概率论小论文Word版

合集下载

概率论文.doc

概率论文.doc

我眼中的概率论一.有关概率:1.概述概率论是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的。

在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。

随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。

每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。

又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。

大数定律及中心极限定理就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。

例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。

随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。

16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam o Cardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。

17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。

毕业论文.概率统计在生活中的应用Word版

毕业论文.概率统计在生活中的应用Word版

毕业论文课题学生姓名胡泽学系别专业班级数学与应用数学指导教师二0 一六年三月目录摘要 (I)ABSTRACT (II)第一章绪论 (1)第二章概率在生活中的应用 (4)2.1在抽签和摸彩中的应用 (4)2.2经济效益中的应用 (8)2.3在现实决策中的应用 (4)2.4在相遇问题中的应用 (12)2.5在预算及检测中的应用 (10)结论 (13)参考文献 (14)致谢 (15)概率统计在生活中的应用摘要随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。

本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

多方面论述了概率的应用。

关键词:概率;概率的含义;概率的应用Abstract第一章绪论概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。

数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。

除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。

概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。

我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。

而其中很多的问题都是随机的与随机的随机的。

哈工大概率论小论文

哈工大概率论小论文

浅谈概率论姓名航天学院电子信息科学与技术学号【摘要】:概率论与数理统计课程是工科大学的一门应用性很强的必修基础课程。

通过近一个学期的学习,我对概率论也有了一些粗浅的认识,本文将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。

【关键词】:二项分布;泊松分布;正态分布;类比;级数;广义积分1 概率论的起源和发展概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。

正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。

你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。

甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。

因此,整个的人类知识系统是与这一理论相联系的。

”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。

所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。

这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。

著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。

大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。

[1]二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。

概率论论文模板

概率论论文模板
总 成 绩:
指导教师签字:
年 月 日
(宋体小四,1.5倍行距)
四、参考文献
(宋体五号,1.5倍行距,参考以下格式)
[1]
ቤተ መጻሕፍቲ ባይዱ[2]
指导教师评语:
1、课程论文报告:
a、内容: 不完整□ 完整 □ 详细 □
b、方案设计: 较差 □ 合理 □ 非常合理□
c、实现: 未实现□ 部分实现□ 全部实现□
d、文档格式: 不规范□ 基本规范□ 规范 □
2、出勤: 全勤 □ 缺勤次
3、论文分析:
a、未能完全理解题目,情况较差 □
b、部分理解题目,部分问题说明正确 □
c、理解题目较清楚,问题说明基本正确 □
d、理解题目透彻,问题说明非常清晰 □
设计报告成绩:,占总成绩比例:50%
设计其它环节成绩:
环节名称:出勤,成绩:,占总成绩比例:20%
环节名称:答辩,成绩:,占总成绩比例:30%
概率论与数理统计
课程论文
课程名称:概率论与数理统计
院系:计算机科学与信息工程学院
学生姓名:
学号:
专业班级:
*******
2016年6月日
.
.
(给出二级目录,宋体四号,1.5倍行距)
标题
摘要:<宋体小四>
关键词:<3~4个><宋体小四,1.5倍行距>
一、生活实例
(宋体小四,1.5倍行距)
二、数学解析
三、收获与致谢

概率论论文模板(1)

概率论论文模板(1)

概率论与数理统计课程论文课程名称:概率论与数理统计院系:计算机科学与信息工程学院学生姓名:张磊学号: 14031110129 专业班级:网络工程(一)班指导教师:张庆丰2016 年 6 月 13 日目录.摘要,,,,,,,,,,,,,,,,,,,,,,,,,3一、对概率论与数理统计的认识,,,,,41.1概率论的起源和发展,,,,,,,,,,,,,,,,,,4 1.2数理统计的起源和发展,,,,,,,,,,,,,41.3两者的结合,,,,,,,,,,,,,,,,,,,,,,4二、生活实例与其数学解析,,,,,,,,,,,,,42.1对于彩票行业的应用,,,,,,,,,,,,,,,52.2对于进货问题的应用,,,,,,,,,,,,,,,,62.3在防范金融风险中的应用,,,,,,,,,,,,,,62.4.小概率原理在工业生产中的应用,,,,,,,,7三、收获与致谢,,,,,,,,,,,,,,,,,,,,,,7四、参考文献,,,,,,,,,,,,,,,,,,,,,8概率论与数理统计的认识与应用摘要:概率论是对随机现象的统计规律进行演绎归纳的一门科学,是从数量上研究随机现象的客观规律的一门数学科学。

概率论的理论基础基于数理统计与分析。

如今,概率论已经广泛应用于自然科学、社会科学、工程技术、工农业生产等诸多领域。

成为近代经济管理、科学研究、工业生产等方面的重要工具。

总之,概率论与数理统计已经和我们的生活息息相关,也成为我们大学课程里面不可或缺的一门基础课。

关键词:概率论、数理统计、随机现象、演绎归纳、一、概率论与数理统计的起源和发展1.1概率论起源与发展概率论的研究始于意大利文艺复兴时期,当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法,十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。

概率论课程小论文

概率论课程小论文

概率论与数理统计课程设计关于正态分布的几点讨论经过一个学期的学习,我对概率论有了更为深刻地理解,高中阶段的概率只是简单的古典概型和几何概型,而这个学期,我们对概率论有了进一步的认识,接触了泊松分布、贝努力分布、超几何分布、正态分布等等。

纵观全书,我感觉到正态分布在概率论这门课程中有很高的地位,而且正态分布在我们的日常生活中也有着非常广泛的应用,进而我也对正态分布产生了浓厚的兴趣。

所以在课程设计中,我想讨论一下正态分布的有关问题。

一、正太分布的由来、发展及重要性正态分布是最重要的一种概率分布。

正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,但由于德国数学家高斯率先将其应用于天文学家研究,故正态分布又叫高斯分布。

在随机变量的各种分布中,正态分布占有特殊重要的地位,在高斯以后,人们又发现在实际问题中,许多随机变量都近似服从正态分布。

20世纪前半期,概率论研究的中心课题之一就是寻求独立随机变量和的极限分布式正态分布的条件。

因此,把这一方面的定理统称为中心极限定理。

较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可以认为这个随机变量近似于正态分布。

这就揭示了正太分布的重要性。

因为现实中许多随机变量都具有上述性质,例如测量误差、射击弹着点的横坐标、人的身高等都是由大量随机因素综合影响的结果,因而是近似服从正态分布的。

数理统计中有常用的三大分布占有极重要的地位,分别是2χ分布,t 分布和F 分布,这三大分布都与正态分布有着密切的关系,由此更能看出正态分布的重要性。

二、正态分布的含义正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N (μ,σ2)。

服从正态分布的随机变量的概率规律为:取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大分布越分散。

哈工大概率论小论文

哈工大概率论小论文

《概率论与数理统计》课程总结混沌中的统一——概率中的维度观及在与微观粒子中的应用摘要众所周知,宇宙是一个无序的混沌空间,其间的粒子似乎在无规则的运动,人们并不知道它下一个时刻会运动到哪一个位置。

但事实上,粒子运动往往遵循某种分布规律,人们可以通过观察粒子在某处出现的频率来大致推知粒子在某一时刻出现的区域,这就是概率。

而在生活中,每个事件的发生都代表着一种可能,每个事件的无数种可能就构成了更高一层的空间,这就是维度。

不同的空间,不同的维度,概率论都在其中扮演着不可或缺的重要角色。

关键词:分布规律;频率;概率;可能;维度。

第一部分概率论与微观粒子的运动规律引言:长久以来,人们对于事物的认知都处于机械论科学思维的指导下,认为一切事物的规律都是固定可预测的。

严格决定论是机械论科学思维方式的主要特点。

这种思维方式把组成物质的最终实体作为自己的考察对象,而科学所要解决的基本上是带有两个变量的问题, 确定为数不多的客体之间的因果序列。

在严格决定性理论中,所有的概念和联系都被认为是属于同一层次中的东西,都可以精确表述它们之间的关系。

大自然的规律是数学规律,上帝是几何学家。

[1]控制论创始人维纳(N orbert Wiener)认为人类科学和认知的历史历程中,严格决定论的科学思维方式早在古巴比伦时期最古老的天文学中就已经出现了。

那是的人们在这种思维的指引下,认为日食、月食等自然天象都是在可预测的周期中出现的,太阳系中的一切事件的模型,都像是轮子在转动,周而复始的出现或发生。

这在托勒密的本轮说和哥白尼的轨道说中都是如此。

天体的音乐顺唱和倒唱都是一样的。

除了初始位置和方向外, 顺转和逆转的两个太阳仪之间的运动没有任何差别, 它们都是被严格决定了的。

最后, 这一切被牛顿归结为一组抽象公设并推演出一门严格的力学。

于是,宇宙被牛顿和他的力学描写为一台结构严密,按照某种定律精确地发生的机器,未来是由过去严格决定的。

但随着人们对自然科学的认识的不断深入,人们渐渐察觉到,万物都不是永恒的,牛顿力学很大程度上只是宇宙的某一种状态。

概率论小论文

概率论小论文

小概率事件是不可忽视的学院____化工学院______班级____1414202_______学号___1141420214_____姓名_____陈飞_________小概率事件是不可忽视的姓名:陈飞班级:1414202学号:1141420214摘要:小概率事件原理是概率论中一个基本的原理,在实际生活中,小概率事件也常常被提及。

本文首先阐述了什么是小概率事件原理,其次说明了小概率事件与不可能事件的区别,最后介绍了对经典的小概率事件的理解以及小概率事件在生活中必然发生的特点,给人以启迪。

关键词:小概率事件,不可能事件,发生车祸,小概率事件的必然发生一、小概率事件原理小概率事件原理是概率论中具有实际应用意义的基本理论,根据大量重复试验中事件出现的频率接近于它们的概率,即指:对于一个事件如果发生的概率很小的话,那么它在一次试验中是几乎不可能发生的,但在多次重复试验中几乎是必然发生的。

我们应该明确:若某试验中出现A的概率为p,不管p>0如何小,如果把试验不断独立地重复下去,那么A迟早必然会出现一次,从而也必然会出现无穷多次,因为第一次试验中A不出现的概率为1-p,前n次A都不出现的概率为(1-p)^n,因此前n次试验中A至少出现一次的概率为1-(1-p)^n。

当n→∞时概率趋于1,这表示A迟早会出现1次的概率为1。

因为我们在出现A以后,把下次试验当作第一次,重复上述推理,可见A必然再次出现。

由以上分析可看出,小概率事件并不是不可能事件。

而在实际生活和生产中,小概率事件发生的可能性就很大了,所以我们在实际生活和工作中不能忽视小概率事件。

二、小概率事件与不可能事件的区别对于小概率事件,我们通常认为它是不会发生的,例如一个人出游,旅途中可以放心地乘坐汽车或火车而不会去担心发生交通事故,原因是发生交通事故的概率都很小,在一次试验(乘坐交通工具)中,这个小概率事件基本上不会发生,我们可以把它看作是一个不可能事件。

概率小论文

概率小论文

概率小论文概率,又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。

表示一个事件发生的可能性大小的数,叫做该事件的概率。

我们来讨论小概率事件。

小概率事件即发生概率很小的事件(p≤0.05),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。

如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。

其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。

)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。

如果某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,am的概率如下表示:事件 a1概率 0.2 事件 a2概率 0.22事件 a3概率 0.23 事件 a4概率 0.24事件 a5概率 0.255个人都在周一来访的概率为0.00032,大约万分之三。

现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。

现在,我们来谈谈生活中的数学概率。

有一次,一位同学生日,全班35个人都来吃蛋糕,在同学们一片热闹下,不小心一个蜡烛根掉进了蛋糕中。

大家唯恐自己会吃到那块带有蜡烛根的蛋糕,便争先恐后抢着自己先吃,但是,后拿的“中奖”几率就一定大吗?接下来就来研究研究。

首先,第一个人“中奖”的几率为1/35,则吃不到的几率为34/35。

如果第1个人没有“中奖”,那么第2个人“中奖”的概率为:第1个人吃不到的概率乘以剩下34块蛋糕吃到蜡烛的概率,即:34/35×1/34 =1/35,第1、2个人吃不到硬币的概率为:33/34×34/35=33/35。

概率论与数理统计 课程论文

概率论与数理统计 课程论文

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载概率论与数理统计课程论文地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容“概率论与数理统计” 课程论文姓名:朱..学号: 1305062019专业班级:电子信息工程2班成绩:教师评语:年月日标题:概率统计与梳理统计在信号中的应用摘要:概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.的概率论与数理统计学实际应用背景很广范。

正如世界知名概率学家、华裔数学家钟开莱于1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科。

”概率论与数理统计学应用于自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识。

近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中。

尤其在电子信息通信方面尤为重要,甚至是通信原理的基础课程。

可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一。

在此文中,进一步讨论概率统计在电子信息方面的应用。

关键词:信息论概率论统计目录1 对早期概率论的发展有过重要贡献的数学家2 概率统计在电子专业中的应用3致谢4参考文献1 对早期概率论的发展有过重要贡献的数学家莱布尼兹(Leibniz,1646—1716)于1672—1676年侨居巴黎时读到帕斯卡概率方面的研究成果,深刻地认识到这门“新逻辑学”的重要性,并且进行了认真的研究。

在帕斯卡与费马通信讨论赌博问题的那一年,雅各·伯努利(Jacob Bernoulli,1654—1705)诞生了。

概率论论文10篇完美版

概率论论文10篇完美版

《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。

纵观其发展史,在实际生活中具有很强的应用好处。

正是有了前人的努力,才有了现代的概率论体系。

本文将从概率论的研究好处、定义,以及发展历程进行叙述。

概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。

每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。

例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。

大数定律和中心极限定律就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。

例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。

随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。

在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。

概率论及数理统计小论文

概率论及数理统计小论文

《概率论及数理统计》西莫恩·德尼·泊松传记一、人物简介泊松(Simeon-Denis Poisson,1781—1840)法国数学家。

1781年6月21日生于法国卢瓦雷省的皮蒂维耶,1840年4月25日卒于法国索镇。

泊松的父亲是退役军人,退役后在村里作小职员,法国革命爆发时任村长。

泊松最初奉父命学医,但他对医学并无兴趣,不久便转向数学。

1798年进入巴黎综合工科学校,成为拉格朗日、拉普拉斯的得意门生。

1806年留校任辅导教师,1802年任巴黎理学院教授。

1812年当选为巴黎科学院院士。

1816年应聘为索邦大学教授。

1826年被选为彼得堡科学院名誉院士。

1837年被封为男爵。

泊松工作的特色是应用数学方法研究各类物理问题,并由此得到数学上的发现。

他对积分理论、行星运动理论、热物理、弹性理论、电磁理论、位势理论和概率论都有重要贡献。

二、生平经历1798年,他以当年第一名成绩进入巴黎综合理工学院(法国研究型大学,位列法国四大名校之首),并立刻受到学校里的教授们的注意,他们让他自由按自己爱好进行学习。

他的数学才能很快受到了老师、著名数学家P.S.拉普拉斯(1749~1827)和J.L.拉格朗日(1736~1813)等的赏识。

在1800年,不到入学两年,他已经发表了两本备忘录,一本关于艾蒂安·贝祖的消去法,另外一个关于有限差分方程的积分的个数。

后一本备忘录由西尔韦斯特·弗朗索瓦·拉克鲁瓦和阿德里安-马里·勒让德检验,他们推荐将它发表于《陌生学者集》,对于18岁的青年来讲这是无上的荣誉。

这次成功立刻给了泊松进入科学圈子的机会。

他在理工学院上过拉格朗日函数理论的课,拉格朗日很早认识到他的才华,并与他成为朋友;泊松追随了拉普拉斯的足迹,后者将他几乎当作儿子看待。

终其职业生涯,也即直至他于巴黎郊外的索镇去世,他几乎一直在写作和发表他的数量巨大的著作,并承担了他后来所担任的各种教职。

北邮概率论课程小论文

北邮概率论课程小论文

随机过程概述学院:代培生班级:概率率与随机过程4班姓名:XXX 学号:2013XXXXX摘要本文通过对随机过程及其数字特征的研究和整理,以逻辑化的方式得出随机过程的一系列有用的性质,并在铺叙过程中介绍了随机过程理论发展的历程和实际中应用的情况。

关键词随机过程,概率分布,数字特征,平稳过程,宽平稳过程正文一、随机过程概述随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。

随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域研究随机现象的重要工具。

随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。

一般来说,把一组随机变量定义为随机过程。

在研究随机过程时,人们透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。

随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。

这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。

1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。

1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。

随机过程一般理论的研究通常认为开始于20世纪30年代。

1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。

1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。

二、随机过程的定义随机过程的有两个等价的定义:定义一:设E是一随机实验,样本空间为Ω={ω},参数T∈(-∞,+∞),如果对每个ω∈Ω,总有一个确定的时间函数X(ω,t)与之对应,这样对于所有的ω∈Ω,就得到一族时间t的函数,我们称此时间t的函数族为随机过程,而族中每一个函数称为这个随机过程的样本函数。

概率论小论文

概率论小论文

概率论小论文论文题目:概率论与生活关键词:数理统计实际应用概述:概率论与生活有着密不可分的联系,它是知道生活规律,统领生活内容的一门基础学科,概率论与生活息息相关,是我们大学学习乃至人生生活的一门极其重要的学科。

正文:十七世纪中叶,法国贵族德?美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。

正是这封信使概率论向前迈出了第一步。

帕斯卡和当时第一流的数学家费尔玛一起,研究了德?美黑提出的关于骰子赌博的问题。

于是,一个新的数学分支--概率论登上了历史舞台。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。

概率论的第一本专著是1713年问世的雅各?贝努利的《推测术》。

经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。

所谓"大数定律",简单地说就是,当实验次数很大时,事件出现的频率与概率有较大偏差的可能性很小。

这一定理第一次在单一的概率值与众多现象的统计度量之间建立了演绎关系,构成了从概率论通向更广泛应用领域的桥梁。

因此,贝努利被称为概率论的奠基人。

为概率论确定严密的理论基础的是数学家柯尔莫哥洛夫。

1933年,他发表了著名的《概率论的基本概念》,用公理化结构,这个结构明确定义了概率论发展史上的一个里程碑,为以后的概率论的迅速发展奠定了基础。

20世纪以来,由于物理学、生物学、工程技术、农业技术和军事技术发展的推动,概率论飞速发展,理论课题不断扩大与深入,应用范围大大拓宽。

在最近几十年中,概率论的方法被引入各个工程技术学科和社会学科。

目前,概率论在近代物理、自动控制、地震预报和气象预报、工厂产品质量控制、农业试验和公用事业等方面都得到了重要应用。

概率论毕业论文.doc

概率论毕业论文.doc

概率论毕业论文;引 言概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛.学过概率论的人又多以为这门课较为理论化,特别是像母函数,极限定理等内容与现实脱节很大,专业性很强.其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果.在谈及应用之前,先澄清一下多数人在概率方面的一个误解.大部分人认为一件事概率为0,即为不可能事件.这是不对的,比如甲乙玩一个游戏,甲随机地写出一个大于0小于1的数,乙来猜.①乙一次猜中这个数②乙每秒猜一次,一直猜下去,“最终”猜中这个数.这两件事发生的概率都是0,但显然它们都有可能发生,甚至可以“直观”的讲②发生的可能性大些.这说明概率为0的事也是有可能发生的.不过在我看来,这样的可能性实在是太小了,在实际的操作中认为不可能也是有道理的,但不管怎么说,它们确是可能事件.来看一个应用:[1]在12只金属球中,混有一只假球,并且不知道它是比真球重或轻,用没有砝码的天平来称这些球,试问至少需要多少次称量才能找出这个假球,并确定它是比真球轻或重为了讲清概率论在这个问题中的应用,先讲一下熵的概念.熵是概率论的分支学科--信息论中的概念,它是一个实验不确定程度的量度,熵越大,说明该实验的不确定性越高.比方说,扔一枚硬币是一个实验,扔一枚色子也是一个实验,直观地讲,我们说前者的不确定性要小些;计算结果,前者的熵为lg 2,后者的熵为lg 6,与直观吻合.同样,判断12个球的真假和轻重也是一个实验,它的熵为lg 24,我们要在若干次称量后将其不确定性降为0,也就是要其熵降为0.每用天平称量一次(随便怎样称),天平都有3种结果,于是最多获得lg 3的信息,所以k 次称量最多可得lg 3k ⨯,也就是lg 3k 的信息.令2lg 3lg 24lg 3k k -<<得3k =,至少进行3次实验才能完成要求.当然,这是理论上最少的结果,我们还要找到一个现实可行的方案,实际上,这样的方案也是有的,所以说得到的解是正确的结果.这种方法将看似是智力测验的题目用数学方法解决了.其实用这种方法还可解决4次使用天平,能判断最多多少个球的真假轻重情况的问题.关于这点,可以这样考虑:第一次称量时,所有的球只有两种可能:要么在天平上,要么没有在天平上,且在天平上的球数须是偶数,否则进行的称量是得不到有用的信息的.设在天平上的球数为2u ,不在天平上的球数为v ,若天平平衡,下面要3次使用天平在个球中找到假球并判其轻重,由前面的结果知的最大值为12;若天平不平,不妨设其左倾,则假球在2u个球中,且其轻重已知(若假球是左盘上的一只则假球比真球重,否则比真球轻).判断这2u个球中哪个球为假球(轻重已判)的实验的熵为lg2u,令23lg3lg2lg3u<<,得u的最大值是13,于是4次使用天平,最多可判断38枚球的真假及轻重情况,具体办法也是有的,由于比较繁琐,这里就不列举了.实际上,把这种方法通过观察、归纳、总结,可得更一般的结论:(35)2kk-次使用天平多能判断(4)k≥个球的真假和轻重状况.这也说明数学的威力所在:它可以将某些东西系统化,得到更一般的结论.说了这么多,其实就是一个意思,课本上学习的是理论,我们还要尽可能与实际生活联系起来,不要把数学学死了,总之一句话,我们学习数学,是为了更好的认识世界.数学文化,也就是数学在生活中的反映吧.而概率论作为数学的一个分支,与我们的现实生活已是密不可分,了解其发展简史并把概率论作为一个工具应用于生活已是一种必要的修养.1 概率论的发展简史概率论同其他数学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广泛应用于各个领域,已成为一棵参天大树,枝多叶茂,硕果累累.[2]正如钟开莱1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科.”概率论发展的每一步都凝结着数学家们的心血,正是一代又一代数学家的辛勤努力才有了概率论的今天.1.1早期的概率现象人类认识到随机现象的存在是很早的.从太古时代起,估计各种可能性就一直是人类的一件要事.早在古希腊哲学家就已经注意到必然性与偶然性问题;我国春秋时期也已有可考词语(辞海);即使提到数学家记事日程上的可考记载,也至少可推到中世纪.有史记载15世纪上半叶,就已有数学家在考虑这类问题了.如在意大利数学家帕乔利1494年出版的《算术》一书中就有以下问题:两人进行赌博,规定谁先获胜6场谁为胜者.一次,当甲已获胜5场,乙也获胜2场时,比赛因故中断.那么,赌注该如何分配呢?所给答案为将赌注分成7份,按5:2分给甲乙两人.当卡丹看到上述问题时,以为所给分法不妥.他考虑到接下去比赛的几种可能结果,并确定赌注应按10:1来分配(现在看来,其分法也是错误的).卡丹著有《论赌博》一书,其中提出一些概率计算问题.如掷两颗骰子出现的点数和的各种可能性等.此外,卡丹与塔塔利亚还考虑了人口统计、保险业等问题.但是他们的研究工作,对数学家来说,赌博味道太浓了一些,以致数学家们对其嗤之以鼻.近代自然科学创始人之一—伽利略解决了以下问题:同时投下三颗骰子,点数和为9的情形有6种:(126),,、(135),,、(144),,、(225),,、(234),,和(333),,.点数和为10的情形也有6种:(136),,、(145),,、(226),,、(235),,、(244),,和(334),,,那么出现点数和为9与10的机会应相同,而经验告知,出现10的机会比出现9的机会要多,原因何在?伽利略利用列举法得出同时掷三颗骰子出现点数和为9的情形有25种,而出现点数和为10的情形却有27种.可见,已经产生了概率论的某些萌芽.1654年7月29日,法国骑士梅累向数学神童—帕斯卡提出了一个使他苦恼很久的问题:“两个赌徒相约若干局,谁先赢了S局则赢.若一人赢1局,另一人赢5局,赌博中止,问赌本应怎么分?”帕斯卡对此思考良久,又将其转给业余数学王子—费马.在数学史上有名的来往信件中,两人取得了一致意见:在被迫停止的赌博中,应当按每个局中人赌赢的数学期望来分配桌面上的赌注.帕斯卡与费马用各自不同的方法解决这个问题,帕斯卡长于计算,运用数学归纳法,推导出数学内含的规律性,而费马以敏锐的观察力,严格的推理,建立起数学概念.以掷骰子为例来说明他们的解法.即谁先胜3局,则可得到全部赌注,在甲胜2局,乙胜1局时,赌局中止了,问怎样分配赌注才算公平合理.帕斯卡分析认为:甲已胜2局,乙也胜1局,如再赌一局,则或者甲大获全胜,赢得全部赌金,或者乙胜,则甲与乙胜的局数变成相等,甲、乙应平分赌金.把这两种情况平均一下,甲应得赌金的34,乙则得赌金的14.费马认为:由甲已胜a局,乙已胜b局,要结束这场赌博最多还需要赌几局,在这个例子中,最多还需要玩两局,结果有四种等可能的情况:(甲胜,甲胜),(甲胜,乙胜),(乙胜,甲胜),(乙胜,乙胜).在前面三种情况下,甲赢得全部赌金,仅第四种情况能使乙获得全部赌金.因此甲有权分得赌金的34,而乙应分赌金的14.费马和帕斯卡虽然没有明确定义概率的概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢的情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡和费马开始的.正如对概率论有卓越贡献的法国数学家泊松后来所说:“由一位广有交游的人向一位严肃的冉森派所提出的一个关于机会游戏的问题乃是概率演算的起源”.当荷兰数学家惠更斯到巴黎的时候,听说帕斯卡与费马在研究概率问题,便也参与进来,并于1657年出版了《论赌博中的计算》一书.书中给出了第一批概率论概念和定理(如加法定理、乘法定理).在概率论的现代表述中,概率是基本概念,数学期望则是第二级的概念,但在历史上,顺序却相反,先有“期望”概念,而古典概型的概率定义,完全可以从期望概念中导出来.因此,可以认为概率论从此诞生了.[3]1.2成熟中的概率论最早对概率论来严格化进行尝试的,是俄国数学家伯恩斯坦和奥地利数学家冯·米西斯.他们都提出了一些公理来作为概率论的前提,但他们的公理理论都是不完善的.作为测度论的奠基人,博雷尔在1905年指出概率论理论如果采用测度论术语来表述将会方便许多,并首先将测度论方法引入概率论重要问题的研究,特别是1909年他提出并在特殊情形下解决了随机变量序列,服从强大数定律的条件问题.博雷尔的工作激起了数学家们沿这一崭新方向的一系列探索,其中尤以原苏联数学家科尔莫戈罗夫的研究最为卓著.从二十世纪二十年代中期起,科尔莫戈罗夫开始从测度论途径探讨整个概率论理论的严格表述.1926年,他推导了弱大数定律成立的主要条件,后又对博雷尔提出的强大数定律问题给出了一般的结果,推广了切比雪夫不等式,提出了科尔莫戈罗夫不等式,创立了可数集马尔可夫链理论,他最著名的工作是1933年以德文出版的经典性著作《概率论基础》.科尔莫戈罗夫是莫斯科函数论学派领导人鲁金的学生,对实际函数论的运用可以说是炉火纯青.他在这部著作中建立起集合测度与事件概率的类比、积分与数学期望的类比、函数正交性与随机变量独立性的类比……,等等.这种广泛的类比终于赋予了概率论以演绎数学的特征.科尔莫戈罗夫的公理系统逐渐获得了数学家们的普遍承认,由于公理化,概率论成为一门严格的演绎科学,取得了与其他数学分支同等的地位.科尔莫戈罗夫热爱教育事业,经常在大学生和进修生中挑选人才,参加讨论班.1934年,他与概率论另一位创始人辛钦共同主持概率论讨论班.在他们培养的学生中有6位成为前苏联科学院院士或通信院士.1980年科尔莫戈罗夫荣获沃尔夫奖.[4] 公理化概率论首先使随机过程的研究获得了新的起点,随机过程作为随时间变化的偶然量的数学模型,是现代概率论研究的重要主题.莱维从1938年开始创立研究随机过程的新方法,即着眼于轨道性质的概率方法.1948年出版的《随机过程与布朗运动》,提出了独立增量过程的一般理论,并以其为基础极大地推进了对作为一类特殊马尔可夫过程的布朗运动的研究.1939年维尔引进“鞅”这个名称,但鞅论的奠基人是美国概率论学派的代表人物杜布.杜布从1950年开始对鞅概念进行了系统的研究而使鞅论成为一门独立的分支.鞅论使随机过程的研究进一步抽象化,不仅丰富了概率论的内容,而且为其他数学分支如调和分析、复变函数、位势理论等提供了有力的工具.从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,为一门意义深远的数学新分支——随机分析的创立与发展奠定了基础.[5]概率论不仅是“数学之树”的一庞大支条,而且还有若干强壮的根(如下表),直接扎在实际应用环境的大地上.“芳草有情皆碍马,好云无处不遮楼”.正如英国的逻辑学家和经济学家杰文斯所说,概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为.”2 概率统计在实际生活中的应用2.1关于男女色盲比例的问题例1[6]从随机抽取的467名男性中发现有8名色盲,而433名女性中发现1人色盲,在01.0=α水平上能否认为女性色盲的比例比男性低?解 设男性色盲的比例为1p ,女性色盲的比例为2p ,那么要检验的假设为210:p p H ≥ 211:p p H <由备择假设,利用大样本的正态近似得,在0.01α=水平的拒绝域为{}33.2-≤u由样本得到的结果知:433,467==m n1.043346718ˆ,00231.04331ˆ,01713.04678ˆ21=++=====p p p 则 ()2326.2ˆ1ˆ11ˆˆ21=-⎪⎭⎫ ⎝⎛+-=p p m n p pu未落在拒绝域中,因此在0.01α=水平上可以认为女性色盲的比例低于男性.2.2我国出生人口性别比出生人口性别比,通常是为了便于观察与比较所定义的每出生百名女婴相对的出生男婴数.20世纪50年代中期,联合国在其出版的《用于总体估计的基本数据质量鉴定方法》(手册Ⅱ)认为:出生性别比偏向于男性.一般来说,每出生100名女婴,其男婴出生数置于107102-之间.此分析明确认定了出生性别比的通常值域为107102-之间.从此出生性别比值下限不低于102、上限不超过107的值域一直被国际社会公认为通常理论值,其他值域则被视为异常.例2近年来,越来越多的话题围绕着我国的人口性别比例而展开.下图(表1)所示的是我国2005年到2010年的出生人口性别比例的变化情况.2005-2010年中国人口性别比由图可以看出,在2005年到2010年之间,我国的人口性别比一直都保持在118到121之间,超出了国际社会公认为通常理论值102107-很多.3.3电影院的座位问题定理1 设2σ=i DX ,则对任意R x ∈,有()x du e x n a X P x u n Φ==⎪⎪⎭⎫ ⎝⎛≤-⎰∞--∞→2221lim πσ 记为().1,0~N n aX σ-这一结果称为Lindeberg-Levy 定理,是这两位学者在20世纪20年代证明的.历史上最早的中心极限定理是1716年建立的De Moivre-Laplace 定理,它是前一个结果的特例,具体为lim )()x nX p x x →∞≤=Φ.[7] 例3设某地扩建电影院,据分析平均每场观众数1600=n 人,预计扩建后,平均34的观众仍然会去该电影院,在设计座位时,要求座位数尽可能多,但空座达到200或更多的概率不能超过0.1,问应该设多少座位?解 把每日看电影的人编号为1600,,2,1 ,且令11216000i i X i ⎧==⎨⎩,第个观众还去电影院,,,不然. 则由题意31(1)(0)44i i p X p X ====,.又假定各观众去电影院是独立选择,则 ,,21X X 是独立随机变量,现设座位数为m ,则按要求121600(2000.1p X X X m +++≤-≤).在这个条件下取m 最大.当上式取等号时,m 取最大,因为3160012004np =⨯=,=m 应满足0.1Φ=. 查正态分布表即可确定1377≈m ,所以,应该设1377个座位.3 总结兴趣是最好的老师,可以激发学生的学习热情,更可以引导学生成为学习的主人,学习数学需要死记硬背熟能生巧,但并不排除用兴趣引导和激励.将兴趣转化为志趣,转化为学习的动力,将其带到数学学习的每一个部分.本文我们主要通过讲解三个生活中遇到的悖论问题,使人们在生活与学习中,能更好的理解悖论给我们带来的困惑,解决了人们在意识上的一些错误观点.对于这些因为意识的错觉而存在的悖论问题,我们仍有待于进一步研究.上面列举了概率统计在实际生活中的一些简单应用,其实日常生活中到处都有概率统计的影子.通过统计我们可以了解一些指数的变化趋势等,通过概率计算我们了解了彩票、摸奖等的中奖率等.概率统计的足迹可以说是已经深入到每一个领域,在实际问题的应用随处可见.相信人类能够更好的应用好概率统计,使之更好的为人类的发展做贡献.参考文献[1]梅长林,周家良.实用统计方法[M].北京:科学出版社,2002.[2]杨虎,钟波,刘琼荪.应用数理统计[M].北京:清华大学出版社,2006.[3]张国权.应用概率统计[M]. 北京:科学出版社,2003.[4]吴传志.应用概率统计[M].重庆:重庆大学出版社,2004.[5]郑长波.生活中的概率问题举例[J].沈阳师范大学学报,2007,7(5):23-26.[6]魏宗舒,等.概率论与数理统计教程[M].北京:高等教育出版社,2008.[7]王梓坤.概率论基础及其应用[M].北京:科学出版社,1976.。

论文-概率论论文

论文-概率论论文

论文-概率论论文标题:概率论在实际应用中的研究摘要:概率论是数学中的重要分支,广泛应用于科学、工程、金融等领域。

本论文旨在探讨概率论在实际应用中的研究,包括统计推断、风险评估、模式识别等方面。

通过详细分析概率论在各个领域的应用案例,揭示其在实际问题中的作用和价值,并提出未来研究的方向和挑战。

引言:概率论是描述随机事件发生概率的数学分支,它在现实生活中的应用越来越广泛。

通过概率论的方法,我们能够对随机事件进行建模和分析,从而为决策提供有力支持。

本论文将重点介绍概率论在统计推断、风险评估和模式识别等方面的应用,并探讨其在实际问题中的作用。

主体:1.统计推断:概率论是统计学中最重要的工具之一。

通过概率论的方法,我们可以对现有数据进行分析,从而推断出总体的未知特征。

例如,通过对抽样数据进行统计推断,我们可以估计总体的均值、方差等参数,并对总体的区间估计进行评估。

此外,概率论还可以用于假设检验,判断不同样本之间是否存在显著差异。

2.风险评估:概率论在风险评估领域的应用十分重要。

通过对风险事件进行概率建模和分析,我们可以评估风险事件发生的可能性和影响程度。

这种风险评估的方法被广泛应用于金融、保险、项目管理等领域。

例如,在金融领域,我们可以使用概率论来评估投资组合的风险和收益,并进行资产配置的决策。

3.模式识别:概率论在模式识别中的应用也十分重要。

模式识别是指通过对数据的建模和分类,识别出数据中的特定模式。

概率论为模式识别提供了一种强大的工具。

例如,在图像识别中,我们可以使用概率论的方法来建立分类模型,并通过概率计算判断图像属于某一类别的可能性。

结论:本论文对概率论在实际应用中的研究进行了综述。

通过在统计推断、风险评估和模式识别等方面的应用案例分析,我们可以看到概率论在各个领域中的作用和价值。

然而,概率论在实际应用中仍面临一些挑战,如大样本问题、高维问题等。

未来,我们需要继续研究概率论在实际问题中的应用,并探索解决这些挑战的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论论文
浅谈敏感性问题调查与全概率公式的应用
学院专业:
班级:
学号:
姓名:Rabbit
联系方式:
浅谈敏感性问题调查与全概率公式的应用
Rabbit
英才学院自动化
摘要:敏感性问题在常见的各种调查中存在很大比重。

然而,直接的敏感性问题提问由于极有可能导致受访者难堪而难以得到准确回答,进而严重影响了调查效果。

而借助随机回答法和不相关问题模型,可以极大减少由于受访者主观因素导致的非抽样误差,进而得到关于敏感性问题问题的小误差统计结果。

关键词:敏感性问题随即回答法不相关问题模型全概率公式误差分析
引言:你考试是否作过弊吗?你是否违反过学校纪律?当被问及这些敏感问题时,许多人会然拒绝回答或者编造答案。

然而,这样便难以得出准确的统计结果,也就难以根据所得数据进行分析,得出相关结论。

随机回答法给出了一种使被问人放心的方法,访问者并不知道被问者所回答的内容。

不相关问题模型则在一定程度上减缓了受访者对询问者的敌意,更有助于得到诚实回答。

随即回答法的本质则是全概率公式的应用。

一、随机回答法
1、随机化回答法与Warner模型
沃纳在1965年提出的随机化回答技术,基于“愈少泄漏问题的答案实质,愈能较好合作”的思想,通过巧妙设计的间题形式对被调查者的隐私和秘密加以保护,引导被问者的答案仅仅提供概率意义下的信息。

通过这些信息完成调查,再用这种方法对总体的比例进行估计的模型,通称为沃纳模型。

假定我们想要估计总体中属于团体A
2、概率推导
数字12,除此以外,小球没有其它的区别。

访问者从
被问者从混合均匀的一桶球中随便地选取一个,记下球上的数字,数字不要让访问者看见。

被问者面前有两个问题:
问题1
问题2
他要求按照所选的数字回答相应的问题。

虽然,访问者仅仅获得了“是”和“不是”的
下列的记号:
1
1的牌的概率。

2的牌的概率。

1号球”的事件。

2号球”的事件。

即,

二、不相关问题模型
1、随机化回答法与Warner模型
在Warner的方法中,两个提问均涉及到了敏感特征,可能会引起人们的戒备,效果存在影响。

Simmons提出了一个Warner方法的改进,称为不相关问题模型。

这种方法基于如下想法:先向被问者提出一个无关紧要的问题,则被问者在敏感问题上会觉得更安全。

即,使用两个互不相关的问题,一个与敏感特征有关,另一个是非敏感条件,则调查结果更真实。

2、概率推导
在Simmons模型中,被问人员随机地选取下述之一问题进行回答:
问题1
问题2
B
访问者备有Warner模型相同的随机装置,每个被问者从混合均匀的整桶球中随机地抽出一个,根据球上的数字回答相应的问题。

同样,问者仅能得到“是”与“不是”的答案。

我们再一次用概率论的基本结论(全概率公式)写出:
B的概
(即问题1)的概率。

3、不相关模型举例
我们想估计某特定范围内具有同性恋经历的女生的比例。

大部分女性毫不怀疑这个问题
是私人秘密,不愿回答有关她们的性行为的问题。

所以,
估计。

向被问者提出如下问题:
问题1:你曾有过同性恋经历吗?
问题2:你的身份证号码的最后一位数是偶数吗?
随机装置中3/4的球标有1,l/4的球标有2。

问及大小为100的简单随机样本,得到
18个人回答“是”。

这时
1/2
所以,我们估计该学院有7%的女生有同性恋经历。

上述问题一即为敏感问题,而问题二则为概率已知的问题,经实验验证,采用如此不相关模型所得结论准确度高于直接采用Warner模型的结论。

参考文献
(1)姜启源,谢金星,叶俊编。

数学模型(第四版)[M]。

北京:高等教育出版社,2011。

(2)毛长文,丁俊君。

抽样调查中降低无回答率的措施和方法[J]。

湖南经济管理干部学院学报,2004,15(2):112-114。

(3)孙萍,赵东方。

敏感问题问卷调查Warner模型与卡片参数P的设计[J]。

统计与决策,2012,第9期:72-73。

(4)李亚琼,黄立宏。

概率论与数理统[M]。

上海:复旦大学出版社,2011。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档