第四章 无约束最优化方法

合集下载

第四章常用的无约束优化方法

第四章常用的无约束优化方法

教学重点
1.鲍威尔法 2.梯度法 3.牛顿法
2
机械优化设计
概述
一、无约束优化方法的数学模型 有约束优化问题模型
L min F ( X * ) = F ( x1,x2, ,xn ), X ∈ R n D : g j ( X ) ≥ 0 j = 1,2,L, m hk ( X ) = 0 k = 1, 2,L, l
12
机械优化设计
一、Powell基本算法 Powell基本算法 1)开始采用坐标轴方向; 开始采用坐标轴方向; 2)每轮迭代产生一个新方向取代原来的第一 方向, 轮迭代后可产生n个彼此共轭的方向; 方向,n轮迭代后可产生n个彼此共轭的方向; 若目标函数为正定二次函数, 3)若目标函数为正定二次函数,n轮结束后 即可到达最优点。 即可到达最优点。
r (k ) r (k ) r (k ) r (k ) r (k ) r (k ) S 1 , S 2 , . . . , S m -1 , S m + 1 , . . . , S n , S n + 1 ,
22
第k+1环的方向组为:
机械优化设计
给定X 给定 0,Si=ei i=1,2,…n, ε
Powell 修正算法
K=0 i=1 方向搜索得一维最优点X 自Xi-1始,沿Si方向搜索得一维最优点 i
N
若powell法中不 需要换向,则 是否仍为共轭 方向法? 检查两次前后 sn+1是否对函数 的海塞矩阵共 轭即可。
Y
i< n Xn-X0 ≤ε
i=i+1
Y
输出X*=Xn 输出 F*=F(X*) ( )
x2
x2
o
x1
(2)等值线为如图脊线时--无效 (2)等值线为如图脊线时--无效 -o

无约束优化方法

无约束优化方法

为了使目旳函数值沿搜索方向 f (xk ) 能够取得最大旳
下降值,其步长因子
应取一维搜索旳最佳步长。即有
k
f
( xk1)
f [xk
akf
( xk )]
min a
f [xk
af
( xk )]
min, ( ) a
根据一元函数极值旳必要条件和多元复合函数求导公式,得
'( ) f [ xk kf ( xk )] T f ( xk ) 0
第四章 无约束优化措施
第一节 概 述
数值解法:是从给定旳初始点x0出发,沿某一搜索方向d0
进行搜索。拟定最佳步长α,使函数值沿d0方向下降最大。 依此方式按下述公式不断进行,形成迭代旳下降算法。
x,k1 xk k d k (k 0,1, )
1)选择迭代方向即探索方向; 2)在拟定旳方向上选择合适步长迈步进行探索。 多种无约束优化措施旳区别就在于拟定其搜索方向dk旳措 施不同。所以搜索方向旳构成问题是无约束优化措施旳关键。
4)若 | xk1 xk | ,则停止迭代,
得最优解x* xk1;
否则,k k 1,转到第二步。
第四章 无约束优化措施
第二节 最速下降法
例:用最速下降法求目标函数 ,
f (x) x12 25x22
的极小点。
xk1 xk kf (xk )(k 0,1, )
第四章 无约束优化措施
解 取初始点 x0 [2,2]T f ( x0 ) 104
第四章 无约束优化措施
第四节 共轭方向及共轭方向法 •共轭方向旳形成
•格拉姆-斯密特向量系共轭化旳措施
i
d i1
vi1

dr i 1, r

最优化计算方法(工程优化)第4章

最优化计算方法(工程优化)第4章
f (x*) 0, 2 f x 正定,则 x 为 f (x) 的严格局部极小
点。
如果 2 f x 负定,则 x 为 f (x) 的严格局部极大点。
无约束优化的最优性条件----凸优化的一阶条件
定理(一阶充要条件)
设 f : Rn R 是凸函数且在 x 处连续可微,则 x 为 f (x)的全局极小点的充要条件是 f (x*) 0.
f (x p) f (x)+f (x)T p o( )
P是什么方向时,函数值 f (x p) 下降最快?也就是
p是什么方向时,f (x)T p 取得最小值?
f (x)T p f (x) p cos(f (x), p)
当 cos(f (x), p) 1 时,f (x)T p 最小,最小值为
令 f x 0, 即:
利用一阶条件 求驻点
利用二阶条件 判断驻点是否 是极小点
x12 1 0
x22
2x2
0
得到驻点: 1 1 1 1
x1
0 ,
x2
2 ,
x3
0
,
x4
2
.
无约束优化的最优性条件
函数 f x 的Hesse阵:
2
f
x
2x1
0
0
2
x2
2
利用二阶条件 判断驻点是否 是极小点
2 0
0 2
的行列式小于0;
x1, x4是鞍点;
2
f
x2
2 0
0
2
是正定矩阵;
x2 是极小点;
2
f
x3
2 0
0 2
是负定矩阵;
x3 是极大点。
• 对某些较简单的函数,这样做有时是可行的;

第4章 无约束优化方法

第4章  无约束优化方法




4 S 0 f X 0 2

0 则有 X 1 X 0 0 S 0 1 0 4 1 2 1 2
1 4




0

f X 1 1 4 0 2 1 2 0 2 1 4 0 1 2 0 4 1 4 0 f 0



5
还需继续迭代
(2)第二次迭代 同理有
1 1 1 f X , S 2 2 2 1 2 1 2 1 1 X X 1 S 1 0.5 2 0.5 2 1
4.2.3 变尺度法
基本思想: (1) 用简单矩阵代替二阶导数矩阵的逆矩阵 (2) 用坐标变换简化目标函数 引入矩阵变换U,令 X X k UY 代入式泰勒展开式得
T 1 T T 2 k k Y Y U f X UY f X UY f X k 2
2 f X k
S 2 f X k f X k

1

由此构成的算法称基本牛顿法,Sk 称牛顿方向。
分析可知: ⑴ 对于正定二次函数,Xk+1是精确极小点,方向 Sk 是直指函数的极小点。 ⑵ 用基本牛顿法求解正定二次函数时,无论从哪个初始 点出发,计算所得牛顿方向直指极小点,而且步长等于1。 ⑶ 对于一般非线性函数,点Xk+1只是原函数的一个近似极 小点。故将此点作为下一个迭代Xk+1。 ⑷ 但是对于非正定函数,由上式得到 的点Xk+1,不能始终保持函数的下降性,
1 0 0

04 无约束优化方法

04 无约束优化方法

F 1A C
向上的极小点,而非原函数的 -2 -1
0
1
2
3
x1
极小点。
解决办法:阻尼牛顿法。
7
二.阻尼牛顿法
1.迭代公式
沿牛顿方向-[H(X(k))]-1f(X(k))作一维搜索,迭代公式:
X (k1) X (k ) k [H ( X (k ) )]1f ( X (k ) )
其中λ k使
f ( X (k ) k s(k ) ) min f ( X (k ) k s(k ) )
S1
1 0 ,S2
0 1
正交不共轭
19
2.正定二次函数的特点
(1)正定二次二元函数的等值线是椭圆线簇,椭圆线簇的中心
即目标函数的极值点。
(2)过同心椭圆线簇中心作任意直线,此直线与诸椭圆交点处
的切线相互平行。
反之过两平行线与椭圆切点X(a)和
x2
X(b)的连线必通过椭圆的中心。因此
只要沿方向X(a)—X(b)进行一维搜索,
1、坐标轮换法具有程序简单,易于掌握的优点,但它的计
算效率较低,因此它虽然步步在登高,但相当于沿两个垂直方
向在爬山,路途迂迴曲折,收敛很慢,因此它适用于维数较低
(一般n<10)的目标函数求优。
2、有“脊线”的目标函数等值线的情形,沿坐标轴方向函数值
不一定下降。
脊线
x2
A
p
0
x1
13
五、练习 用最优步长法求解 f (X)=(x1-2)4+(x1-2x2)2的极小点。 初始点X(0)=[0,3]T,要求迭代一轮。 请注意沿坐标轴移动的方向。
22
二、迭代过程
以二维问题为例: ① X(0)

第四章 无约束方法

第四章 无约束方法

e2
e3
x1
x2
Powell修正算法:在构成第K+1 2015-6-23 18 法构造基本方向组。
二)Powell修正算法 2)Powell对基本算法的改进
在获得新方向构成新方向组时,不是轮换 地去掉原来的方向,而是经判别后,在n+1个 方向中留下最接近共轭的n个方向。 这样可以避免新方向组中的各方向出现 线性相关的情形,保证新方向组比前一方 向组具有更好的共轭性质。
x3
o
X0 e1 e2
s
e3
s2
e3,s1,s2
x1
x2
s3
Xn
15
2015-6-23
补充:共轭方向的基本概念
1)定义
设A为n*n阶正定对称矩阵, S1 , S 2 是两个n维 向量,若存在 T S1 AS2 0 则称 S1和S 2对A共轭。
例:
4
2 1 2
2 2 6 4 3
3
无约束优化问题是:
求n维设计变量 使目标函数
x [ x1 x2
f ( x ) min
xn ]
T
min f ( x)
x Rn
目前已研究出很多种无约束优化方法,它们的 主要不同点在于构造搜索方向上的差别。 (1)间接法(导数法)——确定搜索方向时用到一 阶或(和)二阶导数的方法。如梯度法、(阻尼) 牛顿法、变尺度法、共轭梯度法等。 (2)直接法——其搜索方向直接取定或由计算目标 函数值所得的信息来确定;即不使用导数信息,如 坐标轮换法、鲍威尔法等。
结 束
X0=X*
N
F3<F
1
Y
求Δ 及方向标号m
N Y

最优化方法_chapter4 无约束最优化方法

最优化方法_chapter4 无约束最优化方法

预备知识
本章开始讨论多维无约束最优化问题:
min f(X) 其中 f:Rn→R1.这个问题的求解是指在Rn中找一点X*, 使得对于任意的X∈Rn 都有,f(X*)≤f(X) ,成立,则点X* 就是问题的全局最优点。但是,大多数最优化方法只能求 到局部最优点,即在Rn中找到一点X*,使得f(X*)≤f(X)在 X*的某个领域中成立. 这个矛盾对于实际问题一般容易解决.根据问题的实 际意义多半可以判定用优化方法求出的局部最优解是否为 全局最优解.而在理论上这是个比较复杂的问题,本教材 不涉及.
✓ 有些无约束优化方法只需略加处理,即可用于求解约束 优化问题.
预备知识
无约束优化理论发展较早,比较成熟,方法也很 多,新的方法还在陆续出现.把这些方法归纳起来可 以分成两大类:
✓ 一类是仅用计算函数值所得到的信息来确定搜索方向, 通常称它为直接搜索法,简称为直接法
✓ 另一类需要计算函数的一阶或二阶导数值所得到的信息 来确定搜索方向,这一类方法称为间接法(解析法)
解:应沿由热变冷变化最剧烈(变化率最大)的地方 (即梯度方向)爬行。
设函数z=f (x,y)在点P(x,y)的某一邻域U(P)内有定义。
自点P引射线l。设x轴正向到射线l的转角为θ,并设
Pˊ(x+∆x,y+∆y) 为l上的另一点且Pˊ∈U(P).
考虑:limρ→0 (f(x+∆x,y+∆y)-f(x,y))/ρ。若此极限存在
特别是对于等值线(面)具有狭长深谷形状的函数, 收敛速度更慢.其原因是由于每次迭代后下一次搜索方 向总是与前一次搜索方向相互垂直,如此继续下去就产 生所谓的锯齿现象.
即从直观上看,在远离极小点的地方每次迭代可能 使目标函数有较大的下降,但是在接近极小点的地方, 由于锯齿现象,从而导致每次迭代行进距离缩短,因而 收敛速度不快.

四常用无约束最优化方法(精品PPT)

四常用无约束最优化方法(精品PPT)
(3)用终止准则检测是否满足:若满足,则打印最优
解 X k 1 ,f ( X k1 ) ,结束;否则,置 k k 1,转
(2).

最速下降法算法流程如图4.2所示.
Company Logo
最速下降法算 法流程如图所 示.
图4.2
开始 选定X0
f0 f (X0) g0 g(X0)
X ls(X 0 ,g0 )
Company Logo
§4.1 最速下降法
对于问题(4.1)为了求其最优解,按最优化算法的基
本思想是从一个给定的初始点
X
出发,通过基本迭代公
0
式 X k1 X k tk Pk,按照特定的算法产生一串
点列{X k } ,如果点列收敛,则该点列的极限点为问题
(4.1)的最优解.
一、最速下降法基本原理
1个迭代点
X
k
,即
1
X k1 X k tk f ( X k ) ,
其中步长因子 tk 按下式确定
也可记为
fin
t
f
(Xk
tf
(Xk
))

X k1 ls( X k , f ( X k )) . (4.3)
显然,令k 0, 1, 2, 就可以得到一个点列 X0, X1, X2 ,
g( X ) AX b ,(4.5)
因此,
gk g( X k ) AX k b.(4.6)
现在从X k 出发沿 g k 作直线搜索以确定 X k1 ,于是
X k1 X k tk gk , (4.7) 其中tk 是最优步长因子.
Company Logo
又因式(4.2),有 g( X k1 )T gk 0 ,再利用式

4 无约束最优化方法

4 无约束最优化方法
t 0
否 求p0= f ( x 0 )
||f ( x 0 )||
是 停止,输出x0
2 2 例 用最速下降法解 min f ( x1 , x2 ) x1 25 x2
初始点x 0 ( 2, 2)T ,终止误差 106
解: 1、目标函数的梯度 f ( x ) (2 x1 ,50 x2 )T
式中,称为最优步长因子,由以下一维 搜索确定:
f ( X k 1 ) f ( X k k f ( X k )) min f ( X k f ( X k )) min f ( )
根据极值的必要条件和复合函数的求导公式,可 得到 T
f ( X
k 1
) f ( X ) 0
停止,解题失败
牛顿法特点
如果f是对称正定矩阵A的二次函数,则用牛 顿法经过一次迭代就可达到最优点,如不是 二次函数,则牛顿法不能一步达到极值点, 但由于这种函数在极值点附近和二次函数很 近似,因此牛顿法的收敛速度还是很快的。 牛顿法的收敛速度虽然较快,但要求 Hessian矩阵要可逆,要计算二阶导数和逆 矩阵,就加大了计算机计算量和存储量。
牛顿法
牛顿法的搜索方向是根据目标函数的负梯度和 二阶导数矩阵构造的,称为牛顿方向。 Newton法基本思想:用探索点xk处的二阶 Taylor展开式近似代替目标函数,以展开式的 最小点为新的探索点。
S f ( X ) f ( X k )
k 2 k


1
X k 1 X k S k
解题步骤
(1) (2)
0 n 选定初始点 X E ,给定允许误差 0 ,令 k=0; k 2 k 1 k f X f X f X ,则 求 , ,检验:若

最新第4章无约束优化方法PPT课件

最新第4章无约束优化方法PPT课件
机械优化设计19第四章第四章无约束优化方法无约束优化方法第四节第四节共轭方向及共轭方向法共轭方向及共轭方向法??共轭方向的形成共轭方向的形成??格拉姆格拉姆斯密特向量系共轭化的方法斯密特向量系共轭化的方法20第四章第四章无约束优化方法无约束优化方法第四节第四节共轭方向及共轭方向法共轭方向及共轭方向法10g1221第四章第四章无约束优化方法无约束优化方法第五节第五节共轭梯度法共轭梯度法共轭梯度法
第机四械章优化设无计约束优化方法
第七节 坐标轮换法
基本思想:
每次仅对多元函数的一个变量沿其坐标轴进行 一维探索,其余各变量均固定不动,并依次轮换进行一

维探索的坐标轴,完成第一轮探索后再重新进行第二轮 探索,直到找到目标函数在全域上的最小点为止。
目的:将一个多维的无约束最优化问题,转化为一系
列的一维问题来求解。
第机四械章优化设无计约束优化方法
第六节 变尺度法(拟牛顿法)
DFP算法:
例 : 用 D F P 算 法 求 fx 1 ,x 2 x 1 2 2 x 2 2 4 x 1 2 x 1 x 2

的 极 值 解 。
H k 1 H k E k H k s s k T k s y k T k H y k k T y H ky k k T y H kk (k 0 ,1 ,2 , )
设法构造出一个对称正定矩阵 来H 代k 替 ,并 在迭G代( x过k )程1 中使 逐渐逼近 H,那k 么就简化G了(牛xk )顿1 法的计算,并且保持了牛顿法收敛快的优点。
变尺度法的
迭代公式:
x k 1 x k k H k fx k ( k 0 ,1 ,2)
第机四械优章化设无计约束优化方法
3)沿方向d k作,一维搜索得xk 1 xk k d k ; 4)判断收敛:若满足 f ( x(k 1) ) , 则令x* xk 1,f ( x* ) f ( xk 1),

最优化方法(刘)第四章

最优化方法(刘)第四章

阻尼牛顿法收敛定理
定理2: 设 f ( x) 二阶连续可微, 又设对任意的x0 ∈Rn , 存在常数m > 0, 使得 f ( x) 在 L ={x f (x) ≤ f (x0 )} 2 T 2 上满足: ∇ f ( x)µ ≥ m µ ,∀ ∈Rn , x∈L( x0 ) µ µ 则在精确线搜索条件下, 阻尼牛顿法产生的点列 {xk } 满足: (1) 当{xk } 是有限点列时, 其最后一个点为 f ( x) 的唯一极小点. (2)当{xk } 是无限点列时, 收敛到 f (x) 的唯一极小点.
) x0 = (9,1
T
g0 = ∇ ( x0 ) = (9,9) f
T
T 7.2 7.2 g0 g0 x = x0 − T g0 = 1 −0.8 g1 = −7.2 g0 G 0 g T 9×0.82 g1 g1 x2 = x − T g1 = 1 2 (−1 ×0.82 g1 G 1 g )
9 1 0 x = x0 −G g0 = − 1 1 0 9
1 − 0 −1
9 0 = = x* 9 0
牛顿法收敛定理
定理1: 设 f ( x) 二次连续可微, *是 f ( x) 的局 x 部极小点, f (x* ) 正定. 假定 f ( x) 的海色阵 ∇
gk →0 .
证明: 对于最速下降法, k = 0, 由以上定理立得. θ
收敛性分析
定理2: 设 f ( x) 二次连续可微, ∇2 f ( x) ≤ M, 且 其中 M是个正常数, 对任何给定的初始点 x0, 最速下降算法或有限终止, 或者lim f ( xk ) = −∞ ,
k→ ∞

第四章无约束优化方法

第四章无约束优化方法

F (X
(1) )
0
结论: 两个平行方向的极小点构成
即 S1T AS2 0
的新方向与原方向相互共轭 即S1与S2对A共轭
也即对于二维正定二次函数只要分别沿两个共轭方向寻优 14 即可找到最优点.
❖ 与此类似,可以推出对于n维正定二次函数,共轭方向的一 个十分重要的极为有用的性质:从任意初始点出发,依次沿 n个线性无关的与A共轭的方向S1,S2,…Sn各进行一维搜 索,那么总能在第n步或n步之前就能达到n维正定二次函数 的极小点;并且这个性质与所有的n个方向的次序无关。简 言之,用共轭方向法对于二次函数从理论上来讲,n步就可 达到极小点。因而说共轭方向法具有有限步收敛的特性。通 常称具有这种性质的算法为二次收敛算法。
第K+1环的方向组仍用老方向组
S1(k1),
S2(k 1) ,
... ...
S (k 1) n1
S (k 1) n
S1(k),
S2(k) ,
... ...
S(k) n1
,
S(k) n
初始点:
当F2 < F3时, 当F2≥F3时,
X (k 1) 0
X (k) n
X X (k 1)
(k)
0
n 1
F ( X ) 2 x12 x22 x1x127
4.2.1 鲍威尔基本算法(共轭方向的原始构成)
18
4.2.1 鲍威尔基本算法
x3
任取一初始点 X(0)→ X0(1)
第 第一环: e1, e2, e3 → S1 一 第二环: e2, e3 , S1 → S2 轮 第三环: e3 , S1 , S2 →S3
补上新增的方向
初始点:
X (k 1) 0

4 无约束最优化方法-直接搜索法

4 无约束最优化方法-直接搜索法

7)收缩:当 fn+2≥ f
G
时,则需收缩。 ( =0.5)
若 fn+2 < fH,则取收缩点Xn+4 : Xn+4 = Xn+1 + (Xn+2 – Xn+1)
fn+4 = f (Xn+4 )
否则,以XH代替上式中的Xn+2 , 计算收敛点Xn+4 : Xn+4 = Xn+1 + (XH – Xn+1) fn+4 = f (Xn+4 )
坐标轮换法(变量轮换法、交替法、降维法)
• 基本思想
将 n 维 无 约 束 优 化 问 题 转 化 为 n 个 沿 坐 标 轴 方 向 ei (i=1, 2, … , n)的一维优化问题来求解,并记完成n次一 维搜索为一轮。若一轮搜索后未得到满足精度要求的最优点, 则继续下一轮迭代搜索。如此反复,直至得到满足精度要求 的最优点为止。在每一轮搜索中,每次迭代仅对 n元函数的 一个变量沿其坐标轴方向进行一维搜索,其余 n-1个变量均 保持不变,再依次轮换进行一维搜索的坐标轴,直至完成沿 n个坐标轴方向的n次一维搜索。
若满足,则结束迭代计算,并输出 X * = XL 和 f 否则,转下一步。 5)计算除XH点外的各点的“重心” Xn+1 ,即 Xn+1 = (∑Xi –XH) / n
*
=f
L
计算反射点: Xn+2 = 2Xn+1 –XH

fn+2 = f (Xn+2 ) 当 f L ≤ fn+2 < fG 时,以Xn+2 代替XH , fn+2 代 替 fH ,构造新的单纯形,然后返回到 3)。

第四章无约束优化方法

第四章无约束优化方法

xik

xk i 1
aik dik
第k轮第I次的迭代方向,它轮流取n维坐标的单位向量。
0
...
dik
ei
1 ...
0
3.搜索步长的确定
关于

( i
k
)值通常有以下几种取法
(1)加速步长法
(2)最优步长法
最优步长法就是利用一维最优搜索方法来完
成每一次迭代,即
(2)扩张——在得到反射点X5之后,如果X5优于原单纯形的最劣 点(即有 f ( X 5 ) f ( X1) ),表明反射方向(X5—X1)是有利方
向适,当反的射距成 离功到。点若X6。进X一6称步之有为f (扩X张5 )点,f (求X扩2 )张,点可的沿过反程射称方之向为前扩进
张。扩张之后,若扩张点X6优于反射点X5,则扩张成功,以X6取代 X1,得新单纯形{X6,X2,X3};否则,扩张失败,舍弃扩张点,以反 射X5点取代X1,得新单纯形{X5,X2,X3}。
由于对称矩阵H在迭代过程中是不断修正改变的,它对于一 般尺度的梯度起到改变尺度的作用,因此H又称变尺度矩阵。
一、尺度矩阵的概念 变量的尺度变换是放大或缩小各个坐标。 通过尺度变换可以把函数的偏心程度降低到最低限度。
对于一般二次函数
f x 1 xTGx bT x c
2 如果进行尺度变换
xk 1

xk

f xk f xk
对于多元函数,在 xk 泰勒展开,得
f x x
f xk f xk T x xk 1 x xk T 2 f xk x xk 2 设 xk1 为函数的极小点,根据极值的必要条件
得出一维情况下的牛顿迭代公式????1kkkkfx???xxfx???对于多元函数在kx泰勒展开得??fx??x??????????????212ttkkkkkkfxfxxxxxfxxx????????设1kx?为函数的极小点根据极值的必要条件110??10kx??????????210kkkkfxfxxx??????????112kkkkxxfxfx??????????这是多元函数求极值的牛顿法迭代公式

运筹学-无约束最优化方法

运筹学-无约束最优化方法

§4 共轭方向法

对于简单的二次函数
任给一个初始向量x(0),沿着方向e1=(1,0,· · · ,0)T 进行搜索,即求解下面问题
min f1 (a1 ) ( x ( 0 ) a1e1 b)T ( x ( 0 ) a1e1 b)
a1
1 T 1 T x x b x c ( x b)T ( x b) c bT b 2 2
13
2.2 收敛性 1 整体收敛性 定理 2.1 设f(x)具有一阶连续偏导数,给定 x0∈Rn,假定水平集L={x∈Rn|f(x)≤f(x0)}0)=0; 或者(ii)

14

2 用于二次函数时的收敛速度
* T * * *
6
考虑无约束优化问题:
min f ( x ) n
xR
假设函数 f ( x ) 是一阶(或二阶)连续可微函数。
无约束最优化方法: 1.最速下降法 2.Newton法 3.共轭方向法和共轭梯度法 4.拟Newton法 DFP算法 Broyden族拟Newton法
7
若 z f ( x, y )在点M 0 ( x0, y0 )可微,则f ( x, y ) 在点M 0沿任一方向l 的方向导数都存在,且 z l
26
共轭方向法
将此过程进行下去有
x ( k ) (b 1,
(1) , bk , xk 1 , (1) T , xn ) .
x(k)是函数在{x(0) +a1e1+a2e2+· · · +akek,a1,a2· · · ,ak∈R} 中的极小点. 进行n步后有 x( n) (b 1, b2 , , bn )T b.
若Gk正定,则qk(x)有唯一极小点,该极小点即为 Newton法取的xk+1. 显然 0 qk ( xk 1 ) Gk ( xk 1 xk ) gk Newton迭代公式为

无约束优化方法(最速下降法_牛顿法)

无约束优化方法(最速下降法_牛顿法)

第四章 无约束优化方法——最速下降法,牛顿型方法概述在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这种最优化问题为无约束优化问题。

尽管对于机械的优化设计问题,多数是有约束的,无约束最优化方法仍然是最优化设计的基本组成部分。

因为约束最优化问题可以通过对约束条件的处理,转化为无约束最优化问题来求解。

为什么要研究无约束优化问题?(1)有些实际问题,其数学模型本身就是一个无约束优化问题。

(2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。

(3)约束优化问题的求解可以通过一系列无约束优化方法来达到。

所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。

根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。

一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。

二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯形法等。

无约束优化问题的一般形式可描述为:求n 维设计变量 []12Tn n X x x x R =∈使目标函数 ()min f X ⇒目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。

无约束优化问题的求解: 1、解析法可以利用无约束优化问题的极值条件求得。

即将求目标函数的极值问题变成求方程0)(min *=X f的解。

也就是求X*使其满足解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值点。

但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性的,很难用解析法求解,要用数值计算的方法。

由第二章的讲述我们知道,优化问题的一般解法是数值迭代的方法。

因此,与其用数值方法求解非线性方程组,还不如用数值迭代的方法直接求解无约束极值问题。

2、数值方法数值迭代法的基本思想是从一个初始点)0(X出发,按照一个可行的搜索方向)0(d搜索,确定最佳的步长0α使函数值沿)0(d 方向下降最大,得到)1(X 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的唯一极小点. (2)当xk 是无限点列时, 收敛到 f x 的唯一极小点.
阻尼牛顿法收敛定理
定理3: 设 f x 二阶连续可微, 又设对任意的x0 R n , 存在常数m 0, 使得 f x 在 L x f x f x0 2 T 2 上满足: f x m , R n , x Lx0 则在Wolfe不精确线搜索条件下,阻尼牛顿法 产生的点列xk 满足:
T d0 9,9 d1 7.2, 7.2 d0 d1 0 T T
收敛性分析 定理1: 设f x 在 L x R f x f x
n 0
上存在且一致连续, 则最速下降法产生的序列 满足或者对某个 k 有 g k 0, 或者 f xk ,
T k
Step6: 若 g k 1 2 , 停; Step7: 令 k k 1, 转Step1; Step8: 令d k g k , 转Step5; Step9: 令 d k d k , 转Step5.
例3: 用带保护的牛顿法求解:
min f x x x1 x2 1 x2
n
Step3: 否则计算 Gk , 并且求解方程
Gk d k g k , 得出d k .
Step4: 令 xk 1 xk d k , 转步2.
பைடு நூலகம்
例1: 用牛顿法求解:
1 2 9 2 min f x x1 x2 2 2 x1 1 解: g x 9 x Gx 0 2
充分靠近 x * 时, 对于一切 k , 牛顿迭代有意义, * 迭代序列xk 收敛到 x ,并且具有二阶收敛速度.
牛顿法优点
(1) 如果 G * 正定且初始点选取合适, 算法 二阶收敛. (2) 对正定二次函数,迭代一次就可以得到 极小点.
牛顿法缺点
(1) 对多数问题算法不是整体收敛的. (2) 每次都需要计算Gk , 计算量大. (3) 每次都需要解 Gk d g k ; 方程组有时奇异或病态的, 无法确定d k , 或 d k 不是下降方向. (4) 收敛到鞍点或极大点的可能性并不小.
T 显然当 cos 1 时, k d k 取极小值. g 因此: d k g k
结论: 负梯度方向使 f x 下降最快, 亦即最速 下降方向.
最速下降法算法
Step1: 给出 x0 R ,0 1, k : 0 Step2: 计算f xk , 如果 f xk , 停.
k
证明: 用以上的结论:
1 f xk f xk 1 gk 2M
2
最速下降法优点
(1) 程序设计简单,计算量小,存储量小, 对初始点没有特别要求. (2) 有着很好的整体收敛性,即使对一般的 目标函数,它也整体收敛.
最速下降法缺点
(1) 最速下降法是线性收敛的,并且有时是 很慢的线性收敛. 原因: d k g k 仅反映 f x 在 xk 处 ① 的局部性质. T g k 1d k 0 , 相继两次迭代中搜索 ② 方向是正交的.
小结
(1) 最速下降法是基本算法之一,而非有效 的实用算法. 最速下降法的本质是用线性函数来近似 目标函数, 要想得到快速算法,需要考 虑对目标函数的高阶逼近.
§ 4.2 牛顿法
基本思想
利用目标函数 f x 在点 xk 处的二阶Taylor 展开式去近似目标函数, 用二次函数的极小点 去逼近目标函数的极小点.
Gk 2 f xk 满足Lipschitz条件,即存在
0, 使得对于所有1 i, j n 有:
Gij x Gij y x y , x, y R n
1
其中 Gij x 是海色阵 Gk 的 i, j 元素. 则当 x0
9 0.8k , k 1, 2, xk k 1 xk 1 x* xk 1 lim 0.8 分析: lim (1) k * k xk xk x
因此: 最速下降法是整体收敛的, 且是线性收敛的. (2) 两个相邻的搜索方向是正交的.
算法构造
问题: 如何从 xk xk 1 ? 海色阵 Gk f xk 正定.
2
x 设 f x 二阶连续可微, k R , g k f xk ,
n
T f x f xk x xk qk x f k g k x xk 1 T x xk Gk x xk 2 因为Gk 正定, qk x 有唯一极小点, 则 用这个 极小点作为 xk 1.
0 x1 , f x1 0 1 1 0 1 第二次迭代: g1 , G1 0 1 2 2 1 而:d1 G1 g1 1 2 2 T 使 g1 d1 2 0, 故令 d1 1 1 沿d1 进行线搜索, 得出1 0.3479422, 0.6958844 于是: x2 1.3479422 f x2 0.5824451 7 0.73 10 此时: g 2 0
特别当:d k g k
T gk gk k T g k Ggk
例1: 用最速下降法求解:
1 2 9 2 min f x x1 x2 2 2 x1 1 解: g x 9 x Gx 0 2 x0 9, 1
g k 0.
证明: 对于最速下降法, k 0,由以上定理立得.
收敛性分析
定理2: 设 f x 二次连续可微, 2 f x M , 且 其中 M 是个正常数, 对任何给定的初始点 x0 , 最速下降算法或有限终止, 或者lim f xk ,
k
或者 lim g k 0.
lim f xk 0
且 xk 收敛到 f x 的唯一极小点.
k
例2: 用阻尼牛顿法求解:
min f x x x1 x2 1 x2
4 1 2
x0 0, 0
T
0 0 1 解: g 0 G0 2 1 2 2 1 1 显然 G0 不是正定的, 但:G0 1 0 2 1 d 于是, 0 G0 g 0 0 沿方向 d 0 进行线搜索,f x0 d 0 16 4 1,
阻尼牛顿法收敛定理
定理2: 设 f x 二阶连续可微, 又设对任意的x0 R n , 存在常数m 0, 使得 f x 在 L x f x f x0 2 T 2 上满足: f x m , R n , x Lx0 则在精确线搜索条件下, 阻尼牛顿法产生的点列 xk 满足: (1) 当xk 是有限点列时, 其最后一个点为 f x
9 1 x1 x0 G g 0 1 0
1 0
x0 9, 1
0 9
0 9
1
T
x 0,0
*
T
9 0 * x 9 0
牛顿法收敛定理
定理1: 设 f x 二次连续可微, * 是 f x 的局 x 部极小点, f x* 正定. 假定 f x 的海色阵
阻尼牛顿法算法
Step1: 给出 x0 R ,0 1, k : 0 Step2: 计算f xk , 如果 f xk , 停.
n
Step3: 否则计算 Gk , 并且求解方程
Gk d g k , 得出d k .
Step4: 沿 d k 进行线搜索, k . 得出 Step5: 令 xk 1 xk k d k , 转Step2.
得其极小点 0 0. 从而迭代不能继续下去.
带保护的牛顿法算法
x0 R n , 1 , 2 , k : 0 给出
Step1: 若 Gk 为奇异的,转Step8,否则, Step2: 令 d k Gk1 g k , T g k d k 1 g k d k , 则转Step8,否则, Step3: 若 Step4: 若 g d k 1 g k d k , 则转Step9,否则, Step5: 沿方向 d k 进行线搜索, 求出 k , 并令 xk 1 xk k d k .
所以要求: qk xk 1 0
即:Gk xk 1 xk g k 0 因此: xk 1 xk G g
1 k k
这就是牛顿法迭代公式. 注: 这里 k 1, d k G g .
1 k k
牛顿法算法
Step1: 给出 x0 R ,0 1, k : 0 Step2: 计算f xk , 如果 f xk , 停.
第四章 无约束最优化方法
§ 4.1 最速下降法
问题提出
问题: 在点 xk 处, 沿什么方向 d k , f x 下降最快? 分析:f xk dk f xk g d o dk 0
T k k
考查: g d g k d k cos
T k k
4 1 2
x0 0, 0
T
0 0 1 解: g 0 G0 2 1 2 2 1 1 显然 G0 不是正定的, 但:G0 1 0 2 1 d 于是, 0 G0 g 0 0 0 T g d 因为, 0 d 0 0, 故令, 0 g 0 2 , 1 沿 d 0 进行线搜索得: 0 , 2
Gill-Murray稳定牛顿法
当 Gk 正定时, 总有Cholesky分解:
Gk Lk Dk LT k
当 Gk 不是正定时, Gill-Murray(1974)提出了 使得: 强迫正定的修改Cholesky分解,
相关文档
最新文档