直接开方解一元二次方程

合集下载

1.2《一元二次方程的解法—直接开方法》教案

1.2《一元二次方程的解法—直接开方法》教案

§1.2一元二次方程的解法⑴——直接开方法班级________姓名____________一.学习目标:1.由平方根的定义探寻直接开方法;2.掌握形如:ax2=b;a(x-m)2=b;a(x-m)2=b(x-n)2的解题方法.二.学习重点:会用直接开平方法解一元二次方程.学习难点:体会整体思想在解题中的作用.三.教学过程Ⅰ.知识准备①4的平方根是;81的平方根是;100的算术平方根是.②若x2=a,则叫的平方根;记作x=.③x2=14,则x=.若分式x2-92x-6的值为零,则x的值为.Ⅱ.活动探究【复习】回忆数的开方一章中的知识,请大家生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.【新知探究】我们已经学过了一些方程知识,那么上述方程属于什么方程呢?阅读:解方程x2-4=0.解:移项,得x2=4.∴x=±4=±2即x1=2,x2=−2.我们把这种解一元二次方程的方法叫做“直接开平方法”.思考:比较用直接开平方法解方程和求一个非负数的平方根的差异。

例1:解下列一元二次方程.⑴x2=196;⑵9x2=16;⑶4x2-3=0.例2:解下列一元二次方程.⑴(x− 2)2=5;⑵(x-1)2-18=0;⑶3(x+2)2=27;⑷12(2-x)2-9=0.【题后反思】你能否总结一下,能使用直接开平方法的一元二次方程的形式是怎样的?一般解题步骤又是怎样的?例3:用“直接开方法”解下列方程:⑴(3x-2)2=(x+1)2;⑵(x+2)2-(2x+3)2=0.【思考】若将⑵中的两项加上系数又如何解呢?4(x+2)2-9(2x + 3)2=0【课内反馈】1.①方程x2=9的根为;②方程4x2=100的解为.2.①方程6x2-1=23的解为;②方程(x+1)2=16的解为.3.关于x的方程x2+k=0有实数根的条件是()A.k>0 B.k<0 C.k≥0 D.k≤04.解下列方程⑴2x2=50;⑵12y2=16;⑶(x-2)2=6;⑷(2m-4)2-18=0.。

一元二次方程的解法1直接开方

一元二次方程的解法1直接开方

九年数学系列
师生讲学稿
(3) 3(x -1)2 _6 =0 (4) 9x26x 1 =4
2、若方程(x-a)2 - -b有解,则b的取值范围是_______________________ .
3、对于形如(x • m)2= n的方程,他的解的正确表达式为(

A .都可用直接开平方法求解,且x- n
B .当n_0时,m= 一n
C .当n_0时,x = .n-m
D .当n_0 时,x = n-m
4、方程x2h的实数根的个数是()
A .0个
B .1个
C . 2个
D .无数个
5、下列各方程能用直接开平方法求解的是()
A . 4x2-4x -7 = 0
B . 4(x -3)2二25
C. 2y2-7y 2=0
D. (x 5)(x -、5) = 20
五、小结:
1、具备怎样特点的一元二次方程可用直接开平方法求解:
2、用降次法一直接开平方法解一元二次方程的步骤有哪些:六、随堂练习:
1、下列方程不能用直接开平方法的是(
2
A . x—3 = 0 B.
C. x22x = 0
2、用直接开平方法解下列方程:
2
(1)5x -5=35
(3)(x-2)(x 2) = 21
)
(x_1)2 _4 = 0
D. (x_ 1)2二(2x 1)2
(2)4(x 3)^ 100
(4)4(x 1)2二25(x- 2)2 3、设a ,P是方程(X+2)2=9的两个根,求|ct| +|P|的值.
作业:卷
反思(收获):。

解一元二次方程的方法

解一元二次方程的方法

解一元二次方程的【2 】办法界说只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程( quadratic equation of one variable ).一元二次方程有四个特色:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要断定一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整顿.假如能整顿为ax^2+bx+c=0(a≠0)的情势,则这个方程就为一元二次方程.里面要有等号,且分母里不含未知数.(4)将方程化为一般情势:ax^2+bx+c=0时,应知足(a.b.c为常数,a≠0)补充解释1.该部分的常识为初等数学常识,一般在初三就有进修.(但一般二次函数与反比例函数会涉及到一元二次方程的解法)2.该部分是高考的热门.3.方程的两根与方程中各数有如下关系: X1+X2= -b/a,X1·X2=c/a(也称韦达定理)4.方程两根为x1,x2时,方程为:x^2-(x1+x2)X+x1x2=0 (依据韦达定理逆推而得)5.在系数a>0的情形下,b^2-4ac>0时有2个不相等的实数根,b^2-4ac=0时有两个相等的实数根,b^2-4ac<0时无实数根.一般式ax^2+bx+c=0(a.b.c是实数,a≠0)例如:x^2+2x+1=0配方法a(x+b/2a)^2=(b^2-4ac)/4a^2两根式(交点式)a(x-x1)(x-x2)=0一般解法1.分化因式法(可解部分一元二次方程)因式分化法又分“提公因式法”.“公式法(又分“平方差公式”和“完整平方公式”两种)”和“十字相乘法”.因式分化法是经由过程将方程左边因式分化所得,因式分化的内容在八年级上学期学完.如1.解方程:x^2+2x+1=0解:应用完整平方公式因式解得:(x+1﹚^2=0解得:x?= x?=-12.解方程x(x+1)-3(x+1)=0解:应用提公因式法解得:(x-3)(x+1)=0即 x-3=0 或 x+1=0∴ x1=3,x2=-13.解方程x^2-4=0解:(x+2)(x-2)=0x+2=0或x-2=0∴ x?=-2,x?= 2十字相乘法公式:x^2+(p+q)x+pq=(x+p)(x+q)例:1. ab+b^2+a-b- 2=ab+a+b^2-b-2=a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)2.公式法(可解全体一元二次方程)起首要经由过程Δ=b^2-4ac的根的判别式来断定一元二次方程有几个根1.当Δ=b^2-4ac<0时 x无实数根(初中)2.当Δ=b^2-4ac=0时 x有两个雷同的实数根即x1=x23.当Δ=b^2-4ac>0时 x有两个不雷同的实数根当断定完成后,若方程有根可根属于2.3两种情形方程有根则可依据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.配办法(可解全体一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式双方同时加1(组成完整平方法)得:x^2+2x+1=4因式分化得:(x+1)^2=4解得:x1=-3,x2=1用配办法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方双方加上最相当4.开办法(可解部分一元二次方程)如:x^2-24=1解:x^2=25x=±5∴x?=5 x?=-55.均值代换法(可解部分一元二次方程)ax^2+bx+c=0同时除以a,得到x^2+bx/a+c/a=0设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)依据x1*x2=c/a求得m.再求得x1, x2.如:x^2-70x+825=0均值为35,设x1=35+m,x2=35-m (m≥0)x1*x2=825所以m=20所以x?=55, x?=15.一元二次方程根与系数的关系(以下两个公式很主要,经常在测验中应用到)一般式:ax^2+bx+c=0的两个根x?和x?的关系:x1+x2= -b/ax1*x2=c/a若何选择最简略的解法1.看是否能用因式分化法解(因式分化的解法中,先斟酌提公因式法,再斟酌平方公式法,最后斟酌十字相乘法)2.看是否可以直接开方解3.应用公式法求解4.最后再斟酌配办法(配办法固然可以解全体一元二次方程,但是有时刻解题太麻烦). 假如要参加比赛,可按如下次序:1.因式分化2.韦达定理3.判别式4.公式法5.配办法6.开平方7.求根公式8.表示法例题精讲1.开办法:直接开平办法就是用直接开平方求解一元二次方程的办法.用直接开平办法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n例1.(1)(3x+1)^2=7 剖析:此方程显然用直接开平办法好做.(1)解:(3x+1)^2=73x+1=±√7∴x1=...,x2= ...(2)9x^2-24x+16=11方程左边是完整平方法(3x-4)^2,右边=11>0,所以此方程也可用直接开平办法解解: 9x^2-24x+16=11(3x-4)^2=113x-4=±√11∴x1=...,x2= ...2.配办法:例1用配办法解方程 3x^2-4x-2=0解:将常数项移到方程右边 3x^2-4x=2将二次项系数化为1:x^2-4/3x=2/3方程双方都加上一次项系数一半的平方:x^2-4/3x+( -2/3)^2= 2/3+(-2/3 )^2配方:(x-2/3)^2=10/9直接开平方得:x-2/3=±√(10)/3∴x?= , x?= . ∴原方程的解为x?=,x?= .3.公式法:把一元二次方程化成ax^2+bx+c的一般情势,然后把各项系数a, b, c的值代入求根公式就可得到方程的根.当Δ=b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)当Δ=b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)当Δ=b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个虚数根)(初中懂得为无实数根)例3.用公式法解方程 2x^2-8x=-5解:将方程化为一般情势:2x^2-8x+5=0∴a=2, b=-8,c=5b^2-4ac=(-8)^2-4×2×5=64-40=24>0∴x= (4±√6)/2∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.4.因式分化法:把方程变形为一边是零,把另一边的二次三项式分化成两个一次因式的积的情势,让两个一次因式分离等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根.这种解一元二次方程的办法叫做因式分化法.例4.用因式分化法解下列方程:(1) (x+3)(x-6)=-8解:化简整顿得x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分化因式)∴x-5=0或x+2=0 (转化成两个一元一次方程)∴x?=5,x?=-2是原方程的解.(2) 2x^2+3x=0解: x(2x+3)=0 (用提公因式法将方程左边分化因式)∴x=0或2x+3=0 (转化成两个一元一次方程)∴x?=0,x?=-3/2是原方程的解.留意:轻易丢失落x=0这个解,应记住一元二次方程平日有两个解.(3) 6x^2+5x-50=0 (选学)解:(十字相乘分化因式时要特殊留意符号不要出错)∴2x-5=0或3x+10=0∴x?=5/2, x?=-10/3 是原方程的解.(4)x^2-4x+4 =0解:(x+2)(x-2 )=0∴x?=-2 ,x?=2是原方程的解.小结一般解一元二次方程,最常用的办法照样因式分化法,在应用因式分化法时,一般要先将方程写成一般情势,同时应使二次项系数化为正数.直接开平办法是最根本的办法.公式法和配办法是最主要的办法.公式法实用于任何一元二次方程(有人称之为全能法),在应用公式法时,必定要把原方程化成一般情势,以便肯定系数,并且在用公式前应先盘算根的判别式的值,以便断定方程是否有解.配办法是推导公式的对象,控制公式法后就可以直接用公式法解一元二次方程了,所以一般不用配办法解一元二次方程.但是,配办法在进修其他数学常识时有普遍的应用,是初中请求控制的三种主要的数学办法之一,必定要控制好.(三种主要的数学办法:换元法,配办法,待定系数法).。

一元二次方程解法及其配套练习答案

一元二次方程解法及其配套练习答案

一元二次方程解法及其配套练习一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式. 解法一 ——直接开方法适用范围:可解部分一元二次方程例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 解:(2)由已知,得:(x+3)2=2 直接开平方,得:x+3=± 即x+3=,x+3=-所以,方程的两根x 1=-3+,x 2=-3-例2.市政府计划2年内将人均住房面积由现在的10m 2提高到,求每年人均住房面积增长率.解:设每年人均住房面积增长率为x , 则:10(1+x )2= (1+x )2=直接开平方,得1+x=± 即1+x=,1+x=所以,方程的两根是x 1==20%,x 2=因为每年人均住房面积的增长率应为正的,因此,x 2=应舍去. 所以,每年人均住房面积增长率应为20%.例3. 如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2? 解: 设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x依题意,得:x ·2x=8 x 2=8 根据平方根的意义,得x=±2 即x 1=2,x 2=-2可以验证,2和-2都是方程x ·2x=8的两根,但是移动时间不能是负值.所以2秒后△PBQ 的面积等于8cm 2.例4.某公司一月份营业额为1万元,第一季度总营业额为万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=把(1+x )当成一个数,配方得: (1+x+)2=,即(x+)2=2.56 x+=±,即x+=,x+= 方程的根为x 1=10%,x 2= 因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解配套练习题一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-x+1=0正确的解法是().A.(x-)2=,x=± B.(x-)2=-,原方程无解C.(x-)2=,x1=+,x2= D.(x-)2=1,x1=,x2=-二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.三、综合提高题1.解关于x的方程(x+m)2=n.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用范围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?列出方程化简后得:x2+6x-16=0x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→(x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略例2.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB 面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)=××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.例3.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=y+,x+1=y-依题意,得:y2(y+)(y-)=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72, y4-y2=72(y2-)2=y2-=±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=-,x2=-例5. 求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.解:略配套练习题一、选择题1.配方法解方程2x2-x-2=0应把它先变形为().A.(x-)2= B.(x-)2=0C.(x-)2= D.(x-)2=2.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x-a)2=a3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-24.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-35.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1C.x2+8x+42=1 D.x2-4x+4=-116.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或9二、填空题1.方程x2+4x-5=0的解是________.2.代数式的值为0,则x的值为________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.4.如果x2+4x-5=0,则x=_______.5.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.6.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.三、综合提高题1.用配方法解方程.(1)9y2-18y-4=0 (2)x2+3=2x2.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长. 3.如果x2-4x+y2+6y++13=0,求(xy)z的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?5.已知:x2+4x+y2-6y+13=0,求的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用范围:可解全部一元二次方程首先,要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时 x无实数根(初中)2.当Δ=b^2-4ac=0时 x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时 x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根求根公式的推导用配方法解方程(1)ax2-7x+3 =0 (2)a x2+bx+3=0(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+x=-配方,得:x2+x+()2=-+()2即(x+)2=∵4a2>0,4a2>0, 当b2-4ac≥0时≥0∴(x+)2=()2直接开平方,得:x+=±即x=∴x1=,x2=由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

解一元二次方程的方法

解一元二次方程的方法

v1.0 可编辑可修改解一元二次方程的方法定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程( quadratic equation of one variable )。

一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.里面要有等号,且分母里不含未知数。

(4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a、b、c为常数,a≠0)补充说明1、该部分的知识为初等数学知识,一般在初三就有学习。

(但一般二次函数与反比例函数会涉及到一元二次方程的解法)2、该部分是高考的热点。

3、方程的两根与方程中各数有如下关系: X1+X2= -b/a,X1·X2=c/a(也称韦达定理)4、方程两根为x1,x2时,方程为:x^2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得)5、在系数a>0的情况下,b^2-4ac>0时有2个不相等的实数根,b^2-4ac=0时有两个相等的实数根,b^2-4ac<0时无实数根。

一般式ax^2+bx+c=0(a、b、c是实数,a≠0)例如:x^2+2x+1=0配方式a(x+b/2a)^2=(b^2-4ac)/4a^2两根式(交点式)a(x-x1)(x-x2)=0一般解法1.分解因式法(可解部分一元二次方程)因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。

因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。

如1.解方程:x^2+2x+1=0解:利用完全平方公式因式解得:(x+1﹚^2=0解得:x= x=-12.解方程x(x+1)-3(x+1)=0解:利用提公因式法解得:(x-3)(x+1)=0即 x-3=0 或 x+1=0∴ x1=3,x2=-13.解方程x^2-4=0解:(x+2)(x-2)=0x+2=0或x-2=0∴ x=-2,x= 2十字相乘法公式:x^2+(p+q)x+pq=(x+p)(x+q)例:1. ab+b^2+a-b- 2=ab+a+b^2-b-2=a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时 x无实数根(初中)2.当Δ=b^2-4ac=0时 x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时 x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当4.开方法(可解部分一元二次方程)如:x^2-24=1解:x^2=25x=±5∴x=5 x=-55.均值代换法(可解部分一元二次方程)ax^2+bx+c=0同时除以a,得到x^2+bx/a+c/a=0设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)根据x1*x2=c/a求得m。

11.2.1 一元二次方程的解法-直接开平方法(七大题型)-原

11.2.1 一元二次方程的解法-直接开平方法(七大题型)-原

1.2.1一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x 的一元二次方程,可直接开平方求解,两根是.要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为()A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==2.若()222a =-,则a 是()A .-2B .2C .-2或2D .43.方程x 2-=0的根为_______.4.有关方程290x +=的解说法正确的是()A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.6.解方程:(1)23270x -=;(2)2(5)360x --=;(3)21(2)62x -=;(4)()()4490+--=y y .7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为()A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =2382x =)A .120,x x ==B .120,x x ==C .12x x =D .12x x ==题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是()A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--10.方程y 2=-a 有实数根的条件是()A .a ≤0B .a ≥0C .a >0D .a 为任何实数11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是()A .①②③B .②③C .②③④D .①②③④12.方程x 2=(x ﹣1)0)A .x=-1B .x=1C .x=±1D .x=013.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是().A .0m >B .7mC .7m >D .任意实数14.已知方程()200ax c a +=≠有实数根,则a 与c 的关系是().A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是()A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-16.方程224(21)25(1)0x x --+=的解为()A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根()A .都相等B .都不相等C .有一个根相等D .无法确定题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2=b(b>0)的根是()A .-aB .C .当b≥0时,D .当a≥0时,20.形如2()(0)ax b p a +=≠的方程,下列说法错误的是()A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是()A .1B .2C .3D .4题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为()A .7B .-3C .7或-3D .21题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444nn n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.一、单选题10.若方程()200ax bx c a ++=≠中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是()A .1,0B .1,0-C .1,1-D .2,2-二、填空题三、解答题19.解下列方程:224(1)x x =-.20.用直接开平方法解下列方程.(1)2160x -=;(2)2(2)9x -=.21.用开平方法解下列方程:(1)2 2.25x =;(2)243x =;(3)27560x -=;(4)()22714x -=.22.解方程:22(1)(12)x x +=-.→→→的顺序运算,请列式并计算结果;(1)嘉嘉说-2,对-2按C A D B答案与解析题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为()A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .【点睛】本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是()A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-= 2a ∴=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2-=0的根为_______.【答案】x=±【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解:x 2-=0,∴x 2=8,∴x =±.故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是()A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D 【解析】【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=⨯-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=≥的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=≥的形式,那么nx m +=6.解方程:(1)23270x -=;(2)2(5)360x --=;(3)21(2)62x -=;(4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为()A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x =)A .120,x x ==B .120,x x ==C .12x x =D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x ,解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是()A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是()A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是()A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程x 2=(x ﹣1)0)A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是().A .0m >B .7mC .7m >D .任意实数【答案】B 【解析】【分析】根据70-≥m 时方程有实数解,可求出m 的取值范围.由题意可知70-≥m 时方程有实数解,解不等式得7m,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=≠有实数根,则a 与c 的关系是().A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0≥可判断出正确答案.原方程可化为2a =c -x ,∵2x 0≥,∴c0a-≥时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a-≥,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是()A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为()A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y ==-;(2)121,3x x ==.【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=- ,4(52)x x ∴-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根()A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C 【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2=b(b>0)的根是()A .-aB .C .当b≥0时,D .当a≥0时,【答案】A 【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:,∴-a ,故选A 【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=≠的方程,下列说法错误的是()A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D 【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ≥时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是()A .1B .2C .3D .4【答案】B 【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为()A .7B .-3C .7或-3D .21【答案】A 【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444nn n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=⋅=⋅=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=⋅=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++ =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,18.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.【答案】1-【分析】根据()41444n n n i i i i i +=⋅=⋅=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.【解析】解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=⋅=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++ =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.三、解答题【解析】解:原式=m 2﹣1﹣(4m 2+4m +1)+3m 2+6m=m 2﹣1﹣4m 2﹣4m ﹣1+3m 2+6m=2m ﹣2,∵m 2﹣1=0,∴m =±1,当m =1时,原式=2﹣2=0,当m =﹣1时,原式=﹣2﹣2=﹣4,综上所述:原式的值为0或﹣4.【点睛】本题考查整式的化简求值,准确掌握乘法公式是解题的关键,计算中注意符号问题.26.计算(1)化简:2(1)(1)+--m m m (2)小华在解方程2(6)90x +-=时,解答过程如下:解:移项,得2(6)9x +=第一步两边开平方,得63x +=第二步所以3x =-第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D →→→的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+⨯--=--=-=.(1)嘉嘉说-2,对-2按C A D B →→→的顺序运算,请列式并计算结果;(2)嘉嘉说x ,对x 按C B D A →→→的顺序运算后,琪琪得到的数恰好等于12,求x .【答案】(1)2(223)(3)--+⨯-,3-;(2)嘉嘉出的数是1或3.【分析】(1)根据题意,可以写出相应的算式,然后计算即可;(2)根据题意,可以得到关于x 的方程,然后解方程即可.【解析】(1)2(223)(3)--+⨯-1(3)=⨯-3=-.(2)根据题意得2[(2)(3)]312x -⨯-+=,29(2)9x -=,2(2)1x -=,11x =,23x =.x 为整数,∴嘉嘉出的数是1或3.【点睛】本题考查有理数的混合运算、解一元二次方程,解答本题的关键是明确题意,列出相应的算式,。

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。

温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。

根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。

第02讲解一元二次方程——直接开方法与配方法(原卷版)

第02讲解一元二次方程——直接开方法与配方法(原卷版)

第02讲 解一元二次方程——直接开方与配方法知识点01 直接开方法解一元二次方程1. 直接开方法求p x =2的一元二次方程:由平方根的定义可知: ①0>p 时,一元二次方程p x =2有 个 的实数根,分别是 或 。

他们互为 。

②当0=p 时,一元二次方程p x =2有 个 的实数根,即。

③当0<p 时,一元二次方程p x =2 实数根。

2. 直接开方法解()p b ax =+2的一元二次方程:同样由平方根的定义可知:①当0>p 时,一元二次方程()p b ax =+2有 个 的实数根。

方程开方降次得到一元一次方程p b ax =+或p b ax -=+。

所以它的两个实数根分别是 或 。

②当0=p 时,一元二次方程()p b ax =+2有 个 的实数根。

方程开方降次得到一元一次方程0=+b ax ,所以一元二次方程的两个实数根为 。

③当0<p 时,一元二次方程b ax =+题型考点:①利用直接开方法解方程。

②根据根的情况求字母的值或取值范围。

【即学即练1】1. 方程x 2=1的根是( )A .x =1B .x =﹣1C .x =±1D .x =±22.方程(x +6)2﹣9=0的两个根是( )A .x 1=3,x 2=9B .x 1=﹣3,x 2=9C .x 1=3,x 2=﹣9D .x 1=﹣3,x 2=﹣9 3.解方程:(1)x 2﹣81=0; (2)4(x ﹣1)2=9. 【即学即练2】4.关于x 的一元二次方程x 2=a 的两个根分别是2m ﹣1与m ﹣5,则m = .【即学即练3】5.若关于x 的方程(x ﹣a )2﹣4=b 有实数根,则b 的取值范围是( )A .b >4B .b >﹣4C .b ≥4D .b ≥﹣46.如果关于x 的方程(x ﹣1)2=m 没有实数根,那么实数m 的取值范围是 .知识点02 配方法解一元二次方程1. 配方法的定义:将一元二次方程化成()p b x =+2的形式在利用直接开方法解一元二次方程的方法。

一元二次方程的解法直接开平方

一元二次方程的解法直接开平方
你能用因式分解法解下列方程吗?
1 .x2-4=0;
解:(x+2)(x-2)=0, ∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
2.(x+1)2-25=0.
解:[(x+1)+5][(x+1)-5]=0, ∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
这两个方程是否还有其它的解法?
一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做开平方法.
(1)方程x2=0.25的根是 X1=0.5, x2=-0.5 (2)方程2x2=18的根是 X1=3, x2=-3 (3)方程(x+1)2=4的根是 X1=1, x2=-3
∴x1= 9 =3, X2=- 9 =-3 (不合题意,舍去).
1.作业本; 2.课后作业选做.
知识回顾 Knowledg方法解下列方程:
(1)3x2-48=0;
(2)(2x-3)2=7
思考:
下面我们来探讨怎样解方程x2-10x+16=0 ?
想一想,你能用因式分解法或者开平方法直接解 这个方程吗?
你能将方程x2-10x+16=0 转化成x a2 b 的形
式吗?
请尝试解这个方程,并把解得的结果与你的同伴交流
)2
=(x-
3 2
)2
(3)x2-12x+ 62 =(x- 6 )2
配方时,配上的是一次项系数一半的平方.
x2+12x=-9
解:方程的两边都加上36,得 X2+12x+36=-9+36
即 (x+6)2=27.

人教部初三九年级数学上册 直接开平方解一元二次方程 名师教学PPT课件

人教部初三九年级数学上册 直接开平方解一元二次方程 名师教学PPT课件

解:系数化为1得x2 25 9
由平方根的意义得:
解:由平方根的意义得: 2x 1 3
x5 3
x1
5 3
,
x2
5 3
2x 1 3,或2x 1 3
x1
-1 2
3 ,x2
1 2
3
利用直接开平方法解下列方程
(3)、3(x 1)2 6 0
解:移项得 3(x 1)2 6 系数化为1得(x 1)2 2
人教版数学九年级上册第二十一章
21.2.1 解一元二次方程(1) ——直接开平方法
1、用直接开平方法解形如 x²=p(p≥0)或 (x+m)²=p(p≥0)的方程;
2、理解一元二次方程的解法——直接开 平方法;
3、体会一元二次方程“降次”──转化 的数学思想。
1、如果x2=a,则x叫做a的__平_方_根__; 2、如果x2=a(a≥0),则x=____; 3、如果x2=64,则x=_____.
开方得x 1 2
(4)、x2 4x 4 25
解:原方程整理得 (x 2)2 25
开方得x 2 5
x1 1 2, x2 1- 2
x1 7, x2 3
利用直接开平方法解下列方程 (5)、9x2 5 1
解:移项得 9x2 4
由平方根的意义得 原方程无实数根
直接开平方法 解一元二次方程
由平方根的意义得:
由平方根的意义得:
x 10
x 5
x1 10, x2 10
x1 5, x2 5
例1:利用直接开平方法解下列方程
(3)、4x2 100
思考:
解:两边同时 4得 x2 0的解是什么?
x2 25
x2 4呢?
由平方根的意义得:

整理直接开方解一元二次方程

整理直接开方解一元二次方程

文件编号: F1-60-A0-4A -06整理人 尼克直接开方解一元二次方程一元二次方程及其应用一、选择题1.(2016·黑龙江大庆)若x 0是方程ax 2+2x+c=0(a≠0)的一个根,设M=1﹣ac ,N=(ax 0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M=NC .M <ND .不确定 【考点】一元二次方程的解.【分析】把x 0代入方程ax 2+2x+c=0得ax 02+2x 0=﹣c ,作差法比较可得. 【解答】解:∵x 0是方程ax 2+2x+c=0(a≠0)的一个根, ∴ax 02+2x 0+c=0,即ax 02+2x 0=﹣c , 则N ﹣M=(ax 0+1)2﹣(1﹣ac ) =a 2x 02+2ax 0+1﹣1+ac =a (ax 02+2x 0)+ac =﹣ac+ac =0, ∴M=N, 故选:B .【点评】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.2. (2016·湖北黄冈) 若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2= A. -4 B. 3 C. -43 D. 43【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2= -ba ,x 1x 2=ca ,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -b a =43. 故选:D .3.(2016·四川自贡)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1D.m≤1【考点】根的判别式.【专题】探究型.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.4. (2016·新疆)一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.5. (2016·云南)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6. (2016·四川乐山·3分)若为实数,关于的方程的两个非负实数根为、,则代数式的最小值是答案:A解析:依题意,得:====,又,得,所以,当=2时,有最小值-15。

初三数学第1讲: 一元二次方程定义及解法(直接开方、配方法)教案

初三数学第1讲: 一元二次方程定义及解法(直接开方、配方法)教案

教学过程一、课堂导入1、我们都学过哪几种方程?2、观察方程0562=x,结合以前学过的知识,你能否求出它的根?++x3、今天我们就学习一种新的方程——一元二次方程.二、复习预习复习提问1.什么叫做一元一次方程?定义:只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。

一般形式:ax+b=0(a、b为常数,a≠0)。

一元一次方程标准形式:只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程。

一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a ≠0)。

其中a是未知数的系数,b是常数,x是未知数。

未知数一般设为x,y,z。

三、知识讲解考点/易错点1一元二次方程的定义1.方程的分类:通过上面的复习,引导学生答出:学过的几类方程是没学过的方程是x2-70x+825=0,x(x+5)=150.这类“两边都是关于未知数的整式的方程,叫做整式方程.”而在整式方程中,“只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.”据此得出复习中学生未学过的方程是(4)一元二次方程:x2-70x+825=0,x(x+5)=150.同时指导学生把学过的方程分为两大类:特点总结:(1)该方程为整式方程。

(2)该方程有且只含有一个未知数。

(3)该方程中未知数的最高次数是2。

一元二次方程的一般形式注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,可化为:x2+5x-150=0.从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.强调,其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.要特别注意:二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.判断方法:要判断一个方程是否为一元二次方程,先看它是否为整式方程。

如何解一元2次方程

如何解一元2次方程

如何解一元2次方程一元2次方程(Quadratic Equation)是指形如 ax² + bx + c = 0 的方程,其中a、b、c为已知数,x为未知数。

解一元2次方程的方法有以下几种:一、配方法1.当ax² + bx + c = 0 (a≠0)时,将其变形为 a(x² + bx/a) + c = 02.再将x² + bx/a配成一组平方,就有 [x + (b/2a)]² = (b²/4a²) - (c/a)3.两边开方,解得:x = [-b±√(b²-4ac)]/2a二、因式分解法当二次方程的系数都是整数时,可以尝试用因式分解法来解决。

对于形如 x²+bx+c 的方程,如果存在两个整数m和n,使得m+n=b且mn=c,那么方程就可以因式分解为(x+m)(x+n)=0,从而得到方程的解。

三、公式法二次方程有一个通用的求解公式:x = (-b±√b²-4ac) / 2a。

这个公式也叫做“根公式”。

需要注意的是,在特定情况下,使用这个公式是不可行的。

例如,当根号下的值小于0时,公式无法给出实数解。

四、图像法对于一元2次方程,其解也可以用图像方法来表示。

可以绘制出y = ax²+bx+c的图像,并通过观察判断出方程的解。

当y = ax²+bx+c的图像与x轴交于两个点时,方程存在两个实数根,当图像与x轴只有一个交点时,方程存在一个实数根,当图像与x轴不交时,方程没有实数根。

总之,方程的解法有很多种,选择什么方法取决于具体的情况和个人的习惯和技巧。

部优:《直接开平方法解一元二次方程》教学设计

部优:《直接开平方法解一元二次方程》教学设计

《直接开平方法解一元二次方程》教学设计一、教学内容分析一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视.教材曲浅入深地呈现问题,实际背景引入T从已有经验中总结解方程的一般思想方法(化归为一元一次方程)T类比解二元一次方程组的消元法得到解一元二次方程的思路(降次),即从简单、具体、特殊的一元二次方程(如x2=169, 10x6x^1500;(2X-1)2=5等)入手探索降次的一般方法(直接开平方法).其中,方程/二p, (mx+n)2二p的解法具有奠基作用,特别是对p的分类讨论,蕴含了对判别式的分类讨论,所以要认真体会分类讨论是山平方根的运算法则决定的.进一步再探究用直接开平方法解形如(mx+n)2 = (qx + k)2 , mx'+2mnx+n‘二p 的一元二次方程.整个探究过程,非常好地渗透了整体、转化和分类讨论的数学思想.因此这不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课.二、学情分析学生已经学习了数的开方,知道平方根的意义,学习了一元一次方程的解法和实际应用,知道可以利用运算律、等式的基本性质,通过去括号、移项、合并同类项等求解•学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元将它们转化为一元一次方程.这为学生学习解一元二次方程打下了方法基础.通过类比学习,学生可以很自然地接受解一元二次方程的降次思想.与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,学生可以根据方程的具体特点,选择相关的知识和方法进行求解.这为培养学生的思维品质,特别是思维的敬捷性、灵活性、深刻性,提供了很好的机会.三、教学目标1.理解直接开平方法解一元二次方程的依据是平方根的意义.2.会用直接开平方法解形如x-p, (mx+n)2二p的一元二次方程.3.会用直接开平方法解形如(mx+n)2 = (qx + k)2 , mx,+2mnx+n'二p的一元二次方程.4.通过对直接开平方法的探索,体会整体、转化、降次、分类讨论的基本思想.•重点难点根据平方根的意义,会用直接开平方法解形如X?二p, (mx+n)-p的一元二次方程;会用直接开平方法解形如(mx+n)2 = (qx + k)2 , mx'+2mnx+二p的一元二次方程.四、评价设计学习评价量表巩固方法加深理解练习1用直接开平方法解下列一元二次方程:(1)(2X-1)2=5;(2)(x+2)2二0;(3)x'+4二0:(4 ) 16(2x+l)2 二(x-3)2;(5) x'+6x+9二16.在练习1中,教师应关注学生对整体思想的运用,以及对平方根的理解.练习2将下列一元二次方程转化为形如(mx+ n)2二p的形式,再利用直接开平方法求解.(1)xJlOx+25二0;(2)4X2+16X+16=1;(3)x2x + —=1;2 16(4)9X2+6X+1=9.1•先独立完成各题,再互相纠错,弄清原因,将方程(2x-l )2 二5中的2xT看作一个整体,根据平方根的概念,得到2x-l=- 这样,我们只需解2x-l=>/5 ,2x-l=- 巧这两个一元一次方程.对于方程(X-2)2 二0,根据平方根的概念可知x+2=±J市,此时方程有两个相等的实数根X|二X2二-2.对于方程X2+4=0,将其变形为x?二-4.我们发现,根据平方根的概念,任何一个实数的平方都不可能是负数.也就是说,没有一个实数能使得方程左右两边相等,所以此方程没冇实数根.检验学生对直接开平方法解一元二次方程的掌握情况,同时检验学生对整体思想以及完全平方公式的掌握程度.的解法,依据的都是平方根的概念,将它们直接开平方求解,共同点是最终都转化为解一元一次方程,策略是通过开平方降次.时对解一元二次方程的策略降次,有感性的认识,为后续的学习打下基础,同时培养学生的概括能力. 六.板书设计直接开平方法解一元二次方程直接开平方法:例1: •将形如ax2+c二0的一元二次方程变形为X?二p,利用平方根的概念得到P20时一元二次方程的解:x二土例2:…x2二p ◄------------ (m+n )2二p(mx+n )2 = (qx+k)2mx2 +2mnx + n2=p七、达标检测与作业A级1.用直接开平方法解下列一元二次方程:(1) 4x2-9二0;(2) 3x2-1 二5;(5) (x-2)2+8=0;(6) 1(3X-1)2-8=O;(3) (2x+l)2二6;(4) (x+l)2=O;2(7) 4(X+1)2=(X-1)2;(8) X2+10X+25=3.B级2.将下列一元二次方程转化为形如(ax+b)?二c的形式,再利用直接开平方法求解.(1) X2+4X+4=2;(2) x2+x+l=l;(3) x2-6x+9=3;(4) x2+3x+-=l.4 43•某渔船出海捕鱼,2016年平均每次捕鱼量为10 t, 2018年平均每次捕鱼量为&1 t,求这两年平均每次捕鱼量的年平均下降率.4.若方程(x・a)2二b的解是x产1和X2=3,求d与b的值.C级5.解下列关于x的一元二次方程.(1) (2x-b)2=5;(2) (ax+3)2 =4;(3) (x+l)2=c.八.教学反思这节课以学生的原有知识结构为增长点和发展点,符合学生的认知规律,以学生为主体进行教学.问题的难度呈阶梯形递增,由一元二次方程X?二p到(mx+ n)2二p 再到(mx+n)2 = (qx + k)2 , mx'+2mnx+n'=p,整个探究过程非常好地渗透了整体、转化和分类讨论的数学思想.整节课课堂结构严谨,教学内容山浅入深;在课堂教学中渗透转化的数学思想,通过合作学习、师生互动探究的方式来完成教学任务;教师积极鼓励学生学习,抓住学生的闪光点及时进行评价,并且激励学生探索新知,学生也练得很扎实;多次借助预设错误,造成学生的认知冲突让学生形成能力;分层教学对于优等生、待优生和潜能生有很好的激发学习兴趣、提高做题信心的作用,教学效果良好.需要改进的地方:应该给基础薄弱的学生足够的时间,让他们自己探究,而不是被中等及以上水平的学生掩盖或代替了他们真实的学情.否则学困生体验不到学习的乐趣,长时间就会造成学习懈怠.。

一元二次方程的四种解法

一元二次方程的四种解法

一元二次方程的四种解法一元二次方程是中考的重点内容,也是初中数学学习的重点,解一元二次方程是重要的应用,不管是直接开平方,还是配方法、公式法、因式分解法等等方法解方程,四种解法各有不同,不同的依据,不同的适用范围,都需要同学们重点掌握的,然后根据题目的实际情况,选择最佳的解题方法。

下面我们通过实例讲解一元二次方程的四种解法,让同学们在考试中得心应手,同时也希望同学们谨记各部分的注意事项,记住各种方法的适用方位,在考试中灵活运用,避免出现错误。

一、直接开平方法:依据的是平方根的意义,步骤是:①将方程转化为x=p或(mx+n)=p的形式;②分三种情况降次求解:①当p>0时;②当p=0时;③当p<0时,方程无实数根。

需要注意的是:直接开平方法只适用于部分的一元二次方程,它适用的方程能转化为x=p或(mx+n)=p的形式,其中p为常数,当p≥0时,开方时要取“正、负。

二、配方法:把一般形式的一元二次方程ax+bx+c=0(a≥0)左端配成一个含有未知数的完全平方式,右端是一个非负常数,进而可用直接开平方法来求解。

一般步骤:移项、二次项系数化成1,配方,开平方根。

配方法适用于解所有一元二次方程。

三、公式法:利用求根公式,直接求解。

把一元二次方程的各系数代入求根公式,直接求出方程的解。

一般步骤为:(1)把方程化为一般形式;(2)确定a、b、c的值;(3)计算b-4ac的值;(4)当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;当b-4ac<0时,方程没有实数根。

需要注意的是:公式法是解一元二次方程的一般方法,又叫万能方法,对于任意一个一元二次方程,只要有解,就一定能用求根公式解出来。

求根公式是用配方法解一元二次方程的结果,用它直接解方程避免繁杂的配方过程。

因此没有特别要求,一般不会用配方法解方程。

四、因式分解法:先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次。

一元二次方程及其解法--直接开平方法—知识讲解

一元二次方程及其解法--直接开平方法—知识讲解

一元二次方程及其解法--直接开平方法—知识讲解解一元二次方程有多种方法,其中一种是直接开平方法。

直接开平方法的基本思想是通过将方程左边的二次项转化为一个完全平方,并利用完全平方公式求解方程。

下面,我们通过一个例子来说明直接开平方法的具体步骤:例子:解方程$2x^2+7x+5=0$。

解:首先,我们观察方程的二次项系数$a$,发现它不是$1$。

如果二次项系数$a$不是$1$,我们需要先将方程化为一元二次方程的标准形式,即首项系数为$1$的形式。

对于本例,我们可以通过除以$2$来得到方程的标准形式:$\frac{2x^2}{2} + \frac{7x}{2} + \frac{5}{2} = 0$化简得到:$x^2 + \frac{7}{2}x + \frac{5}{2} = 0$接下来,我们将方程的二次项和一次项进行拆分。

具体步骤如下:2. 将方程的常数项和第一步的结果相减,即 $\frac{5}{2} -\frac{49}{16}$。

得到:$x^2 + \frac{7}{2}x + \frac{5}{2} - \frac{49}{16} = 0$化简得到:$x^2 + \frac{7}{2}x + \frac{5}{2} - \frac{49}{16} = 0$接下来,我们将方程进行重组。

具体步骤如下:1. 括号中的第一项是一个完全平方,即 $(x + \frac{7}{4})^2$。

2. 括号中的第二项是一个完全平方,即 $(\frac{5}{4} -\frac{49}{16})$。

得到:$(x + \frac{7}{4})^2 - (\frac{49}{16} - \frac{20}{16}) = 0$化简得到:$(x + \frac{7}{4})^2 - \frac{29}{16} = 0$最后,我们可以得到方程的解。

具体步骤如下:1. 移项得到 $(x + \frac{7}{4})^2 = \frac{29}{16}$。

解一元二次方程(直接开平方、配方法、配方法的应用)(解析版)

解一元二次方程(直接开平方、配方法、配方法的应用)(解析版)

解一元二次方程(直接开平方、配方法、配方法的应用)【知识梳理】一.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.二.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.三、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【考点剖析】题型一、用直接开平方法解一元二次方程例1.解方程(1)3x 2-24=0; (2)5(4-3n)2=320.【答案与解析】(1)把方程变形为3x2=24,x2=8.开平方,得原方程的根为x=或x=-.(2)原方程可化为(4-3n)2=64, 2222()a ab b a b ±+=±所以有4-3n=8或4-3n=-8.所以,原方程的根为n=-或n=4.【总结升华】应当注意,形如=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.例2.解方程(x-3)2=49.【答案与解析】把x-3看作一个整体,直接开平方,得x-3=7或x-3=-7.由x-3=7,得x=10.由x-3=-7,得x=-4.所以原方程的根为x=10或x=-4.【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.【变式1】用直接开平方法求下列各方程的根:(1)x2=361;2;(3)5a2-1=0;(4)-8m2+36=0.【答案】(1)∵x2=361,∴x=19或x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴y=6或y=-6.(3)∵5a2-1=0,5a2=1,a2=,∴a=或a=-.(4)∵-8m2+36=0,-8m2=-36,m2=,∴m=或m=-.【变式2】解方程:4(x+3)2=25(x﹣2)2.【答案】解:4(x+3)2=25(x﹣2)2,开方得:2(x+3)=±5(x﹣2),解得:,.题型二、用配方法解一元二次方程例3.用配方法解方程x2-7x-1=0.【答案与解析】将方程变形为x2-7x=1,两边加一次项的系数的一半的平方,得x2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x=+或x=-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行:(1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1;(2)把常数项移到方程的右边;(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程;(4)用直接开平方的方法解此题.【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0.【答案】(1)方程变形为x2-4x=2.两边都加4,得x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2=或x-2=-.于是,原方程的根为x =2+或x =2-. (2)将常数项移到方程右边x2+6x =-8.两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x =-2或x =-4.例4.用配方法解方程:22330x x −−=. 【答案与解析】解:∵22330x x −−=, ∴233022x x −−= ∴23993216162x x −+=+ , ∴2333416x ⎛⎫−= ⎪⎝⎭∴1233,44x x +== .【总结升华】原方程的二次项系数不为1,必须先化成1,才能配方.配方时,方程左右两边同时加上一次项系数一半的平方,配成的形式,然后用直接开平方法求解即可.【变式】 用配方法解方程 (1)2x 2+3=5x (2)【答案】(1) ()()20x m n n +=≥20x px q ++=2235x x +=2253x x −=−. (2)①当时,此方程有实数解, ;②当时,此方程无实数解.例5.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数 【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.例6.用配方法说明: 代数式 x 2+8x+17的值总大于0. 【答案与解析】 25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p p x px q ++=−+224()24p p q x −+=240p q −≥12x x ==240p q −<221078M a b a =+−+2251N a b a =+++M N −22221078(51)M N a b a a b a −=+−+−+++2222107851a b a a b a =+−+−−−−29127a a =−+291243a a =−++2(32)30a =−+>x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x 取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.【变式1】求代数式 x 2+8x+17的最小值【答案】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x2+8x+17的最小值是1.【变式2】用配方法证明的值小于0.【答案与解析】 证明:. ∵ ,∴ ,即.故的值恒小于0. 【总结升华】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致.【变式3】求证:代数式3x 2﹣2x+4的值不小于. 【答案】 解:3x2﹣2x+4=3(x2﹣x+)﹣+4=3(x ﹣)2+ 21074x x −+−22271074(107)410410x x x x x x ⎛⎫−+−=−+−=−−− ⎪⎝⎭27494910410400400x x ⎛⎫=−−+−− ⎪⎝⎭274910420400x ⎡⎤⎛⎫=−−−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=−−+−=−−− ⎪ ⎪⎝⎭⎝⎭2710020x ⎛⎫−−≤ ⎪⎝⎭271111002040x ⎛⎫−−−< ⎪⎝⎭210740x x −+−<21074x x −+−11323191313113∵3(x ﹣)2≥0,∴3(x ﹣)2+≥,即代数式3x2﹣2x+4的值不小于.例7.已知2226100a b a b +−++=,求100123a b −⋅−⋅的值.【思路点拨】采用配方法求出,a b 的值,代入计算即可得到答案.【答案与解析】解:由题意可得:2221690a a b b −++++=()()22130a b −++=∴10a −=,30b +=∴1,3a b ==−将1,3a b ==−代入得:(11002133213−⨯−⨯−=+=【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.例8.若实数满足,则)A.B.C.D.【答案】C ; 【解析】对已知等式配方,得,∴..故选C.【总结升华】本例是配方法在求值中的应用,将原等式左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 1313113113113x y ,224250x y x y +−−+=132+3+3−2210x y −+−=2()()21x y ==,3====+【变式】(1)2x 2+6x −3的最小值是 ;(2)−x 2+4x +5的最大值是 .【答案】(1); 所以2x 2+6x −3的最小值是 (2)所以−x 2+4x +5的最大值是9.例9. 分解因式:.【答案与解析】.【总结升华】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.【过关检测】一、单选题 1.(广东清远·九年级统考期末)将方程2420x x ++=配方后,原方程变形为( )A .2(22)x +=B .2(4)3x +=C .2(2)3x +=−D .2(2)5x +=−【答案】A【分析】用配方法解一元二次方程即可.【详解】解:由题意知,方程2420x x ++=配方后,方程变形为2(22)x +=, 故选:A . 【点睛】本题考查了配方法解一元二次方程.解题的关键在于正确的运算.2.(2023·河北衡水·统考二模)某数学兴趣小组四人以接龙的方式用配方法解一元二次方程,每人负责完成一个步骤,如图所示,老师看后,发现有一位同学所负责的步骤是错误的,则这位同学是( )222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+−=+−=++−−=+−⎢⎥⎣⎦152−22222245(4)5(422)5(2)9x x x x x x x −++=−−+=−−+−+=−−+42221x x ax a +++−42221x x ax a +++−4222221x x x ax a =+−++−4222212x x x ax a =++−−+()()2221x x a =+−−()()22(1)(1)x x a x x a =++−+−+A .甲B .乙C .丙D .丁【答案】D 【分析】根据配方法解一元二次方程的步骤即可得出结果.【详解】解:228=0x x −−228x x −=22181x x −+=+()219x −=∴13x −=±解得:124,2x x ==−,丁同学是错的,故选:D .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法解一元二次方程的步骤是解题的关键. 3.(2023·贵州贵阳·统考一模)解一元二次方程2420x x =++时,配方后得到方程()22x c +=,则c 等于( )A .6B .4C .2D .2− 【答案】C【分析】先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方的形式,从而求得c.【详解】解:2420x x ++=,242x x ∴+=−, 2442x x ∴++=,()222x ∴+=,2c ∴=. 故选:C .【点睛】本题主要考查了解一元二次方程的配方法,熟练掌握用配方法解一元二次方程的一般步骤是解答关键.4.(2023·北京东城·统考一模)用配方法解一元二次方程2630x x ++=时,将它化为2()x m n +=的形式,则m n −的值为( ) A .6− B .3− C .0 D .2【答案】B 【分析】由2630xx ++=,配方可得()236x +=,进而可得m n ,的值,然后代入m n −,计算求解即可.【详解】解:∵2630x x ++=,∴2696x x ++=,∴()236x +=,∴3m =,6n =, ∴3m n −=−, 故选:B .【点睛】本题考查了配方法解一元二次方程,代数式求值.解题的关键在于正确的配方求出m n ,的值. 5.(2023·江苏扬州·统考一模)已知2240y x −+=,则222x y x ++的最小值是( ) A .8 B .8− C .9− D .9【答案】A【分析】由已知得224y x =−,注意x 的取值范围,代入222x y x ++再配方,利用非负数的性质即可求解. 【详解】解:∵2240y x −+=,∴224y x =−,且240x −≥即2x ≥,∴2222422x y x x x x +=−+++ 2448x x +=+−()228x =+−, ∵()220x +≥,2x ≥∴当2x =时,222x y x ++的最小值是8,故选:A .【点睛】本题考查的是配方法的应用,非负数的性质,代数式求值,掌握完全平方公式及确定x 的取值范围是解决问题的关键.6.(2022·山东德州·统考中考真题)已知2P x x =−,2Q x =−为任意实数,则P Q −的值( ) A .大于0 B .等于0C .小于0D .无法确定【答案】A【分析】根据整式的加减化简,然后根据配方法得出P Q −()2=110x −+>,即可求解.【详解】解:∵2P x x =−,2Q x =−∴P Q −()()222222110x x x x x x =−−−=−+=−+> ∴P Q −的值大于0, 故选:A .【点睛】本题考查了整式的加减,配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.【答案】D【分析】先二次项化系数为1,将常数项移到方程的右边,然后方程两边同时加上一次项系数的一半,即可求解.【详解】解:221210x x −+=二次项化系数为1得:21602x x −+=移项得:2162x x −=−配方得:216992x x −+=−整理得:()21732x −=故选:D .【点睛】本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.二、填空题8.(2022秋·广东佛山·九年级校考期中)一元二次方程2450x x −−=配方后得()2x m n −=,则m n +的值为 _____. 【答案】11【分析】移项后,方程两边同时加上一次项系数一半的平方进行配方,然后可得m 、n 的值,再进行计算即可.【详解】解:移项得245x x −=,配方得24454xx −+=+,即()229x −=,∴2m =,9n =, ∴11+=m n , 故答案为:11.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.9.(2022秋·广东梅州·九年级统考期中)代数式2613a a −+可化为()2269434a a a −++=−+;无论a 取何值()230a −≥,所以()a −+≥2344,即()234a −+有最小值为4.仿照上述思路,代数式248a a −+−的最大值为__________. 【答案】4−【详解】解:248a a −+−()2444a a =−−+−()224a =−−−,∵无论a 取何值,都有()220a −≥,∴()2244a −+≥, ∴()2244a −−−≤−,即()224a −−−有最大值4−,∴248a a −+−的最大值为4−,故答案为:4−.【点睛】本题主要考查了配方法的应用,正确理解题意是解题的关键.【答案】 16 4 36 6【分析】(1)所填的常数项为一次项系数一半的平方; (2)所填的常数项为一次项系数一半的平方;(3)所填的常数项为一次项系数一半的平方,运用配方法的运算方法,也可以直接利用完全平方公式:222)2(a ab b a b ±+=±得出结论.【详解】解:(1)22816(4)x x x ++=+.故答案为:①16; (2)22933()42x x x −+=−故答案为:②94;(3)221236(6)x x x −+=−故答案为:③36,④6.【点睛】此题主要考查了配方法的应用,解题的关键是掌握配方的过程中应注意不能改变原式的大小. 11.(2021秋·陕西渭南·九年级统考阶段练习)用配方法将方程220x x +=进行配方得___________.【答案】2(1)1x +=【分析】在左右两边同时加上一次项系数2的一半的平方,即可求解.【详解】解:220x x +=,方程两边加上1,2211x x ++=,即()2x 11+=,故答案为:()2x 11+=.【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.12.(2023·全国·九年级专题练习)一元二次方程2820x x −−=,配方后可变形为 ____.【答案】()2418x −=【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:282x x −=,281618x x −+=,()2418x −=,故答案为:()2418x −=.【点睛】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.13.(2022秋·全国·九年级专题练习)当=a _____时,代数式269a a −−有最小值为______. 【答案】 3 18−【分析】根据偶次方的非负性可知2(3)0a −≥,当30a −=时有最小值,进而可求解. 【详解】解:2269(3)18a a a −−=−−, 2(3)0a −≥∴当30a −=时代数式269a a −−取得最小值,最小值为18−,即3a =时,代数式269a a −−的最小值为18−,故答案为:3;18−.【点睛】本题主要考查了配方法、偶次方的非负性,掌握偶次方的非负性是解题的关键.14.(2022秋·江苏盐城·九年级校考阶段练习)已知实数a ,b 满足1b a =+,则代数式2265a b a +−+的最小值等于__________. 【答案】3【分析】将1b a =+代入代数式,根据配方法即可求解. 【详解】解:∵1b a =+∴2265a b a +−+()22165a a a =++−+247a a =−+()223a =−+,∵()220a −≥, ∴()2233a −+≥,故答案为:3.【点睛】本题考查了配方法的应用,掌握配方法是解题的关键.15.(2023秋·辽宁丹东·九年级校考期中)将方程2890x x −−=化为()2x h k +=形式,则h =______,k =______.【答案】 4− 25【分析】把常数项移到等号的右边,等式两边同时加上一次项系数一半的平方,配成完全平方公式即可.【详解】解:∵2890x x −−=,∴289x x −=,配方得2816916x x −+=+,即()2425x −=,∴4h =−,25k =, 故答案为:4−,25.【点睛】本题考查配方法解一元二次方程,解题时要注意步骤,选择用配方法解一元二次方程时,先将常数1,然后进行配方.16.(2022秋·福建宁德·九年级统考阶段练习)若将方程261x x +=化为()210x m +=,则m =___________. 【答案】3【分析】此题实际上是利用配方法解方程.配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:在方程261x x +=的两边同时加上一次项系数的一半的平方,得222631+3x x ++=,配方,得2310x +=().所以,=3m . 故答案为:3.【点睛】本题考查了解一元二次方程——配方法.掌握配方法解是解题的关键.17.(2023·浙江台州·统考一模)已知点(),A a b 在一次函数21y x =−图象上,则23a b ++的最小值为______. 【答案】1 【分析】将点(),A a b 代入一次函数解析式得出,21b a =−,代入代数式,根据配方法即可求解.【详解】解:∵点(),A a b 在一次函数21y x =−图象上,∴21b a =−∴23a b ++2213a a =+−+2211a a =+++()2111a =++≥故答案为:1.【点睛】本题考查了一次函数的性质,配方法的应用,熟练掌握以上知识是解题的关键.【答案】4【分析】将22326x y x +=适当变形得到用含有x 的代数式表示22x y +的形式,再利用配方法变形后,根据x 的取值范围即可解答.【详解】解:∵22326x y x +=,∴()22226x y x x +=−+,∴222211923(3)222x y x x x +=−+=−−+,∵22326x y x +=,22362x xy −+∴=,∵20y ≥23602x x −+∴>∴02x ≤≤ ∴当2x =时22x y+的最大值为()21923422−−+=.故答案为4.【点睛】本题主要考查了代数式的极值、配方法等知识点,利用配方法对式子灵活变形是解题的关键. 三、解答题19.(2022秋•江都区期中)解方程:(1)4x 2=49; (2)(2x ﹣1)2﹣25=0. 【分析】(1)首先将方程整理为x2=,再利用平方根的意义直接开方求解即可;(2)首先将方程整理为(2x ﹣1)2=25的形式,再利用平方根的意义直接开方求解即可. 【解答】解:(1)4x2=49, x2=,∴,∴x1=,x2=﹣; (2)(2x ﹣1)2﹣25=0, (2x ﹣1)2=25, ∴2x ﹣1=±5, ∴x1=3,x2=﹣2.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a (a ≥0);ax2=b (a ,b 同号且a ≠0);(x+a )2=b (b ≥0);a (x+b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. 20.(2023·全国·九年级专题练习)用配方法解方程:2410x x ++=【答案】12x =−22x =−【分析】先利用配方法得到()223x +=,然后利用直接开平方法解方程.【详解】解:2410x x ++=,移项得:241x x +=−,配方得:24414xx ++=−+,即()223x +=,开平方得:2x +=解得:12x =−22x =−.【点睛】本题考查了运用配方法解一元二次方程,熟练掌握解一元二次方程的方法步骤是解题的关键. 21.(2022秋·贵州黔西·九年级校联考阶段练习)先阅读,后解题. 已知2226100m m n n ++−+=,求m 和n 的值.解:将左边分组配方:()()2221690.m m n n +++−+=即22(1)(3)0m n ++−=.2(1)0m +≥,2(3)0n −≥,且和为0,2(1)0m ∴+=且2(3)0n −=,1m ∴=−,3n =.利用以上解法,解下列问题:(1)已知:224250x x y y ++−+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+−且ABC 为直角三角形,求c . 【答案】(1)2x =−,1y =(2)5c =或c =【分析】1()由题意把等式变形为非负数的和等于0的形式,利用非负数的性质即可求解; 2()由题意把等式变形为非负数的和等于0的形式,求得a b 、的值,然后根据勾股定理可求解.【详解】(1)解:∵224250x x y y ++−+=,()()2244210xx y y +++−+=,即()()22210x y ++−=,∵()220x +≥,()10y −≥2,且()()22210x y ++−=,∴()220x +=且()210y −=,2x ∴=−,1y =;(2)解:∵228625a b a b +=+−,方程变形为()()22430a b −+−=,∴()240a −≥,()230b −≥,∴4a =,3b =,ABC 为直角三角形,∴当4a =,3b =是直角边时,则5c =;当4a =是斜边,3b =是直角边时,则c =5c ∴=或c =【点睛】本题主要考查配方法的应用及勾股定理,熟练掌握配方法的应用及勾股定理是解题的关键.【答案】(1)见解析(2)t=32,S 最大值【分析】(1)仿照例题,利用配方求解即可.(2)先求s ,再利用配方求最值即可.【详解】(1)证明:(1)247y x x =−+2443x x =−++()223x =−+.∵()220x −≥.∴033y ≥+=.∴0y >.∴y 是正数.(2)解:∵2AP t =,CQ =,62PC t =−.0t ⎛ ⎝≤ ∴12S PC CQ =⋅ ()1622t =−2=+)23t t =− 232t ⎫=−⎪⎭ ∵2302t ⎛⎫−≥ ⎪⎝⎭.∴当32t =时,S【点睛】本题考查利用配方求最值,正确配方是求解本题的关键. 23.(2022秋·广西柳州·九年级统考期中)阅读材料数学课上,韦老师在求代数式245x x −+的最小值时,利用公式()2222a ab b a b ±=±+,对式子作如下变形∶()2224544121x x x x x −+=−++=−+,∵()220x −≥,∴()2211x −+≥当2x =时,()2211x −+=,∴当2x =时,()221x −+有最小值1,即245x x −+的最小值为1.通过阅读,解决下列问题∶(1)当x =___________时,代数式()2254x −+有最小值为___________ (2)代数式 221x x ++的最小值为___________(3)当x 取何值时,代数式263x x −++的有最大或最小值,并求出最大或最小值.【答案】(1)5,4(2)0(3)当3x =时,263x x −++有最大值,最大值是12【分析】(1)由22(5)0x −…可得()22544x −+≥,从而判断它在5x =时取最小值; (2)配方可得2(1)x +,根据2(1)0x +…,即可得出结论; (3)提取1−,然后配方得2(3)12x −−+,根据2(3)0x −−…可得结论. 【详解】(1)解:(1)22(1)0x −…, ()22544x −+≥∴,当5x =时,取到等号,∴当5x =时,22(1)4x −+有最小值,最小值为:4;故答案为5,4;(2)解:2221(1)x x x ++=+,当=1x −时,221x x ++有最小值,最小值为:0;故答案为0;(3)解:263x x −++2(69)93x x =−−+++2(3)12x =−−+,2(3)0x −−…,2(3)1212x ∴−−+…,当3x =时,取到等号,∴当3x =时,263x x −++有最大值,最大值为12.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.【答案】(1)2ax b +(2)①240b ac −≥,②ba −;c a(3)见解析【分析】(1)根据完全正确平方公式求解即可;(2)根据二次根式有意义条件求解即可;(3)用配方法解方程即可求出方程的解,再分别代入计算即可12x x +与12x x 计算即可求解.【详解】(1)解:∵2222444a x abx b ac b +++=,∴()2242c a b b x a =−+;(2)解:①一元二次方程()200ax bx c a ++=≠有实根的条件是:240b ac −≥;②12x x +2b b b a a −−==−,12x x =()2224b a −−=244ac c a a −=−=;(3)解:2410x x −−=,241x x −=,24414x x −+=+,()225x −=,2x −=12x =22x =∴12224x x +=,(22122221x x ==−=−.【点睛】本题考查用配方法解一元二次方程,熟练掌握解一元二次方程—配方法是解题的关键. 时,22x y +=时,22x y +=时,x 时,x 【答案】(1)=(2)222x y xy +≥,理由见解析;(3)代数式224+x x 的最小值为8.【分析】(1)求得2218x y +=,218xy =,得到222x y xy +=; (2)结合完全平方的非负性即可解答;(3)利用归纳的结论即可求解.【详解】(1)解:当3x =,3y =时,2218x y +=,218xy =,222x y xy ∴+=, 故答案为:=;(2)解:222x y xy +≥,理由如下,∵2222()0x xy y x y −+=−≥,∴222x y xy +≥;(3)解:∵222x y xy +≥,∴22224428x x x x +≥⋅=,∴代数式224+x x 的最小值为8. 【点睛】本题考查了配方法的应用,利用完全平方非负数的性质是解题关键.()212122⨯++= ()3131232⨯+++= 1234+++=(1)第4个图形对应的等式为______;【答案】(1)()515123452⨯+++++=(2)10【分析】(1)根据图形规律第四个图形多一行5个的点,直接列式即可得到答案;(2)根据题意找到图形点数规律列式求解即可得到答案;【详解】(1)解:由题意可得,第四个图形总点数可列为:()515123452⨯+++++=, 故答案为:()515123452⨯++++=; (2)解:由题意可得,每一个图形的行数比个数多1,每行的数字从1开始逐渐加1,∴第n 个图形的点数为:(1)(11)(1)(2)1234.....(1)22n n n n n n ++++++++++++==,∴()()12662n n ++=, 整理得+−=231300n n ,解得110n =,213n =−(舍去),∴n 的值为10;【点睛】本题考查图形规律问题及解一元二次方程,解题的关键是根据题意找到图形规律.。

一元二次方程的解法直接开方配方公式分解因式及根与系数的关系

一元二次方程的解法直接开方配方公式分解因式及根与系数的关系

一元二次方程 直接开平方法一、选择题1、以下方程中,是一无二次方程的个数〔 〕5x 2+1=0 3x 2+x1+1=0 4x 2=ax (其中a 为常数) 2x 2+3x =0 5132+x =2x 22)(x x + =2xA 、2个B 、3个C 、4个D 、5个 x 2-2x =0的二次项、一次项、常数项依次是x 2,2x ,0 x 2,-2x ,无常数项x 2,0,2x x 2,-2x ,0x 2-3=(3-2)x 化为一般形式,它的各项系数之和是 A.2 B.-2 C.32- D.3221-+ x 的方程a (x -1)2=2x 2-2是一元二次方程,那么a 的值是B.-2x =1是方程ax 2+bx +c =0的解,那么A.a +b +c =1B.a -b +c =0C.a +b +c =0D.a -b -c =0二、填空题6.将方程-5x 2+1=6x 化为一般形式为__________.将方程(x +1)2=2x 化成一般形式为________.7.假设ab ≠0,那么a 1x 2+b1x =0的常数项是__________. 8.如果方程ax 2+5=(x +2)(x -1)是关于x 的一元二次方程,那么a __________.9.关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m __________时,是一元一次方程.三、解答题10.用直接开平方法解方程(1)x 2=49; (2)x 2=1.96; (3)3x 2-48=0;(4)4x 2-1=0; (5)(x -1)2=144; (6)(6x -7)2-9=0.配方法一、填空题x 2+2x -1=0时①移项得_______________________②配方得_______________________③变形 即〔x +_______________〕2=_______________④开方x +_____________=_____________或x +______________=_______________ ⑤定解x 1=_______________,x 2=_______________x 2-4x -1=0①化系数为1方程两边同时除以2得___________________②移项得_______________________③配方及变形得_______________________④方程两边开方得_______________________⑤x 1=_______________,x 2=_______________二、选择题x 2-2x -m =0,用配方法解该方程,配方后的方程为〔 〕A.(x -1)2=m 2+1B.(x -1)2=m -1C.(x -1)2=1-mD.(x -1)2=m +1x 2+x =2,应把方程的两边同时〔 〕41 21 41 21 xy =9,x -y =-3,那么x 2+3xy +y 2的值为〔 〕 B.9三、解答题用配方法解以下方程:6(1)x 2+12x =0; (2)x 2+12x +15=0(3)x 2-7x +2=0;(4)9x 2+6x -1=0; (5)5x 2-2=-x ; (6) 41x 2-6x +3=07.如图,在△ABC 中,∠B =90°点P 从点A 开场,沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开场,沿BC 边向点C 以2 cm/s 的速度移动,其中AB=6 cm ,BC=8 cm ,如果P 、Q 分别从A 、B 同时出发,多少秒后△PBQ 的面积等于8 cm 2.公式法一、填空题ax2+bx+c=0(a≠0)时:∵a≠0,方程两边同时除以a得__________________,移项得__________配方得__________即〔x+__________〕2=__________当__________时,原方程化为两个一元一次方程__________和__________ ∴x1=__________,x2=____________x2-8=7x化为一般形式是____________,a=________,b=________,c=________, 方程的根x1=__________,x2=__________.二、选择题x2+3x=14的解是〔〕A.x=2653±B.x=2653±-C.x=2233±D.x=2233±-4.假设方程〔x-2〕2=a-4有实数根,那么a的取值范围是________5 . 对于任意实数m,关于x的方程()()m x mx m2221240+-++=一定〔〕A. 有两个正的实数根B. 有两个负的实数根C. 有一个正实数根、一个负实数根D. 没有实数根6.假设x=1是方程〔k-1〕x2+〔k2-1〕x-k+1=0的一个根,那么k值满足〔〕.A.k=±1 B.k=1 C.k=-1 D.k≠±1三、解答题7.用公式法解以下各方程〔1〕.5x2+2x-1=0 〔2〕.6y2+13y+6=0 〔3〕.x2+6x+9=7因式分解法一、填空题1.如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________.x 2-16=0,可将方程左边因式分解得方程__________,那么有两个一元一次方程____________或____________,分别解得:x 1=__________,x 2=__________. x (x +5)=5(x +5)的过程解:3x (x +5)__________=0(x +5)(__________)=0∴x +5=__________或__________=0∴x 1=__________,x 2=__________〔1〕通过移项,将方程右边化为零〔2〕将方程左边分解成两个__________次因式之积〔3〕分别令每个因式等于零,得到两个一元一次方程〔4〕分别解这两个__________,求得方程的解二、选择题x 2-x =0的根为〔 〕A.x =0B.x =1C.x 1=0,x 2=1D.x 1=0,x 2=-1 x (x -1)=2的两根为〔 〕A.x 1=0,x 2=1B.x 1=0,x 2=-1C.x 1=1,x 2=-2D.x 1=-1,x 2=2ax (x -b )+(b -x )=0的根是〔 〕A.x 1=b ,x 2=aB.x 1=b ,x 2=a 1C.x 1=a ,x 2=b1 D.x 1=a 2,x 2=b2 a 2-5ab +6b 2=0,那么ab b a 等于 21331D.2 31321C.2 31B.3 21A.2或或 三、解方程1.x 2-25=02.(x +1)2=(2x -1)23.x 2-2x +1=44.x 2=4x根与系数的关系一. 填空题1. 如果x x 12、是方程x x 2720-+=的两个根,那么x x 12+=____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习过程
一、复习预习
1.复习提问
(1)什么叫整式方程?举两例,一元一次方程及一元二次方程的异同?
(2)平方根的概念及开平方运算?
2.引例:解方程x2-4=0.
解:移项,得x2=4.
两边开平方,得x=±2.
∴x1=2,x2=-2.
分析x2=4,一个数x的平方等于4,这个数x叫做4的平方根(或二次方根);据平方根的性质,一个正数有两个平方根,它们互为相反数;所以这个数x为±2.求一个数平方根的运算叫做开平方.由此引出上例解一元二次方程的方法叫做直接开平方法.使学生体会到直接开平方法的实质是求一个数平方根的运算.
二、知识讲解
考点1
直接开平方法解一元二次方程
考点2
灵活运用因式分解法和直接开平方法解一元二次方程
形如的方程,既可用因式分解法分解,也可用直接开平方法解。

【例】运用因式分解法和直接开平方法解下列一元二次方程。

三例题精析
【例题1】
【题干】解方程9x2-16=0.[答案】
【解析】解:移项,得:9x2=16,
【例题2】
【题干】解方程(x+3)2=2.
【答案】
【解析】分析:把x+3看成一个整体y.
例2把引例中的x变为x+3,反之就应把例2中的x+3看成一个整体,
两边同时开平方,将二次方程转化为两个一次方程,便求得方程的两个解.可以说:利用平方根的概念,通过两边开平方,达到降次的目的,化未知为已知,体现一种转化的思想.
【例题3】
【题干】解方程(2-x)2-81=0.
【答案】x1=-7,x2=11.
【解析】解法(一)
移项,得:(2-x)2=81.
两边开平方,得:2-x=±9
∴2-x=9或2-x=-9.
∴x1=-7,x2=11.
解法(二)
∴(2-x)2=(x-2)2,
∴原方程可变形,得(x-2)2=81.
两边开平方,得x-2=±9.
∴x-2=9或x-2=-9.
∴x1=11,x2=-7.
比较两种方法,方法(二)较简单,不易出错.在解方程的过程中,要注意方程的结构特点,进行灵活适当的变换,择其简捷的方法,达到又快又准地求出方程解的目的.
【例题4】
【题干】(2011•柳州)方程x2﹣4=0的解是()
A、x=2
B、x=﹣2
C、x=±2
D、x=±4
【答案】C.
【解析】考点:解一元二次方程-直接开平方法。

专题:计算题。

分析:方程变形为x2=4,再把方程两边直接开方得到x=±2.
解答:解:x2=4,
∴x=±2.
故选C.
点评:本题考查了直接开平方法解一元二次方程:先把方程变形为x2=a(a≥0),再把方程两边直接开方,然后利用二次根式的性质化简得到方程的解.
三、课堂运用
【基础】
1、(2011•柳州)方程x2﹣4=0的解是()
A、x=2
B、x=﹣2
C、x=±2
D、x=±4
2.(2011,台湾省,29,5分)若方程式(3x﹣c)2﹣60=0的两根均为正数,其中c为整数,则c的最小值为何?()
A、1
B、8
C、16
D、61
3、(2011江苏淮安,13,3分)一元二次方程x2-4=0的解是 .
[巩固]
1.(2011山东淄博14,4分))方程x2﹣2=0的根是.
2.(2011黑龙江省黑河,7,3分)一元二次方程a2﹣4a﹣7=0的解为,
a2=2.
3.若方程x2-c=0的一个根为-3,则方程的另一个根为()A.3 B.-3 C.9 D.- 3
[拔高]
A.3 B.-3 C.±3 D.无实数根
2.(2011•柳州)方程x2﹣4=0的解是()
A、x=2
B、x=﹣2
C、x=±2
D、x=±4
3.(2011,台湾省,29,5分)若方程式(3x﹣c)2﹣60=0的两根均为正数,其中c为整数,则c的最小值为何?()
A、1
B、8
C、16
D、61
课程小结
本节课我们学习了哪些知识?本节课我们研究的是一元二次方程的解法---直接卡方法,直接开平方法解一元二次方程
课后作业
【基础】
1、(2011江苏淮安,13,3分)一元二次方程x2-4=0的解是 .
2.(2011山东淄博14,4分))方程x2﹣2=0的根是.
3.(1)28)32(72=-x ;
【巩固】
1、、用直接开平方法解方程8)3(2
=-x ,得方程的根为( ) A 、323+=x B 、223-=x
C 、2231+=x ,2232-=x
D 、3231+=x ,3232-=x
2.(2011成都,1,3分)4的平方根是()
A.±16 B.16 C.±2 D.2
【拔高】
1.(2011江苏南京,1,2)
A、3
B、﹣3
C、±3 D
2.(2011山东日照,1,3分)(﹣2)2的算术平方根是()
A.2 B.±2 C.﹣2 D.2。

相关文档
最新文档