3) 2x 1 1 0 3x
(4) y 2 0 2
(5) x2 + 2x - 3 = 1 + x2
非整式方程

化简后是一元一次方程
2.把下列方程化为一元二次方程的一般形式,并写出它的 二次项系数、一次项系数和常数项:
120m2
讲授新课
一元二次方程的概念
问题1:请通过类比一元一次方程一般形式(ax + b = 0),对 下面所得方程进行整理.
(1) x2 = 64 ;
(2)x(x + 10) = 1200.
(1) x2 – 64 = 0 ; (2) x2 + 10x – 1200 = 0.
问题2:上述两个方程有什么共同特点? 1.只含有一个未知数; 2.未知数的最高次数是2; 3.整式方程.
注意 ①若a<0,那么最好在方程的左右两边同乘以-1,使二次项系数变 为正整数;②指出一元二次方程的各个系数时,一定要带上前面的符号.

一元二次方程课件2021-2022学年湘教版数学九年级上册

一元二次方程课件2021-2022学年湘教版数学九年级上册
这个问题需要建立一元二次方程模型来解决.
探究新知
新知一 一元二次方程的定义
(1) 如图所示,已知一矩形的长为200 cm,宽为150 cm.
现在矩形中挖去一个圆,使剩余部分的面积为原矩
形面积的 3 , 求挖去的圆的半径 x cm应满足的方
4
程( 其中 π 取3 );Biblioteka 150cm150cm
200cm
200cm
增长(利润)率问题、行程问题、工程问题等.
例3.为执行国家药品降价政策,给人民群众带来实惠, 某药品经过两次降价,每瓶零售价由100 元降为64元, 求平均每次降价的百分率.设平均每次降价的百分率 为x,可列方程为( ) A. 100(1-x)2=64 B. 100(1+x)2=64 C. 100(1-2x)=64 D. 100(1+2x)=64
解: (1)整理方程,得 x2-x-6 = 0. 其中二次项系数为1,一次项系数为-1,常数项为-6.
(2)整理方程,得x2+2x-14 = 0. 其中二次项系数为1,一次项系数为2,常数项为-14.
(3)整理方程,得2x2-7 = 0. 其中二次项系数为2,一次项系数为0,常数项为-7.
特别提醒 确定一元二次方程的各项和各项系数时注意不要
解:根据面积=长× 宽,建立方程模型. 根据题意,得扩大后的正方形绿地边长为x m, 则扩大部分长方形的长为x m,宽为(x-60)m, 所以可得方程为x(x-60)=1 600. 答案:A
归纳
建立一元二次方程模型的一般步骤: (1) 审题,认真阅读题目,弄清未知量和已知量; (2) 设出合适的未知数,一般设为x; (3) 确定等量关系; (4) 根据等量关系列出一元二次方程,有时要化为 一般形式.

人教版九年级上册数学第21章 一元二次方程 建立一元二次方程模型解应用问题 (2)

人教版九年级上册数学第21章 一元二次方程 建立一元二次方程模型解应用问题 (2)

5.一次会议上,每两个参加会议的人都相互握了一次手,经统 计所有人一共握了 66 次手.这次会议到会的人数是多少? 解:设这次会议到会的人数是 x. 由题意得x(x-2 1)=66, 解得 x1=12,x2=-11(舍去). 答:这次会议到会的人数是 12.
6.一个两位数的个位数字为 a,十位数字为 b,则这个两位数为 _1_0_b_+_a___;若交换两个数位上的数字,得到的新两位数为 _1_0_a_+_b___.
4.(2018·黑龙江龙东地区)某中学组织初三学生篮球比赛,以班
为单位,每两班之间都比赛一场,计划安排 15 场比赛,则共
有多少个班级参赛?( C )
A.4 B.5 C.6 D.7 【点拨】设共有 x 个班级参赛. 根据题意,得x(x-2 1)=15, 解得 x1=6,x2=-5(不合题意,舍去). 则共有 6 个班级参赛.
未消失.若开始时传染源为 1,传染速度为 x,则一轮后被感 染的有__1+__x____;第二轮传染时,传染源为_1_+_x___,传染速度 还是 x,则二轮后被感染的有_(1_+__x_)2___.
(2)在细胞分裂问题中,分裂源在一轮分裂后消失了.若开始时分 裂源是 1,分裂的速度是 x,则一轮分裂后是___x_____;第二 轮分裂时,分裂源为___x_____,分裂速度还是 x,则二轮分裂 后是___x2_____.
8.(2018·遵义)在水果销售旺季,某水果店购进一种优质水果, 进价为 20 元/千克,售价不低于 20 元/千克,且不超过 32 元/ 千克,根据销售情况,发现该水果一天的销售量 y(千克)与该 天的售价 x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为 23.5 元/千克,求当天该水果的销售量; 解:设 y 与 x 之间的函数关系式为 y=kx+b. 由题意得2224k.6+k+b=b=323,4.8,解得kb==-80.2, ∴y 与 x 之间的函数关系式为 y=-2x+80. 当 x=23.5 时,y=-2×23.5+80=33. 答:当天该水果的销售量为 33 千克.

九年级上册数学教学计划

九年级上册数学教学计划

九年级上册数学教学计划王晓凤 2012、9一、教学任务九年义务教育三年制课程标准实验教科书数学九年级上册。

二、教学目标1、通过本期教学完成初中数学九年级上册的新课教学。

2、在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

三、指导思想九年级数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。

通过九年级数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

四、教学对象简介本学期我继续担任165班的数学教学工作。

通过上学期的教学,学生的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力得到了发展与培养,学生由形象思维向抽象思维转变,抽象思维得到了较好的发展,但部分学生没有达到应有的水平,学生课外自主拓展知识的能力差,很少有学生具有课外阅读相关数学书籍的习惯,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面。

通过教育与训练培养,绝大部分学生能够认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进行学习与思考,学生的学习兴趣得到了激发和进一步的发展,课堂整体表现较为活跃,积极开动脑筋,乐于合作学习和善于分享交流在学习中的发现与体会,喜欢动手实践。

本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的创新精神和实践能力;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。

五、教材分析本教材共有五章。

其中第一章一元二次方程;第二章命题与证明;第三章图形的相似;第四章锐角三角函数;第五章频率的计算。

初中九年级上册数学知识点总结

初中九年级上册数学知识点总结

九年级上册数学知识点总结归纳1 第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章 一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去x +4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 建立一元二次方程模型
教学目标
1、知识与技能:了解一元二次方程的概念;一般式ax2+b x+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.
2、过程与方法:通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
3、态度、情感、价值观:通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
教学重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.教学难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教具:课件、多媒体展台
教学方法:讲练结合、点拨与讨论结合
学具:
教学过程及教学内容设计:
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少?
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得________.
整理、化简,得:__________.
问题(2)如图,如果AC CB
AB AC
,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成a x2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成a x2+bx+c=0(a≠0)的形式.解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P4练习1、2
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式a x2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
教材P4习题1.1(A组和B组)。

相关文档
最新文档