大数据时代下的数据挖掘试题及答案
大数据分析与挖掘复习 题集附答案
大数据分析与挖掘复习题集附答案大数据分析与挖掘复习题集附答案一、选择题1. 数据挖掘的主要任务是:A. 模式发现和模型评估B. 数据收集和整理C. 数据分析和可视化D. 数据传输和存储答案:A2. 在数据挖掘过程中,数据预处理的目的是:A. 提取有价值的信息B. 去除异常值和噪声C. 构建合适的模型D. 优化数据存储结构答案:B3. 关联规则挖掘是指:A. 发现不同属性之间的关联关系B. 预测未来事件的发生C. 分析数据的变化趋势D. 构建数据的分类模型答案:A4. 在数据挖掘中,分类和聚类的主要区别在于:A. 数据来源的不同B. 目标的不同C. 算法的不同D. 结果的不同答案:B5. 大数据分析的核心挑战是:A. 数据存储和处理速度B. 数据质量和准确性C. 数据安全和隐私保护D. 数据可视化和展示答案:A二、填空题1. __________是指通过对海量数据进行深入分析和挖掘,从中发现有价值的信息。
答案:大数据分析与挖掘2. 在数据挖掘过程中,将数据按照一定的规则进行重新排列,以便更方便地进行分析和挖掘,这个过程称为__________。
答案:数据预处理3. 数据挖掘中的分类算法主要是通过对已有的样本进行学习和训练,从而预测新的样本所属的__________。
答案:类别4. 聚类算法是将相似的数据样本归为一类,不需要事先知道数据的__________。
答案:类别5. 在大数据分析中,数据的__________对于结果的准确性和可靠性至关重要。
答案:质量三、简答题1. 请简要说明大数据分析与挖掘的步骤和流程。
答:大数据分析与挖掘的步骤主要包括数据收集与清洗、数据预处理、模式发现、模型评估和应用。
首先,需要从各个数据源收集所需数据,并对数据进行清洗,去除异常值和噪声。
然后,通过数据预处理,对数据进行规范化、离散化等处理,以便于后续的分析和挖掘。
接着,利用合适的算法和技术,进行模式发现,例如关联规则挖掘、分类和聚类等。
《数据挖掘》试题与答案
一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。
流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。
2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。
若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。
3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。
由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。
假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。
3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。
数据挖掘考试题库及答案
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
大数据时代下的数据挖掘试题及答案..
《海量数据挖掘技术及工程实践》题目一、单选题(共80题)1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
A.数据清洗B.数据集成C.数据变换D.数据归约2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理3)以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。
(b)描述有多少比例的小偷给警察抓了的标准。
A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则7)下面哪种不属于数据预处理的方法? (D)A.变量代换B.离散化C.聚集D.估计遗漏值8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204,215 使用如下每种方法将它们划分成四个箱。
等频(等深)划分时,15在第几个箱子内?(B)A.第一个B.第二个C.第三个D.第四个9)下面哪个不属于数据的属性类型:(D)A.标称B.序数C.区间D.相异10)只有非零值才重要的二元属性被称作:( C )A.计数属性B.离散属性C.非对称的二元属性D.对称属性11)以下哪种方法不属于特征选择的标准方法: (D)A.嵌入B.过滤C.包装D.抽样12)下面不属于创建新属性的相关方法的是: (B)A.特征提取B.特征修改C.映射数据到新的空间D.特征构造13)下面哪个属于映射数据到新的空间的方法? (A)A.傅立叶变换B.特征加权C.渐进抽样D.维归约14)假设属性income的最大最小值分别是12000元和98000元。
《大数据时代下的数据挖掘》试题和答案及解析
《⼤数据时代下的数据挖掘》试题和答案及解析《海量数据挖掘技术及⼯程实践》题⽬⼀、单选题(共80题)1)( D )的⽬的缩⼩数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
A.数据清洗B.数据集成C.数据变换D.数据归约2)某超市研究销售纪录数据后发现,买啤酒的⼈很⼤概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. ⾃然语⾔处理3)以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓⼩偷,描述警察抓的⼈中有多少个是⼩偷的标准。
(b)描述有多少⽐例的⼩偷给警察抓了的标准。
A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC4)将原始数据进⾏集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘5)当不知道数据所带标签时,可以使⽤哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链6)建⽴⼀个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪⼀类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则7)下⾯哪种不属于数据预处理的⽅法? (D)A.变量代换B.离散化C.聚集D.估计遗漏值8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使⽤如下每种⽅法将它们划分成四个箱。
等频(等深)划分时,15在第⼏个箱⼦内?(B)A.第⼀个B.第⼆个C.第三个D.第四个9)下⾯哪个不属于数据的属性类型:(D)A.标称B.序数C.区间D.相异10)只有⾮零值才重要的⼆元属性被称作:( C )A.计数属性B.离散属性C.⾮对称的⼆元属性D.对称属性11)以下哪种⽅法不属于特征选择的标准⽅法: (D)A.嵌⼊B.过滤C.包装D.抽样12)下⾯不属于创建新属性的相关⽅法的是: (B)A.特征提取B.特征修改C.映射数据到新的空间D.特征构造13)下⾯哪个属于映射数据到新的空间的⽅法? (A)A.傅⽴叶变换B.特征加权C.渐进抽样D.维归约14)假设属性income的最⼤最⼩值分别是12000元和98000元。
大数据技术与数据挖掘技术测试 选择题 61题
1. 大数据的“4V”特征不包括以下哪一项?A. VolumeB. VelocityC. VarietyD. Visibility2. Hadoop的核心组件包括哪些?A. HDFS和MapReduceB. HDFS和YARNC. MapReduce和YARND. HDFS、MapReduce和YARN3. 在数据挖掘中,分类和聚类的主要区别是什么?A. 分类有监督,聚类无监督B. 分类无监督,聚类有监督C. 分类和聚类都是无监督D. 分类和聚类都是有监督4. 下列哪个不是数据仓库的特征?A. 面向主题B. 集成性C. 时变性D. 实时性5. 在数据挖掘中,关联规则挖掘的目的是什么?A. 发现数据集中的频繁项集B. 预测未来数据C. 分类数据D. 聚类数据6. 下列哪个算法是用于分类的?A. K-MeansB. AprioriC. Naive BayesD. PCA7. 在Hadoop中,HDFS的主要作用是什么?A. 数据处理B. 数据存储C. 资源管理D. 任务调度8. 数据挖掘中的“异常检测”主要用于什么?A. 发现数据中的异常模式B. 数据分类C. 数据聚类D. 数据关联9. 下列哪个工具不是用于大数据处理的?A. Apache SparkB. Apache FlinkC. Microsoft ExcelD. Apache Kafka10. 在数据挖掘中,决策树算法属于哪一类?A. 有监督学习B. 无监督学习C. 半监督学习D. 强化学习11. 下列哪个不是NoSQL数据库的类型?A. 键值存储B. 文档存储C. 关系型数据库D. 图形数据库12. 在数据挖掘中,支持度(Support)是用来衡量什么的?A. 规则的置信度B. 规则的普遍性C. 规则的准确性D. 规则的相关性13. 下列哪个算法是用于聚类的?A. K-Nearest NeighborsB. K-MeansC. Naive BayesD. Decision Tree14. 在Hadoop生态系统中,Hive的主要作用是什么?A. 数据存储B. 数据处理C. SQL查询D. 资源管理15. 数据挖掘中的“回归分析”主要用于什么?A. 预测数值型数据B. 分类数据C. 聚类数据D. 关联分析16. 下列哪个不是大数据处理框架?A. Apache HadoopB. Apache SparkC. Apache FlinkD. Apache Tomcat17. 在数据挖掘中,置信度(Confidence)是用来衡量什么的?A. 规则的普遍性B. 规则的置信度C. 规则的准确性D. 规则的相关性18. 下列哪个算法是用于关联规则挖掘的?A. AprioriB. K-MeansC. Naive BayesD. Decision Tree19. 在Hadoop中,YARN的主要作用是什么?A. 数据存储B. 数据处理C. 资源管理D. 任务调度20. 数据挖掘中的“时间序列分析”主要用于什么?A. 预测未来数据B. 分类数据C. 聚类数据D. 关联分析21. 下列哪个不是大数据的存储解决方案?A. HDFSB. Amazon S3C. Google Cloud StorageD. Microsoft SQL Server22. 在数据挖掘中,PCA(主成分分析)主要用于什么?A. 数据降维B. 数据分类C. 数据聚类D. 数据关联23. 下列哪个算法是用于异常检测的?A. Isolation ForestB. K-MeansC. Naive BayesD. Decision Tree24. 在Hadoop生态系统中,Pig的主要作用是什么?A. 数据存储B. 数据处理C. SQL查询D. 资源管理25. 数据挖掘中的“文本挖掘”主要用于什么?A. 分析文本数据B. 分类数据C. 聚类数据D. 关联分析26. 下列哪个不是大数据分析工具?A. TableauB. Power BIC. Microsoft WordD. QlikView27. 在数据挖掘中,SVM(支持向量机)主要用于什么?A. 数据分类B. 数据聚类C. 数据关联D. 数据降维28. 下列哪个算法是用于时间序列分析的?A. ARIMAB. K-MeansC. Naive BayesD. Decision Tree29. 在Hadoop生态系统中,HBase的主要作用是什么?A. 数据存储B. 数据处理C. SQL查询D. 资源管理30. 数据挖掘中的“推荐系统”主要用于什么?A. 个性化推荐B. 分类数据C. 聚类数据D. 关联分析31. 下列哪个不是大数据的计算框架?A. Apache HadoopB. Apache SparkC. Apache FlinkD. Apache Maven32. 在数据挖掘中,LDA(潜在狄利克雷分配)主要用于什么?A. 文本主题建模B. 数据分类C. 数据聚类D. 数据关联33. 下列哪个算法是用于推荐系统的?A. Collaborative FilteringB. K-MeansC. Naive BayesD. Decision Tree34. 在Hadoop生态系统中,Flume的主要作用是什么?A. 数据存储B. 数据处理C. 数据采集D. 资源管理35. 数据挖掘中的“社交网络分析”主要用于什么?A. 分析社交网络数据B. 分类数据C. 聚类数据D. 关联分析36. 下列哪个不是大数据的分析方法?A. 描述性分析B. 预测性分析C. 规范性分析D. 主观性分析37. 在数据挖掘中,GBDT(梯度提升决策树)主要用于什么?A. 数据分类B. 数据聚类C. 数据关联D. 数据回归38. 下列哪个算法是用于社交网络分析的?A. PageRankB. K-MeansC. Naive BayesD. Decision Tree39. 在Hadoop生态系统中,Sqoop的主要作用是什么?A. 数据存储B. 数据处理C. 数据迁移D. 资源管理40. 数据挖掘中的“图像挖掘”主要用于什么?A. 分析图像数据B. 分类数据C. 聚类数据D. 关联分析41. 下列哪个不是大数据的存储技术?A. HDFSB. CassandraC. MySQLD. Amazon DynamoDB42. 在数据挖掘中,CNN(卷积神经网络)主要用于什么?A. 图像识别B. 数据分类C. 数据聚类D. 数据关联43. 下列哪个算法是用于图像挖掘的?A. CNNB. K-MeansC. Naive BayesD. Decision Tree44. 在Hadoop生态系统中,Oozie的主要作用是什么?A. 数据存储B. 数据处理C. 工作流调度D. 资源管理45. 数据挖掘中的“语音识别”主要用于什么?A. 分析语音数据B. 分类数据C. 聚类数据D. 关联分析46. 下列哪个不是大数据的处理技术?A. MapReduceB. SparkC. FlinkD. Docker47. 在数据挖掘中,RNN(循环神经网络)主要用于什么?A. 序列数据分析B. 数据分类C. 数据聚类D. 数据关联48. 下列哪个算法是用于语音识别的?A. RNNB. K-MeansC. Naive BayesD. Decision Tree49. 在Hadoop生态系统中,ZooKeeper的主要作用是什么?A. 数据存储B. 数据处理C. 协调服务D. 资源管理50. 数据挖掘中的“情感分析”主要用于什么?A. 分析文本情感B. 分类数据C. 聚类数据D. 关联分析51. 下列哪个不是大数据的分析平台?A. Google BigQueryB. Amazon RedshiftC. Microsoft Azure SQL DatabaseD. Oracle Database52. 在数据挖掘中,LSTM(长短期记忆网络)主要用于什么?A. 序列数据分析B. 数据分类C. 数据聚类D. 数据关联53. 下列哪个算法是用于情感分析的?A. LSTMB. K-MeansC. Naive BayesD. Decision Tree54. 在Hadoop生态系统中,Kafka的主要作用是什么?A. 数据存储B. 数据处理C. 消息队列D. 资源管理55. 数据挖掘中的“生物信息学分析”主要用于什么?A. 分析生物数据B. 分类数据C. 聚类数据D. 关联分析56. 下列哪个不是大数据的分析技术?A. 数据可视化B. 数据挖掘C. 数据清洗D. 数据加密57. 在数据挖掘中,GAN(生成对抗网络)主要用于什么?A. 数据生成B. 数据分类C. 数据聚类D. 数据关联58. 下列哪个算法是用于生物信息学分析的?A. BLASTB. K-MeansC. Naive BayesD. Decision Tree59. 在Hadoop生态系统中,Mahout的主要作用是什么?A. 数据存储B. 数据处理C. 机器学习D. 资源管理60. 数据挖掘中的“网络安全分析”主要用于什么?A. 分析网络安全数据B. 分类数据C. 聚类数据D. 关联分析61. 下列哪个不是大数据的安全技术?A. 数据加密B. 数据脱敏C. 数据备份D. 数据压缩答案:1. D3. A4. D5. A6. C7. B8. A9. C10. A11. C12. B13. B14. C15. A16. D17. B18. A19. C20. A21. D22. A23. A24. B25. A26. C27. A28. A29. A30. A31. D32. A33. A34. C35. A36. D37. D38. A39. C40. A41. C42. A43. A44. C45. A46. D47. A48. A49. C50. A51. D53. A54. C55. A56. D57. A58. A59. C60. A61. D。
大数据挖掘及应用期末试题及答案
大数据挖掘及应用期末试题及答案一、概述大数据挖掘是指通过对大量数据的收集、整理和分析,从中发现有用的信息、模式和关联性。
在当今信息化时代,大数据挖掘已成为各行各业重要的工具和手段。
本文将介绍大数据挖掘的一些基本概念,并给出一份期末试题及答案作为例子。
二、大数据挖掘的基本概念1. 数据收集与整理大数据挖掘的第一步是收集和整理数据,这些数据可以来源于各种渠道,如社交媒体、传感器、日志文件等。
数据收集的质量和准确性对后续的挖掘过程至关重要。
2. 数据预处理大数据挖掘中,数据预处理是不可或缺的环节。
该过程主要包括数据清洗、缺失值处理、异常值检测和数据变换等。
通过数据预处理,可以提高挖掘结果的准确性和可信度。
3. 特征选择与提取在大数据挖掘中,一个重要的任务是选择和提取出对于挖掘目标最有用的特征。
这可以通过各种方法来实现,如信息增益、相关性分析、主成分分析等。
4. 数据挖掘算法大数据挖掘涉及多种挖掘算法,如聚类、分类、关联规则、时序分析等。
这些算法可以帮助挖掘出数据中的隐藏规律和模式。
5. 模型评估与优化挖掘得到的模型需要进行评估和优化,以保证其准确性和可靠性。
评估指标可以包括准确率、召回率、F1值等。
三、大数据挖掘及应用期末试题以下是一份大数据挖掘及应用的期末试题,供同学们进行自主学习和思考:试题一:数据清洗请简述数据清洗的作用,并列举三种常见的数据清洗方法。
试题二:特征选择假设你要对一家电商平台的用户进行分类,以便进行个性化推荐。
你会选择怎样的特征来进行分类?请简要说明你的理由。
试题三:聚类分析假设你正在研究一款新药的效果,并希望对病人进行分类。
请问聚类分析是否适用于这个场景?如果适用,请简要描述一下你会采用的聚类算法,并解释其原理。
试题四:关联规则挖掘你正在研究一家超市的销售情况,希望发现一些产品之间的关联规则。
请列举出一条可能的关联规则,并解释其意义。
四、大数据挖掘及应用期末试题答案答案一:数据清洗数据清洗是指对数据集中的异常值、噪声数据和缺失值进行处理,以提高数据质量和挖掘结果的准确性。
大数据技术与数据挖掘测试 选择题 61题
1题1. 大数据的“4V”特性不包括以下哪一项?A. VolumeB. VelocityC. VarietyD. Visibility2. 在数据挖掘中,以下哪种技术主要用于分类任务?A. 聚类分析B. 关联规则学习C. 决策树D. 主成分分析3. Hadoop生态系统中的哪个组件用于数据存储?A. HiveB. HBaseC. PigD. Sqoop4. 以下哪个不是大数据处理框架?A. Apache SparkB. Apache FlinkC. Apache KafkaD. Apache Tomcat5. 数据仓库的主要目的是什么?A. 实时数据处理B. 数据分析和报告C. 数据备份D. 数据加密6. 在数据挖掘中,Apriori算法主要用于哪种任务?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测7. 以下哪个工具不是用于大数据分析的?A. TableauB. SASC. ExcelD. R8. 数据预处理中的“数据清洗”主要目的是什么?A. 增加数据量B. 减少数据量C. 提高数据质量D. 数据加密9. 在Hadoop中,MapReduce的主要作用是什么?A. 数据存储B. 数据分析C. 数据传输D. 数据备份10. 以下哪个不是NoSQL数据库?A. MongoDBB. CassandraC. RedisD. Oracle11. 数据挖掘中的“监督学习”与“无监督学习”的主要区别是什么?A. 是否有标签B. 数据量大小C. 数据类型D. 数据来源12. 在数据挖掘中,K-means算法属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则13. 以下哪个是大数据分析的典型应用场景?A. 在线购物推荐B. 文字处理C. 图形设计D. 音乐播放14. 数据挖掘中的“特征选择”主要目的是什么?A. 增加特征数量B. 减少特征数量C. 增加数据量D. 减少数据量15. 在数据仓库中,ETL过程不包括以下哪一步?A. 抽取B. 转换C. 加载D. 分析16. 以下哪个不是数据挖掘的步骤?A. 数据收集B. 数据预处理C. 数据分析D. 数据存储17. 在数据挖掘中,“交叉验证”主要用于什么?A. 数据清洗B. 模型评估C. 数据加载D. 数据转换18. 以下哪个是大数据处理中的实时处理框架?A. Apache HadoopB. Apache SparkC. Apache HiveD. Apache HBase19. 数据挖掘中的“异常检测”主要用于什么?A. 发现数据中的异常值B. 数据分类C. 数据聚类D. 数据关联20. 在数据挖掘中,“回归分析”主要用于什么?A. 分类B. 聚类C. 预测数值D. 关联规则21. 以下哪个不是大数据存储解决方案?A. Amazon S3B. Google Cloud StorageC. Microsoft Azure Blob StorageD. Dropbox22. 数据挖掘中的“文本挖掘”主要用于什么?A. 处理结构化数据B. 处理非结构化数据C. 数据加密D. 数据备份23. 在数据挖掘中,“神经网络”属于哪种类型?A. 监督学习B. 无监督学习C. 半监督学习D. 强化学习24. 以下哪个是大数据分析中的可视化工具?A. Power BIB. MySQLC. JavaD. C++25. 数据挖掘中的“时间序列分析”主要用于什么?A. 分类B. 聚类C. 预测时间序列数据D. 关联规则26. 在数据挖掘中,“决策树”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则27. 以下哪个不是大数据分析的挑战?A. 数据质量B. 数据安全C. 数据量小D. 数据处理速度28. 数据挖掘中的“关联规则”主要用于什么?A. 分类B. 聚类C. 发现数据间的关联关系D. 数据加密29. 在数据挖掘中,“贝叶斯网络”属于哪种类型?A. 监督学习B. 无监督学习C. 半监督学习D. 强化学习30. 以下哪个是大数据分析中的机器学习框架?A. TensorFlowB. DockerC. KubernetesD. Jenkins31. 数据挖掘中的“聚类分析”主要用于什么?A. 分类B. 发现数据中的模式C. 回归D. 关联规则32. 在数据挖掘中,“支持向量机”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则33. 以下哪个不是大数据分析的数据源?A. 社交媒体B. 传感器数据C. 传统数据库D. 书籍34. 数据挖掘中的“主成分分析”主要用于什么?A. 分类B. 聚类C. 数据降维D. 关联规则35. 在数据挖掘中,“随机森林”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则36. 以下哪个是大数据分析中的数据集成工具?A. TalendB. HadoopC. SparkD. Kafka37. 数据挖掘中的“序列模式挖掘”主要用于什么?A. 分类B. 聚类C. 发现序列数据中的模式D. 关联规则38. 在数据挖掘中,“朴素贝叶斯”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则39. 以下哪个是大数据分析中的数据清洗工具?A. OpenRefineB. HadoopC. SparkD. Kafka40. 数据挖掘中的“关联规则挖掘”主要用于什么?A. 分类B. 聚类C. 发现数据间的关联关系D. 数据加密41. 在数据挖掘中,“逻辑回归”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则42. 以下哪个不是大数据分析的数据处理技术?A. 数据清洗B. 数据转换C. 数据加密D. 数据加载43. 数据挖掘中的“深度学习”主要用于什么?A. 分类B. 聚类C. 处理复杂数据D. 关联规则44. 在数据挖掘中,“K NN算法”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则45. 以下哪个是大数据分析中的数据可视化平台?A. D3.jsB. HadoopC. SparkD. Kafka46. 数据挖掘中的“时间序列预测”主要用于什么?A. 分类B. 聚类C. 预测未来数据D. 关联规则47. 在数据挖掘中,“集成学习”属于哪种类型?A. 分类B. 聚类C. 回归D. 关联规则48. 以下哪个是大数据分析中的数据存储技术?A. HDFSB. HadoopC. SparkD. Kafka49. 数据挖掘中的“异常检测”主要用于什么?A. 分类B. 聚类C. 发现异常数据D. 关联规则50. 在数据挖掘中,“关联规则学习”主要用于什么?A. 分类B. 聚类C. 发现数据间的关联关系D. 数据加密51. 以下哪个是大数据分析中的数据处理框架?A. Apache BeamB. HadoopC. SparkD. Kafka52. 数据挖掘中的“文本分类”主要用于什么?A. 分类B. 聚类C. 处理文本数据D. 关联规则53. 在数据挖掘中,“神经网络”主要用于什么?A. 分类B. 聚类C. 处理复杂数据D. 关联规则54. 以下哪个是大数据分析中的数据集成平台?A. InformaticaB. HadoopC. SparkD. Kafka55. 数据挖掘中的“序列模式挖掘”主要用于什么?A. 分类B. 聚类C. 发现序列数据中的模式D. 关联规则56. 在数据挖掘中,“朴素贝叶斯”主要用于什么?A. 分类B. 聚类C. 处理文本数据D. 关联规则57. 以下哪个是大数据分析中的数据清洗平台?A. TrifactaB. HadoopC. SparkD. Kafka58. 数据挖掘中的“关联规则挖掘”主要用于什么?A. 分类B. 聚类C. 发现数据间的关联关系D. 数据加密59. 在数据挖掘中,“逻辑回归”主要用于什么?A. 分类B. 聚类C. 回归D. 关联规则60. 以下哪个不是大数据分析的数据处理技术?A. 数据清洗B. 数据转换C. 数据加密D. 数据加载61. 数据挖掘中的“深度学习”主要用于什么?A. 分类B. 聚类C. 处理复杂数据D. 关联规则答案1. D2. C3. B4. D5. B6. C7. C8. C9. B10. D11. A12. B13. A14. B15. D16. D17. B18. B19. A20. C21. D22. B23. A24. A25. C26. A27. C28. C29. A30. A31. B32. A33. D34. C35. A36. A37. C38. A39. A40. C41. A42. C43. C44. A45. A46. C47. A48. A49. C50. C51. A52. A53. C54. A55. C56. A57. A58. C59. A60. C61. C。
数据挖掘测试题及答案
数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。
答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。
答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。
答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。
数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。
2. 描述什么是关联规则挖掘,并给出一个例子。
答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。
例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。
四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。
(2) 计算规则A => B的置信度。
答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。
(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。
五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。
答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。
- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。
- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。
数据挖掘测试题及答案
数据挖掘测试题及答案一、单项选择题(每题2分,共10题,共20分)1. 数据挖掘中,用于发现数据集中的关联规则的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:B2. 以下哪个选项不是数据挖掘的步骤之一:A. 数据预处理B. 数据探索C. 数据收集D. 数据分析答案:C3. 在分类问题中,以下哪个算法属于监督学习:A. 聚类B. 决策树C. 关联规则D. 异常检测答案:B4. 数据挖掘中,用于发现数据集中的频繁项集的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree5. 在数据挖掘中,以下哪个选项不是数据预处理的步骤:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:D6. 以下哪个算法主要用于聚类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:A7. 在数据挖掘中,以下哪个选项不是数据挖掘的应用领域:A. 市场分析B. 医疗诊断C. 社交网络分析D. 视频游戏开发答案:D8. 以下哪个算法主要用于异常检测:A. K-meansB. AprioriC. Naive BayesD. One-Class SVM答案:D9. 在数据挖掘中,以下哪个选项不是数据挖掘的输出结果:B. 规则C. 趋势D. 软件答案:D10. 以下哪个算法主要用于分类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:D二、多项选择题(每题3分,共5题,共15分)1. 数据挖掘中,以下哪些算法可以用于分类问题:A. K-meansB. Decision TreeC. Naive BayesD. Logistic Regression答案:BCD2. 在数据挖掘中,以下哪些步骤属于数据预处理:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:ABC3. 以下哪些算法可以用于聚类问题:A. K-meansB. AprioriC. Hierarchical ClusteringD. DBSCAN答案:ACD4. 在数据挖掘中,以下哪些步骤属于数据探索:A. 数据可视化B. 数据摘要C. 数据分类D. 数据变换答案:AB5. 以下哪些算法可以用于异常检测:A. K-meansB. One-Class SVMC. Isolation ForestD. Apriori答案:BC三、简答题(每题5分,共3题,共15分)1. 简述数据挖掘中关联规则挖掘的主要步骤。
数据挖掘及应用考试试题及答案
数据挖掘及应用考试试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于数据挖掘的主要任务?A. 分类B. 聚类C. 关联规则挖掘D. 数据清洗答案:D2. 数据挖掘中,以下哪项技术不属于关联规则挖掘的方法?A. Apriori算法B. FP-growth算法C. ID3算法D. 决策树算法答案:C3. 以下哪个算法不属于聚类算法?A. K-means算法B. DBSCAN算法C. Apriori算法D. 层次聚类算法答案:C4. 数据挖掘中,以下哪个属性类型不适合进行关联规则挖掘?A. 连续型属性B. 离散型属性C. 二进制属性D. 有序属性答案:A5. 数据挖掘中,以下哪个评估指标用于衡量分类模型的性能?A. 准确率B. 精确度C. 召回率D. 所有以上选项答案:D二、填空题(每题3分,共30分)6. 数据挖掘的目的是从大量数据中挖掘出有价值的________和________。
答案:知识;模式7. 数据挖掘的主要任务包括分类、聚类、关联规则挖掘和________。
答案:预测分析8. Apriori算法中,最小支持度(min_support)和最小置信度(min_confidence)是两个重要的参数,它们分别用于控制________和________。
答案:频繁项集;强规则9. 在K-means聚类算法中,聚类结果的好坏取决于________和________。
答案:初始聚类中心;迭代次数10. 数据挖掘中,决策树算法的构建过程主要包括________、________和________三个步骤。
答案:选择最佳分割属性;生成子节点;剪枝三、判断题(每题2分,共20分)11. 数据挖掘是数据库技术的一个延伸,它的目的是从大量数据中提取有价值的信息。
()答案:√12. 数据挖掘过程中,数据清洗是必不可少的步骤,用于提高数据质量。
()答案:√13. 数据挖掘中,分类和聚类是两个不同的任务,分类需要训练集,而聚类不需要。
大数据时代下的数据挖掘试题及复习资料
大数据时代下的数据挖掘试题及复习资料《海量数据挖掘技术及工程实践》题目一、单选题(共80题)1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
A.数据清洗B.数据集成C.数据变换D.数据归约2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理3)以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。
(b)描述有多少比例的小偷给警察抓了的标准。
A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则7)下面哪种不属于数据预处理的方法? (D)A.变量代换B.离散化C.聚集D.估计遗漏值8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204,215 使用如下每种方法将它们划分成四个箱。
等频(等深)划分时,15在第几个箱子内?(B)A.第一个B.第二个C.第三个D.第四个9)下面哪个不属于数据的属性类型:(D)A.标称B.序数C.区间D.相异10)只有非零值才重要的二元属性被称作:( C )A.计数属性B.离散属性C.非对称的二元属性D.对称属性11)以下哪种方法不属于特征选择的标准方法: (D)A.嵌入B.过滤C.包装D.抽样12)下面不属于创建新属性的相关方法的是: (B)A.特征提取B.特征修改C.映射数据到新的空间D.特征构造13)下面哪个属于映射数据到新的空间的方法? (A)A.傅立叶变换B.特征加权C.渐进抽样D.维归约14)假设属性income的最大最小值分别是12000元和98000元。
数据挖掘考试题及答案
数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 频繁项集B. 异常检测C. 聚类D. 预测答案:A4. 以下哪个指标用于评估分类模型的性能?A. 准确率B. 召回率C. F1分数D. 以上都是答案:D5. 在数据挖掘中,过拟合是指模型:A. 过于复杂,无法泛化到新数据B. 过于简单,无法捕捉数据的复杂性C. 无法处理缺失值D. 无法处理异常值答案:A6. 以下哪个算法是用于异常检测的?A. AprioriB. K-meansC. DBSCAND. ID3答案:C7. 在数据挖掘中,哪个步骤是用于减少数据集中的噪声和不相关特征?A. 数据预处理B. 数据探索C. 数据转换D. 数据整合答案:A8. 以下哪个是时间序列分析中常用的模型?A. 线性回归B. ARIMAC. 决策树D. 神经网络答案:B9. 在数据挖掘中,哪个算法是用于处理高维数据的?A. 主成分分析(PCA)B. 线性回归C. 逻辑回归D. 随机森林答案:A10. 以下哪个是文本挖掘中常用的技术?A. 词袋模型B. 决策树C. 聚类分析D. 以上都是答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘过程中可能涉及的步骤包括哪些?A. 数据清洗B. 数据转换C. 数据探索D. 模型训练答案:ABCD12. 以下哪些是数据挖掘中常用的数据预处理技术?A. 缺失值处理B. 特征选择C. 特征缩放D. 数据离散化答案:ABCD13. 在数据挖掘中,哪些因素可能导致模型过拟合?A. 训练数据量过少B. 模型过于复杂C. 训练数据噪声过多D. 训练数据不具代表性答案:ABCD14. 以下哪些是评估聚类算法性能的指标?A. 轮廓系数B. 戴维斯-邦丁指数C. 兰德指数D. 互信息答案:ABCD15. 在数据挖掘中,哪些是常用的特征工程方法?A. 特征选择B. 特征提取C. 特征构造D. 特征降维答案:ABCD三、简答题(每题10分,共30分)16. 简述数据挖掘中的“挖掘”过程通常包括哪些步骤。
大数据与数据挖掘考试题_《大数据时代下的数据挖掘》试题及答案
⼤数据与数据挖掘考试题_《⼤数据时代下的数据挖掘》试题及答案 -A.地址 C.情绪B.⾏为 D.来源70) 通过数据收集和展⽰数据背后的( D ),运⽤丰富的、具有互动性的可视化⼿段,数据新闻学成为新闻学作为⼀门新的分⽀进⼊主流媒体,即⽤数据报道新闻。
A.数据收集 C.真相B.数据挖掘D. 关联与模式71) CRISP-DM 模型中Evaluation表⽰对建⽴的模型进⾏评估,重点具体考虑得出的结果是否符合( C )的商业⽬的。
A.第⼆步 C.第⼀步B.第三步 D.最后⼀步72) 发现关联规则的算法通常要经过以下三个步骤:连接数据,作数据准备;给定最⼩⽀持度和( D ),利⽤数据挖掘⼯具提供的算法发现关联规则;可视化显⽰、理解、评估关联规则 A. 最⼩兴趣度 C. 最⼤⽀持度B. 最⼩置信度 D. 最⼩可信度73) 规则I->j,“有可能”,等于所有包含I的购物篮中同时包含J的购物篮的⽐例,为( B )。
A. 置信度 C. 兴趣度B.可信度D. ⽀持度74) 如果⼀个匹配中,任何⼀个节点都不同时是两条或多条边的端点,也称作( C )A. 极⼤匹配 C完美匹配B.⼆分匹配 D.极⼩匹配75) 只要具有适当的政策推动,⼤数据的使⽤将成为未来提⾼竞争⼒、⽣产⼒、创新能⼒以及( D )的关键要素。
A.提⾼消费B.提⾼GDPC.提⾼⽣活⽔平D. 创造消费者盈余76) 个性化推荐系统是建⽴在海量数据挖掘基础上的⼀种⾼级商务智能平台,以帮助( D )为其顾客购物提供完全个性化的决策⽀持和信息服务。
A.公司B.各单位C.跨国企业D. 电⼦商务⽹站77) 云计算是对( D )技术的发展与运⽤A.并⾏计算B.⽹格计算C.分布式计算D.三个选项都是78) ( B )是Google提出的⽤于处理海量数据的并⾏编程模式和⼤规模数据集的并⾏运算的软件架构。
A.GFSB.MapReduceC.ChubbyD.BitTable79) 在Bigtable中,( A )主要⽤来存储⼦表数据以及⼀些⽇志⽂件A. GFSB. ChubbyC.SSTableD.MapReduce⼆、判断题(共40题)1) 分类是预测数据对象的离散类别,预测是⽤于数据对象的连续取值。
数据挖掘与分析考试题库(含答案)
数据挖掘与分析考试题库(含答案)选择题1. 数据挖掘的主要功能是什么?A. 挖掘数据潜在的信息B. 对数据进行记录和处理C. 提高数据存储的效率D. 对数据进行分类和排序Answer: A2. 下列哪种算法不属于聚类算法?A. K-MeansB. BP神经网络C. DBSCAND. 层次聚类Answer: B3. 数据挖掘中使用最多的算法是什么?A. 决策树B. 关联规则C. 神经网络D. 贝叶斯Answer: A4. 数据挖掘的预处理不包括下列哪项?A. 数据压缩B. 数据清洗C. 数据变换D. 数据标准化Answer: A5. 下列哪项不是数据挖掘的步骤?A. 数据预处理B. 特征选择C. 模型评价D. 问题求解Answer: D填空题1. 数据挖掘的类型有分类、聚类和__________。
(回归)2. 决策树分类的根节点对应的是__________。
(最优属性)3. 聚类算法的优化目标是__________。
(最小化)4. 在SPSS Modeler中可以通过“数据变换”节点进行数据__________。
(离散化)5. 数据挖掘可以发现数据中的__________规律。
(潜在)论述题1. 请简要介绍数据挖掘的主要任务及其流程。
答:数据挖掘的主要任务是挖掘数据中潜在的信息,包括分类、聚类、关联规则等。
其流程通常包括数据预处理、特征选择、模型构建和模型评价等步骤。
其中,数据预处理是数据挖掘的重要步骤,包括数据清洗、数据变换、数据标准化等,主要是为了提高数据的质量和可用性。
特征选择是指选择最具有代表性的特征,以便于数据的分析和建模,主要是为了降低模型的复杂度和提高模型的精度。
模型构建是依据所选的算法来构建数据模型,包括决策树、神经网络、关联规则等。
模型评价则是通过对构建的模型进行测试和评价,以便于知道模型的优劣和改进方向。
2. 请论述聚类分析的常用算法及其优缺点。
答:聚类分析的常用算法包括K-Means、层次聚类和DBSCAN等。
大数据技术与数据挖掘考试 选择题 61题
1. 大数据的4V特征不包括以下哪一项?A. 大量性B. 高速性C. 多样性D. 价值性2. 数据挖掘的主要目的是什么?A. 数据清洗B. 数据存储C. 数据分析D. 数据可视化3. 下列哪个不是数据挖掘中的常用算法?A. 决策树B. 关联规则C. 线性回归D. 深度学习4. 在数据挖掘中,聚类分析属于哪一类任务?A. 描述性任务B. 预测性任务C. 分类任务D. 关联任务5. 下列哪个工具不是用于大数据处理的?A. HadoopB. SparkC. ExcelD. Hive6. 数据仓库的主要功能是?A. 数据清洗B. 数据集成C. 数据分析D. 数据存储7. 下列哪个不是NoSQL数据库的类型?A. 键值存储B. 文档存储C. 关系数据库D. 图形数据库8. 在数据挖掘中,Apriori算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测9. 下列哪个是Hadoop生态系统中的组件?A. TensorFlowB. KafkaC. MySQLD. Oracle10. 数据预处理中的数据清洗主要目的是?A. 去除噪声和不一致的数据B. 数据转换C. 数据集成D. 数据归约11. 下列哪个是大数据分析的步骤?A. 数据收集B. 数据存储C. 数据清洗D. 以上都是12. 在数据挖掘中,决策树算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 异常检测算法13. 下列哪个是Spark的主要组件?A. HDFSB. YARNC. Spark CoreD. MapReduce14. 数据挖掘中的K-means算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测15. 下列哪个是大数据处理平台?A. HadoopB. MySQLC. OracleD. SQL Server16. 数据挖掘中的神经网络算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 预测算法17. 下列哪个是数据仓库的特征?A. 面向主题B. 集成性C. 时变性D. 以上都是18. 在数据挖掘中,关联规则挖掘的目的是?A. 发现数据项之间的关系B. 分类C. 聚类D. 异常检测19. 下列哪个是NoSQL数据库的优势?A. 高可扩展性B. 强一致性C. 复杂查询D. 事务支持20. 数据挖掘中的异常检测算法用于?A. 发现异常模式B. 分类C. 聚类D. 关联规则挖掘21. 下列哪个是大数据分析的挑战?A. 数据质量B. 数据安全C. 数据处理速度D. 以上都是22. 在数据挖掘中,支持向量机算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 预测算法23. 下列哪个是大数据处理的关键技术?A. 分布式存储B. 分布式计算C. 数据挖掘D. 以上都是24. 数据挖掘中的贝叶斯分类算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测25. 下列哪个是大数据分析的应用领域?A. 金融B. 医疗C. 零售D. 以上都是26. 在数据挖掘中,主成分分析算法用于?A. 数据降维B. 分类C. 聚类D. 关联规则挖掘27. 下列哪个是大数据处理平台的特点?A. 高吞吐量B. 低延迟C. 高可靠性D. 以上都是28. 数据挖掘中的随机森林算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 预测29. 下列哪个是大数据分析的工具?A. TableauB. ExcelC. Power BID. 以上都是30. 在数据挖掘中,关联规则挖掘的常用度量标准是?A. 支持度B. 置信度C. 提升度D. 以上都是31. 下列哪个是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据处理D. 以上都是32. 数据挖掘中的KNN算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测33. 下列哪个是大数据分析的步骤?A. 数据收集B. 数据清洗C. 数据分析D. 以上都是34. 在数据挖掘中,朴素贝叶斯算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 预测算法35. 下列哪个是大数据处理平台的特点?A. 高可扩展性B. 高可靠性C. 高吞吐量D. 以上都是36. 数据挖掘中的Apriori算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测37. 下列哪个是大数据分析的挑战?A. 数据质量B. 数据安全C. 数据处理速度D. 以上都是38. 在数据挖掘中,决策树算法用于?A. 分类B. 聚类C. 关联规则挖掘39. 下列哪个是大数据处理的关键技术?A. 分布式存储B. 分布式计算C. 数据挖掘D. 以上都是40. 数据挖掘中的K-means算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 预测算法41. 下列哪个是大数据分析的应用领域?A. 金融B. 医疗C. 零售D. 以上都是42. 在数据挖掘中,主成分分析算法用于?A. 数据降维B. 分类C. 聚类D. 关联规则挖掘43. 下列哪个是大数据处理平台的特点?A. 高吞吐量B. 低延迟C. 高可靠性D. 以上都是44. 数据挖掘中的随机森林算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 预测45. 下列哪个是大数据分析的工具?A. TableauB. ExcelC. Power BID. 以上都是46. 在数据挖掘中,关联规则挖掘的常用度量标准是?B. 置信度C. 提升度D. 以上都是47. 下列哪个是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据处理D. 以上都是48. 数据挖掘中的KNN算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测49. 下列哪个是大数据分析的步骤?A. 数据收集B. 数据清洗C. 数据分析D. 以上都是50. 在数据挖掘中,朴素贝叶斯算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 预测算法51. 下列哪个是大数据处理平台的特点?A. 高可扩展性B. 高可靠性C. 高吞吐量D. 以上都是52. 数据挖掘中的Apriori算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 异常检测53. 下列哪个是大数据分析的挑战?A. 数据质量B. 数据安全C. 数据处理速度D. 以上都是54. 在数据挖掘中,决策树算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 预测55. 下列哪个是大数据处理的关键技术?A. 分布式存储B. 分布式计算C. 数据挖掘D. 以上都是56. 数据挖掘中的K-means算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 预测算法57. 下列哪个是大数据分析的应用领域?A. 金融B. 医疗C. 零售D. 以上都是58. 在数据挖掘中,主成分分析算法用于?A. 数据降维B. 分类C. 聚类D. 关联规则挖掘59. 下列哪个是大数据处理平台的特点?A. 高吞吐量B. 低延迟C. 高可靠性D. 以上都是60. 数据挖掘中的随机森林算法用于?A. 分类B. 聚类C. 关联规则挖掘D. 预测61. 下列哪个是大数据分析的工具?A. TableauB. ExcelC. Power BID. 以上都是答案:1. D2. C3. D4. A5. C6. B7. C8. C9. B10. A11. D12. A13. C14. B15. A16. D17. D18. A19. A20. A21. D22. A23. D24. A25. D26. A27. D28. A29. D30. D31. D32. A33. D34. A35. D36. C37. D38. A39. D40. B41. D42. A43. D44. A45. D46. D47. D48. A49. D50. A51. D52. C53. D54. A55. D56. B57. D58. A59. D60. A61. D。
数据挖掘考试题及答案
数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 序列模式B. 分类模式C. 频繁项集D. 聚类模式答案:C4. 以下哪个指标不是用于评估分类模型性能的?A. 准确率B. 召回率C. F1分数D. 马氏距离答案:D5. 在数据挖掘中,以下哪个算法是用于聚类的?A. K-meansB. 逻辑回归C. 随机森林D. 支持向量机答案:A6. 以下哪个选项不是数据挖掘过程中的步骤?A. 数据预处理B. 模式发现C. 结果评估D. 数据存储答案:D7. 在数据挖掘中,异常检测的主要目的是识别以下哪种类型的数据?A. 频繁出现的模式B. 罕见的模式C. 预测未来的数据D. 聚类的数据答案:B8. 以下哪个选项不是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据集成C. 数据变换D. 数据压缩答案:D9. 在数据挖掘中,以下哪个算法是用于特征选择的?A. 主成分分析B. 线性判别分析C. 支持向量机D. 决策树答案:D10. 以下哪个选项不是数据挖掘中常用的数据表示方法?A. 决策树B. 向量空间模型C. 邻接矩阵D. 频率分布表答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘中常用的聚类算法包括哪些?A. K-meansB. 层次聚类C. DBSCAND. 支持向量机答案:A、B、C12. 在数据挖掘中,以下哪些是关联规则挖掘的典型应用场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 社交网络分析答案:A、C13. 数据挖掘中,以下哪些是分类模型评估的常用指标?A. 准确率B. 召回率C. ROC曲线D. 马氏距离答案:A、B、C14. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征选择B. 特征提取C. 特征变换D. 数据清洗答案:A、B、C15. 数据挖掘中,以下哪些是数据预处理的常见任务?A. 缺失值处理B. 异常值检测C. 数据规范化D. 数据压缩答案:A、B、C三、简答题(每题10分,共30分)16. 请简述数据挖掘中分类和聚类的主要区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《海量数据挖掘技术及工程实践》题目一、单选题(共80题)1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
A.数据清洗B.数据集成C.数据变换D.数据归约2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题(A)3) A. 关联规则发现 B. 聚类4) C. 分类 D. 自然语言处理5)以下两种描述分别对应哪两种对分类算法的评价标准 (A)6) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。
7) (b)描述有多少比例的小偷给警察抓了的标准。
8) A. Precision,Recall B. Recall,Precision9) A. Precision,ROC D. Recall,ROC10)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务(C)11) A. 频繁模式挖掘 B. 分类和预测C. 数据预处理D. 数据流挖掘12)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离(B)13) A. 分类 B. 聚类C. 关联分析D. 隐马尔可夫链14)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务(C)建模描述 B. 根据内容检索 A. 15).16) C. 预测建模 D. 寻找模式和规则17)下面哪种不属于数据预处理的方法 (D)18) A.变量代换 B.离散化C.聚集D.估计遗漏值19)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204,215 使用如下每种方法将它们划分成四个箱。
等频(等深)划分时,15在第几个箱子内(B)20) A.第一个 B.第二个C.第三个D.第四个21)下面哪个不属于数据的属性类型:(D)22) A.标称 B.序数C.区间D.相异23)只有非零值才重要的二元属性被称作:( C )24) A.计数属性 B.离散属性C.非对称的二元属性D.对称属性25)以下哪种方法不属于特征选择的标准方法: (D)26) A.嵌入 B.过滤C.包装D.抽样27)下面不属于创建新属性的相关方法的是: (B)28) A.特征提取 B.特征修改C.映射数据到新的空间D.特征构造29)下面哪个属于映射数据到新的空间的方法 (A)30) A.傅立叶变换 B.特征加权C.渐进抽样D.维归约31)假设属性income的最大最小值分别是12000元和98000元。
利用最大最小规范化的方法将属性的值映射到0至1的范围内。
对属性income的73600元将被转化为:(D)32).33)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年级110人。
则年级属性的众数是: (A)34) A.一年级 B.二年级C.三年级D.四年级35)下列哪个不是专门用于可视化时间空间数据的技术: (B)36) A.等高线图 B.饼图C.曲面图D.矢量场图37)在抽样方法中,当合适的样本容量很难确定时,可以使用的抽样方法是: (D)38) A.有放回的简单随机抽样B.无放回的简单随机抽样C.分层抽样D 渐进抽样39)数据仓库是随着时间变化的,下面的描述不正确的是 (C)40)A.数据仓库随时间的变化不断增加新的数据内容41)B.捕捉到的新数据会覆盖原来的快照42)C.数据仓库随事件变化不断删去旧的数据内容43)D.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合44)下面关于数据粒度的描述不正确的是: (C)45)A.粒度是指数据仓库小数据单元的详细程度和级别46)B.数据越详细,粒度就越小,级别也就越高47)C.数据综合度越高,粒度也就越大,级别也就越高48)D.粒度的具体划分将直接影响数据仓库中的数据量以及查询质量49)有关数据仓库的开发特点,不正确的描述是: (A)50)A.数据仓库开发要从数据出发数据仓库使用的需求在开发出去就要明确B.51).,C.数据仓库的开发是一个不断循环的过程是启发式的开发52)数据仓库中,并不存在操作型环境中所固定的和较确切的处理流,53)D.在数据仓库环境中数据分析和处理更灵活,且没有固定的模式: (D),下面正确的是54)关于OLAP的特性共享性信息性55)(1)快速性 (2)可分析性 (3)多维性 (4) (5)A.(1) (2) (3) 56)B.(2) (3) (4) 57)C.(1) (2) (3) (4) 58)D.(1) (2) (3) (4) (5)59): (C)关于OLAP和OLTP的区别描述,不正确的是60) 61)主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同 ,OLTP应用程序包含大量相对简单的事务B.与OLAP应用程序不同62),但事务内容比较简单且重复率高63)的特点在于事务量大两者一样均来自底层的数据库系统但其最终数据来源与OLTP,64)是以数据仓库为基础的,面对的用户是相同的: (A) ,下列不正确的是OLAP65)关于和OLTP的说法但事务内容比较简单且重复率高66)事务量大, OLTP67)的最终数据来源与不一样 68)面对的是决策人员和高层管理人员69),是应用驱动的以应用为核心产生( C )个关联规则。
3}X={170)设,2,是频繁项集,则可由X71)项集的集合:72)考虑下面的频繁3-4,5}假定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含( C ),2,3,4 ,2,3,5 73).,2,4,5 ,3,4,5 ( C ) 不是s的子序列的是t74)下面选项中> 75)> 76)> 77)>78)79)在图集合中发现一组公共子结构,这样的任务称为 ( B )80)A.频繁子集挖掘 B.频繁子图挖掘C.频繁数据项挖掘D.频繁模式挖掘81)下列度量不具有反演性的是 (D)82)A.系数 B.几率度量 D.兴趣因子83)下列 ( A )不是将主观信息加入到模式发现任务中的方法。
84)A.与同一时期其他数据对比85)B.可视化86)C.基于模板的方法87)D.主观兴趣度量88)下面购物蓝能够提取的3-项集的最大数量是多少(C)TID项集牛奶,啤酒,尿布1面包,黄油,牛奶2牛奶,尿布,饼干3面包,黄油,饼干4啤酒,饼干,尿布5牛奶,尿布,6面包,黄油尿布,黄油,面包7.8啤酒,尿布牛奶,尿布,9面包,黄油啤酒,饼干1089)以下哪些算法是分类算法(B)90)以下哪些分类方法可以较好地避免样本的不平衡问题(A)D.神经网络91)决策树中不包含一下哪种结点 ( C )A.根结点(root node)B.内部结点(internal node)C.外部结点(external node)D.叶结点(leaf node)92)以下哪项关于决策树的说法是错误的 (C)A. 冗余属性不会对决策树的准确率造成不利的影响B. 子树可能在决策树中重复多次C. 决策树算法对于噪声的干扰非常敏感D. 寻找最佳决策树是NP完全问题93)在基于规则分类器的中,依据规则质量的某种度量对规则排序,保证每一个测试记录都是由覆盖它的“最好的”规格来分类,这种方案称为 (B)94)A. 基于类的排序方案95)B. 基于规则的排序方案96)C. 基于度量的排序方案97)D. 基于规格的排序方案。
(A)以下哪些算法是基于规则的分类器98).99)A. B. KNNC. Naive BayesD. ANN100)可用作数据挖掘分析中的关联规则算法有(C)。
A. 决策树、对数回归、关联模式101)B. K均值法、SOM神经网络C. Apriori算法、FP-Tree算法D. RBF神经网络、K均值法、决策树102)如果对属性值的任一组合,R中都存在一条规则加以覆盖,则称规则集R中的规则为( B )A.无序规则B.穷举规则C.互斥规则D.有序规则103)用于分类与回归应用的主要算法有: ( D )算法、HotSpot算法神经网络、K均值法、决策树均值法、SOM神经网络D.决策树、BP神经网络、贝叶斯40)如果允许一条记录触发多条分类规则,把每条被触发规则的后件看作是对相应类的一次投票,然后计票确定测试记录的类标号,称为(A)A.无序规则B.穷举规则C.互斥规则D.有序规则41)考虑两队之间的足球比赛:队0和队1。
假设65%的比赛队0胜出,剩余的比赛队1获胜。
队0获胜的比赛中只有30%是在队1的主场,而队1取胜的比赛中75%是主场获胜。
如果下一场比赛在队1的主场进行队1获胜的概率为 (C)以下关于人工神经网络(ANN)的描述错误的有 (A)A.神经网络对训练数据中的噪声非常鲁棒B.可以处理冗余特征C.训练ANN是一个很耗时的过程D.至少含有一个隐藏层的多层神经网络(A) 通过聚集多个分类器的预测来提高分类准确率的技术称为43).A.组合(ensemble)B.聚集(aggregate)C.合并(combination)D.投票(voting)44)简单地将数据对象集划分成不重叠的子集,使得每个数据对象恰在一个子集中,这种聚类类型称作( B )A.层次聚类B.划分聚类C.非互斥聚类D.模糊聚类45)在基本K均值算法里,当邻近度函数采用( A )的时候,合适的质心是簇中各点的中位数。
A.曼哈顿距离B.平方欧几里德距离C.余弦距离散度46)( C )是一个观测值,它与其他观测值的差别如此之大,以至于怀疑它是由不同的机制产生的。
A.边界点B.质心C.离群点D.核心点47)BIRCH是一种( B )。
A.分类器B.聚类算法C.关联分析算法D.特征选择算法48)检测一元正态分布中的离群点,属于异常检测中的基于( A )的离群点检测。
A.统计方法B.邻近度C.密度D.聚类技术49)( C )将两个簇的邻近度定义为不同簇的所有点对的平均逐对邻近度,它是一种凝聚层次聚类技术。
(单链)(全链)C.组平均方法50)( D )将两个簇的邻近度定义为两个簇合并时导致的平方误差的增量,它是一种凝聚层次聚类技术。
(单链)(全链)方法组平均C.51) 下列算法中,不属于外推法的是( B )。
A.移动平均法B.回归分析法C.指数平滑法D.季节指数法52) 关联规则的评价指标是:( C )。
A. 均方误差、均方根误差B. Kappa统计、显著性检验C. 支持度、置信度D. 平均绝对误差、相对误差53)关于K均值和DBSCAN的比较,以下说法不正确的是( A )。
均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。