电子管功放电路大全
807电子管功放电路图大全(十款模拟电路设计原理图详解)
807电子管功放电路图大全(十款模拟电路设计原理图详解)807电子管功放电路图(一)FU-7(807)大功率电子管是目前国内拥有量最多,且价格最便宜,用它制作的纯电子管后级,其音质可同EL-34相比美,远胜于6P3P(6L6)制作的功放。
功放线路如图1电源电路如图2。
第一级采用一只6N11(6DJ8)作并联推挽式电路放大,这种电路是电子管所特有的,高频响应极好。
直接耦合到下一级,第二级是用6N1(6DJ8)构成长尾式倒相电路(共阴级负载倒相)。
这种倒相电路相比分负载倒相式电路音质要好的多,且有约17db的增益。
第三级是用6N1构成的阴极输出去推动末级的807大功率管。
807电子管功放电路图(二)FU-7推动的胆机功放电路图+电源电路图自制一款优质的胆功放,其电路原理如图1所示。
供电电路如图2所示。
推挽输出变压器制作原理如图3所示。
该机的谐波失真为0.3%时,输出功率为lOW。
通频带从15H:-22kHz。
另装有音质调节电路。
制作要点:(1)选择设计优良的电路图;(2)选择优质的元器件;(3)有一只失真小、效率高的输出变压器,以及功率较大的电源变压器;(4)选择高性能的电子管,军用品更佳。
这台自制的优质胆功放,造价便宜。
变压器和电子管从旧货电子市场购买,多数是库存积压,也有拆机管。
购买电子管时,鉴别方法为灯丝不断、管子不漏气。
变压器购回后,按图2.图3重新绕制。
元器件选择:(1)功放级采用两只FU-7外型号为807;(2)倒相级采用6N8P; (3)前置放大及音质调节级采用6J1、6N1,该部分单独供电,并经严格隔离,尤其是6,11,最好单独加隔离罩,周边再加金属隔离板。
该电路所采用的电容,不允许漏电,尤其是推动功放管的两只0.47 w F栅极祸合电容,以及推动倒相级两只0.22 w F电容,这四只电容,不但参数要分别一致,而且耐压较高,该功放采用的是600V铁壳无极性电容。
音质调节电容最好用涤纶电容,不但耐压要高,误差要小,而且不允许有微小的漏电现象。
NE5532推动的电子管功放电路原理图
NE5532推动的电子管功放电路原理图
随着VCD机的出现和普及,胆机越来越受音响爱好者的青睐。
本文介绍一款用运放之皇NE5532推动的电子管功放,音质相当不错。
功放管选用曙光6P3PJ级束射四极管,输出功率在7W左右,可以满足一般家庭听音乐要求,电路非常简单,只要焊接无误,不需调试就可工作。
本机功放电路如图所示,电源电路如图所示。
电路原理不再阐述,其中灯丝6.3V电压由LM317T稳压后获得,也可接成如图所示恒流源电路,恒流源电路对延长灯丝寿命有利,但高度稍麻烦,R在1.5欧左右。
制作时耦合电容一定要选用优质CBB电容或钽电解电容,电阻除标明功率以外均选用0.25W金属膜电阻。
很多发烧友之所以不敢“染指”胆机,高压只是一个原因,更重要的是怕输出变压器缠。
电子管功放电路全集
电子管功放电路全集一.电子管差分放大电路,用的电子管有ECC83 pdf(12AX7)二.前级放大器电源电路图前级放大器电路如图1所示,左右声道完全相同。
它由两级电压放大加阴极输出器组成,V1为第一级电压放大。
现代数码音源CD、DVD的输出电压一般都在2V左右,信号从IN输入,经R1衰减,通过栅极防振电阻R 2加至V1栅极,V1将信号放大,然后从屏极取出放大后的信号电压经C1耦合到下一级。
W1为V1交流负载的一部分,又是V2的栅极回路,同时起着总音量的控制作用。
V2a为第二级电压放大,将放大后的信号电压直接送到V2b栅极,这就叫做直接耦合。
采用直接耦合的V2a 与V2b屏栅电位一致,在静态时足以使V2b管屏流截止而不工作,在动态时由于信号电压的加入,才能使V2b进人工作状态。
这种直接耦合,由于少用了一只耦合电容,不存在信号的电路损耗。
传输效率高,传真度好,减少了低频衰减,有利于改善幅频特性。
V1、V2a阴极电阻R4、R6都未并接旁路电容,有本级电流负反馈作用,能够提高音质、消除失真。
V2b为阴极输出器,把前级放大的音频信号电压从阴极引出,经C2传送给功率放大器。
阴极输出器具有非线性失真小,频率响应宽的特点,它没有放大作用,电压增益小于1,但它有一定的电流输出,有恒压输出特性,带负载能力很强,推动任何纯后级功率放大器从容不迫、轻松自如。
它的输入阻抗高,输出阻抗低,大约才几百欧姆,能和末级功放很好地匹配,即使用较长的信号线传输,也不会造成高频损失,抗干扰能力强,可以提高信噪比,提高音乐的纯度,音质较好。
一台靓声、工作稳定可靠的放大器,离不开优质的电源作保证,特别是前级放大器,对电源的品质要求相当高,不应有交流声和噪声,哪怕只有一丁点儿,经过功率放大后,都会产生可怕的声压级,会严重影响音质。
6922电子管前级放大器图2是前级放大器的电源电路图,高压部分采用晶体二极管作桥式整流,用扼流圈作n型滤波,电子管稳压供电。
高品质电子管功放电路大全适合胆机发烧友
SunAudio 2A3单端改进版,增强全面性,平衡性,提高低频速度力度。
KB)
2008-2-10 02:16
2A3推挽图纸,输出功率12W,THD=%
807/FU7单端,输出功率8W
KB)
2008-9-25 17:49
KT66单端,输出功率8W
KB)
2008-9-25 17:49
6146/FU46单端,输出功率8W
KB)
2008-9-25 16:44
6V6/6P6P单端,输出功率4W
805单端图纸,输出功率大于25W
KB)
2008-2-18 19:38
前级2(12AX7+6DJ8)
KB)
2007-4-6 16:22
前级电源1
KB)
2007-4-6 16:22
当前离线
nostalgia
精华
19
阅读权限
150
在线时间
6902 小时
最后登录
2010-6-16
新增一张300B图纸
KB)新增一张300B图纸
2008-1-22 03:44
注:本图为单声道设计
6550单端图纸1(三极管接法),输出功率8W
KB)
2008-2-10 15:15
纯真之源已改版实做,第二版各种功率管电路如下:
6550/KT88单端,输出功率
KB)
2008-9-25 22:27
6L6/6P3P单端,输出端,输出功率8W
KB)
2008-9-25 15:38
高品质电子管功放电路大全适合胆机发烧友
本贴图纸都经过实做验证,转载请注明出处。
6L6G(6P3P)推挽1,输出功率25W,THD=%
玩电子管功放需要知道的电路知识……
玩电子管功放需要知道的电路知识……桥式整流桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,常用来将交流电转变为直流电。
1原理桥式整流电路的工作原理如下:e2为正半周时,对D1、D3加正向电压,Dl、D3导通;对D2、D4加反向电压,D2、D4截止。
电路中构成e2、D1、Rfz 、D3通电回路,在Rfz 上形成上正下负的半波整流电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。
电路中构成e2、D2、Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。
如此重复下去,结果在Rfz 上便得到全波整流电压。
其波形图和全波整流波形图是一样的。
从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。
桥式整流是对二极管半波整流的一种改进。
半波整流利用二极管单向导通特性,在输入为标准正弦波的情况下,输出获得正弦波的正半部分,负半部分则损失掉。
桥式整流器利用四个二极管,两两对接。
输入正弦波的正半部分是两只管导通,得到正的输出;输入正弦波的负半部分时,另两只管导通,由于这两只管是反接的,所以输出还是得到正弦波的正半部分。
桥式整流器对输入正弦波的利用效率比半波整流高一倍。
桥式整流是交流电转换成直流电的第一个步骤。
桥式整流器 BRIDGE RECTIFIERS,也叫做整流桥堆。
桥式整流器是由多只整流二极管作桥式连接,外用绝缘塑料封装而成,大功率桥式整流器在绝缘层外添加金属壳包封,增强散热。
桥式整流器品种多,性能优良,整流效率高,稳定性好,最大整流电流从0.5A到50A,最高反向峰值电压从50V到1000V。
选择和运用需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。
如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。
半波整流半波整流是利用二极管的单向导电性进行整流的最常用的电路,常用来将交流电转变为直流电。
电子管功放 原理图
电子管功放原理图
抱歉,根据您的要求,以下是一份电子管功放的简化原理图说明,其中没有标题和相同文字的重复内容。
原理图中包含以下主要组件:
1. 电源输入:电源以直流方式输入功放电路。
2. 输入级:输入信号通过输入耦合电容C1进入第一级电子管,该电子管作为电压放大器。
3. 中间级:输出信号经过电感L1和耦合电容C2传递到中间
级电子管,该电子管作为谐振器电路,提供反馈信号。
4. 输出级:信号经过电感L2和耦合电容C3进一步放大,驱
动输出电路。
5. 输出电路:输出电压通过输出变压器传送到负载,提供所需功率。
6. 反馈回路:输出信号通过电感L1和反馈耦合电容C2回馈
到中间级电子管,实现稳定的放大效果。
此外,还有一些辅助组件,如电源滤波电容C4、C5和滤波电
阻R1,用于消除电源中可能的噪音和纹波。
以上是电子管功放的简化原理图描述,以及其中的组件说明。
电子管功放电路大全
电子管功放电路大全
————————————————————————————————作者:————————————————————————————————日期:
本贴图纸都经过实做验证,转载请注明出处。
6L6G(6P3P)推挽1,输出功率25W,THD=0.3%
EL84(6P14)推挽,输出功率15W
前级1(12AX7+12AU7)
前级2(12AX7+6DJ8)
前级电源1
2#
新增一张300B图纸
注:本图为单声道设计
6550单端图纸1(三极管接法),输出功率8W
纯真之源已改版实做,第二版各种功率管电路如下:6550/KT88单端,输出功率13.5W
6L6/6P3P单端,输出功率7W
EL34单端,输出功率8W
807/FU7单端,输出功率8W
KT66单端,输出功率8W
6146/FU46单端,输出功率8W
6V6/6P6P单端,输出功率4W
805单端图纸,输出功率大于25W
811单端图纸,输出功率14W
SunAudio 2A3单端改进版,增强全面性,平衡性,提高低频速度力度。
2A3推挽图纸,输出功率12W,THD=0.24%
高品质电子管功放电路大全-适合胆机发烧友。
6P3P单端A类电子管功放电路图
6P3P单端A类电子管功放电路图作者:日期:2010-2-26 12:37:26 人气:397 标签:单端A类电子管功放电路图1.输入电压放大级SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。
电路见图。
VT1、VT2直流通路串联。
VT1构成普通的三极管共阴放大器,VTr2构成阴极输出器,对VT1而言VT2是一个带电流负反馈的高阻负载。
音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。
进入后级电路。
vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。
同时,VTl、VT2交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为“并联”,相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。
又因为VT1、VT2对R4负载来说是推挽工作,输出电流增大一倍,失真也有所降低。
C1是VTl的阴极交流旁路电容。
避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3的驱动能力。
R3上的压降2.6V,作为VT1的栅负偏压,此负压比现代数码音源输出信号振幅大1.5V,避开了6N3动态阳一栅特性曲线的非线性部分。
输入级电压放大倍数为:A=u·R4/(Ri/2+R4)=35·360k/(5.8k/2+360k)≈35倍。
其中u为6N3放大系数,值为35;Ri为6N3内阻,值为5.8k.2.功率输出级功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源+B1直接相连。
这种接法的特点是:放大效率高。
能达到特性表中功放管所规定的输出功率。
R6为输出级阴极电阻,将输出级栅负压确定在-20V。
6P3P屏极电压为290V,栅负压为-20V,屏流为50mA,作A类放大,输出功率约为5 5W,基本满足一般家居环境放音的要求。
18W电子管+场效应管输出甲类功放电路
18W电子管+场效应管输出甲类功放电路
这是一款输出功率18W的甲类功放,末级采用电流串联负反馈电路(输出级自给偏压电阻两端旁路电容被取消),电气性能优越。
电路如图。
输入级为双三极管6N3,末级为6P1与IRF450共同输出。
双声道只需电子管三只,6N3与6P1都是花生管,场管IRF450
的市面折机品价位也十分低廉。
6N3的放大倍数μ=35,互导gm=5.9mA/V,共阴放大,6P1输出约4W,IRF450输出14W,共同输出18W。
IRF450可用其他场效应功率管代替,但其反向耐压必须大于500V,功耗大于10 0W。
本例IRF450工作电流113mA时,栅源压降3.5V,因此取R 5为68Ω(注意,不同场管数据会有所差异,应实测)。
若改变R6值,即可改变本机的输出功率。
但如果IRF450工作电流过大,容易引起自激。
输出变压器需自制,其铁心截面积S=10cm2,初次级匝数为14∶1,阻抗比为1560Ω∶8Ω,初级漆包线∮=0.29mm,绕210 0匝,次级线∮=1.00mm,绕150匝,不必分段绕制,就能取得良好效果。
注意,不要使铁片交叉,固定铁心的铁夹或铁板条不能继续使用,要用铝板重做。
铁心的三个柱面皆放一层牛皮纸做间隙层,确保铁心没有一点磁饱和,这样变压器失真才能减到最小,电感L铁心截面S=9cm2,漆包线∮=0.33mm,绕满即可,IR F450要用较大散热器以利散热。
本机无大环负反馈,瞬态响应良好,电路简捷。
需要注意的是6P1的工作电流,应使其为50mA。
需要调整的是R6的阻值,以定末级输出功率。
6p6p2p2300b电子管功放电路图
6p6p2p2300b电子管功放电路图6p6p电子管功放电路图下图是6J8P+6P6P的单端机原理图,每只6J8P推动一只6P6Po 来自音源的信号首先经过W1的调节后进入6J8P的栅极进行前级放大。
R1是6、J8P的阴极电阻,该电阻的大小决定着负栅压的高低,本机的取值为1kΩ,确保负栅压在-1.5V左右:R4是6J8P的阳极电阻取值为100kΩ,该电阻阻值选取对增益和高频特性都会有影响。
当然对于五极管来讲帘栅极电压的不同也会影响着本级的增益,可以根据实际需求严格按照手册上提供的参数制作。
此机制作时稍作了些改动,以获得稳定帘栅电压,改善非线性失真,同时也可以通过调整帘栅压来适当改变本级的电压增益。
经前级放大后的信号由C2耦合到功率放大级的6P6P的栅极,由于6P6P的负栅压较浅,需要的推动电压较低,所以将本机的前置放大和推动放大合并成一级,每个声道由一只6J8P完成了,功率放大级的6P6P采用了简单实用的“自给偏压”电路。
自给偏压电路有着自动调整工作点的功能,并且可以防止因阳极电压变化而造成的电流过载,工作较为稳定,音染少,换管子时不必再进行调整,但缺点是降低了功放管的输出功率。
R6为6P6P的阴极电阻,调整该电阻能够改变功率放管的工作电流及负栅压,建议大家按照手册中给出的工作电流进行调整,过大或过小的电流都是不好的。
本机设计的工作屏耗大约为6P6P最大屏耗的85%左右,既充分发挥6P6P的特性,又保证了该管的寿命。
栅负压的测量是:将红表笔接在功放管的8脚上,黑表笔接在功放管的5脚上,这时万用表的读数就是栅负压。
栅负压的数值与功放管的阴极对地的电压数值是相同的,只是阴极对地电压为正电压,栅极对阴极的电压为负电压。
R5为200kΩ,这个电阻为栅极电阻,栅负压的供给回路就是由该电阻担当的,同时该电阻与C2组成的RC网络又决定着前后级之间能传输的最低工作频率。
本机没有采用大环路电压负反馈,而是采用了单级电流串联负反馈电路,因为大环路负反馈虽然可以改善整机频响、改善整机失真、降低整机噪音等,但也会减弱声音的活力和音符跳动感。
电子管音调电路图大全(六款电子管音调电路原理图详解)
电子管音调电路图大全(六款电子管音调电路原理图详解)电子管音调电路图(一)有源中段音调控制电路电子管音调电路图(二)电子管双声道前级放大器电路原理图从所周知电子管前级放大器能对数码音源起到润色作用,它和晶体管功率放大器相搭配时,能改善数码音源带来的生硬感,使声音润化,并使音乐中的细节更加丰富,层次更加鲜明,音乐感、临场感加浓,达到完美而传神的境界。
电子管前级放大器的电路很多,每款电路都具有不同的特性。
本文介绍的双声道电子管前级放大器,是采用目前广为流行的二级SRPP 电路,该电路性能优越,保真度高,很适合现代各种数码音源的放音系统。
SRPP电路的全称为SeriesRegulatedPushPull,即串联式调整推挽电路。
该电路具有共阴极放大与阴极跟随器的双重优点,输入阻抗高,输出阻抗低,频率响应好,且频率越高,失真越小,高频放大线性极佳,这是其它电路难以达到的。
下图是电子管双声道前级放大器的电路图。
1.输入电压放大级本输入电压放大级由SRPP电路组成,采用高放大系数双三极电子管12AX7担任。
该管放大系数为100,电流为1.5mA。
用该管别成的前级电压放大器,其增益可达26dB。
本前级放大器的上边管屏极电压取320V,其中点电压应为电源电压的一半,即160V左右。
阴极电位较高。
双三极电子管12AX7与12AU7的阴极与灯丝间的耐压Efk为180V,故完全可以胜任。
如采用其它双三极电子管代用时,必须选用Efk>160V的才行,否则容易造成电子管阴极与灯丝间被击穿。
经放大后的音频信号,由12AX7双三极电子管的上边管阴极输出,输出阻抗仅为数百欧。
经放大后的信号经电容耦合后,输送到下一级。
并在前级电压放大级与输出级之间加入了频率均衡网络。
2,频率均衡网络下图是本机的频率均衡电路。
为了提高前级放大器的性能,故在输入电压放大级与输出级之间加入了由RC组成的频率均衡网络。
由于音频信号在传输网络中,存在着频率的衰减特性,使得传输信号随着频率的增加而衰减增大,产生了幅度畸度。
电子管胆机功放电路图
Brook-3B电子管前级放大器电路
输入与中间放大级
输入电压放大与中间电压放大级均采用五极电子管6SJ7改为三极电子管的形式,组成两级共阴极阻容耦合式放大电路,对于微弱信号的MIC与MAG磁性拾音系统的音源信号,通过输入切换开关由电子管6SJ7的栅极输入,进行两级放大后,将微弱的音频信号进行较大幅度地提升。
为了符合不同放音系统的重放音要求,在输入管阴极与中间放大管的屏极之间,增设了RC负反馈式频率补偿网络,分别由多档选择开关进行切换,使不同的音音量与响度控制器
由于人耳对低音频的听觉灵敏度较差,当音量控制器开得很小时,往往感到低音频的响度不足,因此需要增强低音频的输出来改善音质,起到音调自动补偿的作用。
特别对于磁性录音系统来说,因为低音频受到相当的衰减,因此适当增强低音频的输出是完全必要的。
对于低电平的音源信号,可以直接通过切换开关,直接输入到音量与响度控制器中,经过适当地调节与控制后输入到中间混合放大管的栅极。
中间混放与输出级
中间混合电压放大与输出级仍使用两只五极电子管6SJ7改为三极管,组成两级共阴极阻容耦合式放大电路,将前级输入的音频信号与中间直接输入的音频信号一同进行放大
为了提高中间放大级的电性能,在中间放大管6SJ7的阴极与输出级之间加有适当的级间负反馈,以改善放大器的频率响应特性。
输出端设有专门的输出电平控制与输出阻抗的调控装置,并通过输出端的多档切换开关进行选择,使得输出更符合与后级的匹配要求。
采用6n8P+EL156自制的电子管功放电路
采用6n8P+EL156自制的电子管功放电路下图是采用6n8P+EL156构成的功率放大器电路原理,笔者这台机器的所有参数都标注在图上,包括各点实测电压等等,基本是按照厂家推荐的单端甲类功放数据制作的。
本机线路简洁,爱好者只要按图焊接无误就可基本达到要求。
图中是一个声道的电路,另一声道完全相同。
本机采用两级放大,前级用6N8P并联,功放级用EL156管组成单端甲类放大电路。
通常前级包括前置放大与推动两级,以满足功放胆的推动要求。
然而EL156属高跨导、低栅压管,所以前置级与推动级合并为一级就可以了。
在Hi—Fi功放中,放大级数越少,信号在放大过程中的噪声、失真也越小。
前级放大管6N8P为双三级胆,采用并联方式,也可根据个人喜好更换成6N6等“小个头”,或其他个人音色喜好的前级管,使整机在视觉上更显个性,当然换管音色也会发生变化,总之,胆功放是个性的东西,音色的改变只要满足自己的喜好就行。
电源部分比较简单,笔者不再提供电源部分的原理图,这台机器采用了高、低压两只电源变压器,一只低压变压器提供6N8P和EL156的三组灯丝6. 3V绕组,另一只高压变压器提供整流管5Z8的一组灯丝5V绕组和两组450V/0.2A的高压绕组,然后由两只电感滤波后分别供给左右声道。
足够的灯丝预热对电子管的寿命有积极作用,所以开机时要先开低压开关,等电子管完全预热后再开高压开关,关机过程正好相反。
单端甲类胆机输出变压器的绕制要求是比较高的。
笔者这台机器上的4个变压器和2个电源滤波电感都是在深圳一家专业厂绕制的,数据、绕法由笔者提供,采用4夹3分层、交叉绕制,两只采用96#硅钢片制作的输出变压器,经测试各项指标达到设计要求,低频、中频、高频的方波测试也不错。
由于元件很少,本机采用了“搭棚焊”工艺,C1、C2、C3采用大家熟悉的红色“WIMA'’,C4、C5采用金属化无感涤纶电容。
关于胆机的布线、结构以及调试在很多文章中都有详细的介绍,本文就不再叙述。
电子管6N1制作小型胆机功放电路
这里介绍一种微型胆机,给小电视或小收音机或小CD做放大,而且电耗小,又有胆机味。
采用6N3做自动平衡倒相放大,6N1做甲乙类功放,可获得不失真功率1W,推动高灵敏度小音箱,有较好的音色,尤其是听人声—女生歌唱,比大胆机更有一番清丽的感觉。
本机的特点是:所有的变压器均采用代替品,不用专门绕制,价格十分低廉。
高压直接采用市电。
重量较轻。
一、变压器的替代品。
1.输入变压器B1为输入隔离变压器,目的是使输入信号与本机电源隔离。
可直接使用微型变压器—铁心外长3.5cm,高3cm,厚2cm的仪表变压器,初级220V,次级36V或12V以上的即可,使用时,以低压端为外信号输入,以高压端接内电路输入端。
2.输出变压器B2为输出变压器,采用的是微型带110V抽头的电源变压器。
次级为双3V。
铁心外长4.5cm,高4cm,厚2cm的小变压器。
购置这种小变压器时,要注意110V抽头与两端的直流电阻要接近。
3V端可接4Ω扬声器,6V端可接8Ω扬声器。
笔者采用6v端接4Ω小音箱一对,串联接法。
3.灯丝变压器灯丝变压器,采用10W的220V:7.5V的变压器。
市售小变压器一般没有次级6.3V变压器,有的是6V(空载),7.5(空载)变压器。
若采用6V变压器,接电子管灯丝后,会有0.5V—0.8V的压降,会使电子管阴极加热不足。
采用7.5V的变压器,灯丝电压过高,会降低电子管寿命。
本机采用给变压器初级串联电阻的方式进行降压,这样不仅可以较准确地使次级在负载下输出6.3v,而且会使灯丝具有软启动特性。
二、电路特点倒相采用自动平衡式,不需要调整。
输出管6N1阴极电阻上并联的电容,对高低音特性有影响,可根据音箱特性调整。
整流管前串联的电阻不能取消,以防止电源开通时,瞬间充电电流过大,烧毁整流管或烧保险。
三、电路图四、器件表元件功用R1 音量控制电位器,100K C1 输入耦合电容,0.01μ,100VR2 栅漏电阻500K C2 阴极旁路电容,10μ,25VR3 阴极电阻1K,2w C3 倒相级供电滤波电解电容,10μ,400VR4R5 屏极负载电阻,150K,1w C4C5 功放栅极耦合电容,0.1μ,400VR6 倒相级供电滤波电阻,2k,1w C6 阴极旁路电容,10μ-50μ,25VR7R8 功放栅漏电阻,250k C8 功放屏极防震电容,2000P,600VR9 倒相电阻,100K C7C9 整流滤波电解电容,150μ,400VR10 功放阴极电阻,400Ω,2w C10 电源杂波滤波电容,0.1μ,600VR11 整流滤波电阻,500Ω,8W G1 6N3R13 灯丝变压器压降电阻500Ω,10w Z1 2A1000vR14 发光二极管限流电阻,数值根据二极管定。