汽轮机叶轮振动分析
汽轮机振动的原因分析及处理对策研究
汽轮机振动的原因分析及处理对策研究一、汽轮机振动的原因分析1. 设计问题汽轮机振动问题的根源之一是设计问题。
如果在汽轮机设计过程中,对其结构、叶轮、轴承等部件的设计没有进行充分考虑,就会导致汽轮机在运行时产生不必要的振动。
设计问题主要表现在结构刚度不足、零部件匹配不良、动转子不平衡等方面。
2. 运行问题汽轮机在长时间运行过程中,会产生磨损和劣化,这些问题也是振动的主要原因之一。
汽轮机轴承的磨损会导致轴承空隙增大,从而增加了振动的产生;轴承因摩擦磨损而引起的不平衡也是振动的一大问题。
3. 维护问题汽轮机的维护问题也是导致振动的原因之一。
如果汽轮机的维护不到位,导致零部件损坏、润滑不良等问题,都会引起汽轮机的振动。
4. 控制问题汽轮机振动的原因还可能包括控制问题,例如系统稳定性差、控制参数不合理等。
如果汽轮机的控制系统存在问题,就有可能导致汽轮机振动不稳定,甚至失控。
5. 外部环境问题外部环境的影响也是汽轮机振动的一个重要原因。
风、水、地震等外部因素都有可能引起汽轮机的振动。
特别是在一些特殊的作业环境中,外部环境因素可能会对汽轮机振动产生更大的影响。
二、汽轮机振动的处理对策针对汽轮机振动问题,首先需要进行设计优化。
在汽轮机的设计过程中,应该充分考虑结构强度、材料性能等因素,采用合理的设计手段来降低振动产生的可能性。
这包括提高结构刚度、优化叶片设计、加强轴承支撑等措施。
对汽轮机的运行状态进行实时监测是降低振动的有效手段。
通过使用振动传感器等设备,可以实时监测汽轮机的振动情况,及时发现振动异常,从而进行及时处理。
加强汽轮机的维护保养工作也是降低振动的关键。
定期进行设备检修、更换磨损零部件、加强润滑保养,能够有效延长汽轮机设备的使用寿命,降低振动的产生。
汽轮机控制系统的合理调节也是降低振动的一项重要措施。
通过优化汽轮机的控制参数,提高控制系统的灵敏度和稳定性,可以有效降低汽轮机的振动。
5. 防护措施为了减小外部环境对汽轮机振动的影响,可以在汽轮机周围设置振动吸收装置,减小外部振动对汽轮机的影响,从而降低汽轮机振动问题的发生。
汽轮机叶片振动特性与强度分析
766.62
976.08 1094.2 1157.6 1197.1 1227.8
1257.3 1289.6
794.21
999.49 1119.7 1186.1 1228.6 1262.5
1295.1 1330.3
k=7
k=6 k=5 k=4 k=3 k=2 k=1
一节径 二节径 三节径 四节径 五节径 六节径 七节径 八节径
800 700 600 500 400 300 200 100 0 0 3000 6000
转速 n/rpm
六节径一阶
七节径一阶 八节径一阶
9000
12000
K=6的激振频率为1200Hz,对应叶片的六节径频率为1262.5Hz,共振裕度为5.2%;在其他倍频线 与节径线均未相交,共振裕度较大,不~50%的透平事故是由叶片故障引起的。
叶片基本类型
叶片由叶根、工作部分(叶身、叶型部分)、连接件(围 带或拉金)组成。
叶根结构 (a)T型叶根;(b)外包凸肩T型叶根;(c)菌型叶根; (d)外包凸肩双T型叶根;(e)叉型叶根;(f)枞树型叶根
1256.8 1617 2088.8 2435.3
984.38
1375.4 1719.4 2214.7 2651.2
10.57%
8.62% 5.96% 5.68% 8.14%
3
4 5 6
叶片振动应力
振动应力并不反应叶片真实的受力情况,而是反映叶片各部位所 受应力的相对大小,得到叶片的应力分布情况,这对研究叶片各部位 受力很有意义。从下图中可知,叶片应力呈环层状分布,应力由叶根 向叶顶逐渐减小,由叶片中部向四周逐渐减小。最大应力出现在叶根 处,在设计中往往会采取措施减小应力集中。
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施汽轮机是一种利用蒸汽压力来驱动转子运动从而产生机械能的装置,广泛应用于发电、船舶动力、工业生产等领域。
在汽轮机运行过程中,振动问题一直是工程技术人员关注的重点,因为振动会影响汽轮机的稳定运行、安全性能和使用寿命。
本文将从汽轮机振动的大原因分析及应对措施两个方面进行探讨。
一、汽轮机振动的大原因分析1. 惯性力导致的振动汽轮机在运行时转子会因为高速旋转而产生惯性力,这种惯性力会导致轴向、径向和周向的振动。
尤其在启动和停车时,转子受到的惯性力会造成较大的振动。
汽轮机在运行过程中,由于转子的不平衡会产生不平衡力,这种不平衡力会导致转子的振动增大,严重时会引起转子破坏甚至整机故障。
汽轮机的轴承一旦出现故障,例如轴承间隙过大、轴承磨损、轴承损伤等情况都会导致汽轮机产生振动。
轴承故障还会对汽轮机的转子运动平衡性产生严重影响,加剧了振动。
4. 风叶和叶片损坏导致的振动汽轮机的风叶和叶片一旦出现损坏,例如风叶变形、断裂、叶片损伤等情况都会导致汽轮机的振动增大。
这种振动会直接影响汽轮机的运行稳定性和叶片的受力情况。
汽轮机与其连接的系统在运行时可能会出现共振现象,这种共振现象会导致振动的增大。
尤其是在系统结构设计和安装时忽略了系统动态特性,往往会造成共振现象。
二、汽轮机振动的应对措施1. 动平衡汽轮机在制造和安装后,需要进行动平衡调试。
通过动平衡调试可以减小转子的不平衡力,降低振动。
2. 定期维护和检测轴承对汽轮机的轴承进行定期的维护和检测,及时发现和处理轴承故障,确保轴承的正常运行。
3. 定期更换和检查风叶和叶片风叶和叶片是汽轮机的重要零部件,应定期进行更换和检查,避免因为风叶和叶片的损坏导致振动的增大。
4. 振动监测系统安装振动监测系统,可以实时监测汽轮机的振动情况,一旦发现异常振动,及时进行处理。
5. 结构设计和安装时考虑系统共振问题在汽轮机的结构设计和安装时,要考虑系统的动态特性,避免因为共振现象导致振动的增大。
汽轮机振动大的原因分析及其解决方法[1]..
汽轮机振动⼤的原因分析及其解决⽅法[1]..汽轮机振动⼤的原因分析及其解决⽅法[1]..汽轮机振动⼤的原因分析及其解决⽅法摘要:为了保障城市经济的发展与居民⽤电的稳定,加强汽轮机组⽇常保养与维护,保障城市供电已经成为了⽕⼒发电⼚维护部门的重要任务。
⽂章就汽轮机异常振动的原因进⾏了分析与故障的排除,在振动监测⽅⾯应做的⼯作进⾏了简要的论述。
关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象对转动机械来说,微⼩的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。
这⾥所说的振动,系指机组转动中振幅⽐原有⽔平增⼤,特别是增⼤到超过允许标准的振动,也就是异常振动。
任何⼀种异常振动都潜伏着设备损坏的危险。
⽐如轴系质量失去平衡(掉叶⽚、⼤轴弯曲、轴系中⼼变化、发电机转⼦内冷⽔路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁⼒不平衡等等都会表⾯在振动增⼤,甚⾄强烈振动。
⽽强烈振⼜会导致机组其他零部件松动甚⾄损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。
异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发⽣故障的信号。
因此,新安装或检修后的机组,必须经过试运⾏,测试各轴承振动及各轴承处轴振在合格标准以下,⽅可将机组投⼊运⾏。
振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交⽣产或投⼊正常运⾏。
⼀、汽轮机异常振动原因分析汽轮机组担负着⽕⼒发电企业发电任务的重点。
由于其运⾏时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运⾏。
汽轮机组异常振动是汽轮机常见故障中较为复杂的⼀种故障。
由于机组的振动往往受多⽅⾯的影响,只要跟机本体有关的任何⼀个设备或介质都会是机组振动的原因,⽐如进汽参数、疏⽔、油温、油质、等等。
因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。
针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。
汽轮机振动故障的原因分析与处理
汽轮机振动故障的原因分析与处理汽轮机是一种工作在高速和高温环境下的设备,在其运行过程中,振动是一种常见的问题。
由于振动对设备的结构和部件造成的磨损和损坏,以及对设备的性能和可靠性产生的影响,因此振动故障的原因分析和处理非常重要。
本文将从以下几个方面对汽轮机振动故障的原因进行分析与处理。
一、原因分析1. 设备松动或磨损汽轮机运行时,部件之间的松动或磨损会引起机组振动。
如机架、轴承、齿轮和叶片等部件在运转时出现松动,或者是由于长期摩擦而导致了磨损,都会造成机组振动。
2. 不平衡汽轮机协调运转需要保证各部件的平衡性,在某些情况下,如叶轮的制造误差或者叶片领域加工不均等,会导致汽轮机的不平衡,使其产生振动。
3. 轴承故障汽轮机轴承故障也是一种常见的振动故障。
轴承故障会导致轴承工作不稳定,引起机组的振动,严重的还会导致机组运行停顿。
4. 不良的安装环境汽轮机的操作环境也是影响机组振动的原因之一。
在安装汽轮机时,其安装环境应满足一定的要求,否则将对机组的振动稳定性产生影响。
二、处理方法1. 检查和修理损坏或松动的部件首先,要对造成汽轮机振动故障的松动或损坏的部件进行检查和维修。
对于损坏的部件,可以进行采购更换,对于松动的部件,则可以进行紧固或者更换件,保证设备的稳定性和运行性能。
对于汽轮机不平衡引起的振动故障,可以通过进行平衡调整来消除振动。
具体方法是,使用专业的平衡仪器进行平衡测试,然后根据测试结果制定相应的调整计划进行平衡调整。
当汽轮机的振动故障是由于轴承故障所导致时,应尽快更换转子上的轴承,以保证汽轮机的稳定运行。
加强安装环境,包括选择适当的土建施工方式、精确的安装的严格执行,以及采用符合要求的管理和操作程序等。
在安装中严格按照操作规程和操作标准操作,以保证设备工作在良好的安装环境下。
综上所述,汽轮机振动故障是一种常见的问题,通常是由于部件松动、磨损或不平衡、轴承故障、安装环境等原因导致。
针对不同原因,对应的处理方法也有所不同。
汽轮机叶片振动与分析
摘要电力工业为国民经济各个领域和部门提供电能,它的发展直接影响着工农业建设的速度。
为了确保实现机组的长期“安全、经济、满发”这一综合质量要求,近年来人们对叶片的振动进行了广泛深入的研究。
本论文着重阐述了汽轮机叶片的型线部分受力计算方法和避免叶片共振的措施。
介绍了汽轮机叶片的结构形式、叶片受力分析的方法。
介绍了叶片振动产生的原因、机理和振动类型。
在叶片受力分析之后,提出叶片振动频率的计算方法。
在介绍了叶片的振动特性和调频安全准则后,提出避免叶片产生共振的措施和建议。
介绍了叶片静频率和动频率的实测方法并且对目前比较先进的实时监测仪器作了简单的介绍和对比分析。
在大量收集资料和阅读相关文章的过程中,对汽轮机叶片振动产生的原因、机理以及类型有了深刻的了解,完成毕业论文。
关键词:汽轮机;叶片;振动:$AbstractThe electric power industry provides the electrical energy for national economy each domain and the department, its development is affecting the industry and agriculture construction speed directly. In order to guarantee the realization unit long-term “the security, the economy, completely sends” this comprehensive quality requirement, in recent years the people have conducted the widespread thorough research to leaf blade's vibration.The present paper elaborated emphatically the steam turbine leaf blade the line partial stress computational method and avoids leaf blade resonating the measure. Introduced the steam turbine leaf blade's structural style, the leaf blade stress analysis method. Introduced the leaf blade vibration produces reason, mechanism and vibration type. After leaf blade stress analysis, proposes the leaf blade vibration frequency computational method. After introduced leaf blade's vibration characteristic and the frequency modulation security criterion, proposed avoids the leaf blade having the resonating measure and the suggestion.Introduced and the leaf blade static frequency and moved the frequency the actual method to make the simple introduction and the contrast analysis to the present quite advanced real-time monitor instrument.In the massive data collection and in the reading thread process, the reason, the mechanism as well as the type which produced to th e steam turbine leaf blade vibration had the profound understanding, completed the graduation thesis.Key word: Turbine; Leaf blade; V ibration目录引言.............................................................................. 错误!未定义书签。
汽轮机异常振动原因分析及解决对策
汽轮机异常振动原因分析及解决对策分析异常振动的原因是解决问题的关键。
异常振动的原因可以分为机械因素和系统因素两类。
机械因素主要包括以下几个方面:1. 涡轮叶片的磨损和失衡:由于长期使用和磨损,涡轮叶片可能会出现失衡问题,导致振动加剧。
此时,需要对叶片进行修复或更换,同时进行动平衡调整。
2. 轴承的损坏和疲劳:轴承是汽轮机运转中重要的支撑和支承部件,如果轴承损坏或疲劳,会导致振动异常。
解决方法包括更换损坏的轴承,并加强对轴承的维护和润滑。
3. 牵引机构的松动:牵引机构是提供动力输出的关键部分,如果机构松动或连接螺栓松动,会引起振动变得更加明显。
此时,需要加强对牵引机构的检查和维护,及时调整和紧固螺栓。
系统因素主要包括以下几个方面:1. 系统的不平衡:汽轮机运行中,如果系统不平衡,比如过热、过冷或压力不稳定,都可能引起振动异常。
此时,需要对系统进行调整和检修,保持系统的平衡和稳定。
2. 风阻力和涡流:汽轮机运行过程中,风阻力和涡流也会产生一定的振动。
解决方法包括优化设计,减小阻力和涡流的影响,并加强对振动的监测和控制。
3. 噪音和共振:汽轮机运行时产生的噪音和共振也会引起振动。
解决方法包括增加隔音措施,减少共振频率,避免共振现象的发生。
针对以上分析,可以采取以下几个对策来解决异常振动问题:1. 加强设备的维护和检修工作,定期检查涡轮叶片、轴承和牵引机构的情况,及时进行修复和更换损坏部件。
2. 优化系统的设计和运行参数,保持系统的平衡和稳定,在运行过程中及时调整和修正系统的工况和参数,减小不平衡和阻力的影响。
3. 加强对振动的监测和控制,安装振动传感器和监测系统,及时发现振动问题,并采取相应的控制措施。
4. 加强运行人员的培训和技能提升,提高他们对汽轮机异常振动问题的认识和解决能力,及时处理异常振动事件,保证设备的安全和可靠运行。
针对汽轮机异常振动问题,要进行详细的原因分析,找出问题的根源,然后采取相应的解决对策。
汽轮机振动的原因分析及处理
汽轮机振动的原因分析及处理摘要:汽轮发电组是我国发电工程中重要组成部分,是保障城市经济发展和居民生活用电的重要机械,其对发电的重要性不下与电力对人们生产、生活的重要性,对此,保证汽轮机的定期维修和保养是加强汽轮机的正常运行的关键性活动。
在汽轮发电机组运行过程中,不可避免的存在或大或小的震动,当震动在正常范围内时,其对汽轮机的逐渐没有任何影响;当震动超出正常范围内之时,将会对汽轮机组设备造成巨大的伤害。
关键词:汽轮机;振动的原因;分析及处理1汽轮机异常振动概述1.1汽轮机振动概念汽轮机振动即设备的部件偏离其固定的平衡位置,进而导致物体相应的位能和动能随之变化,出现反复性的连续运动被称之为振动。
根据冲击力的不同,可以将汽轮机的振动分为自由振动和受迫振动两种形式。
可以用相位、频率、方向以及振幅对汽轮机振动的大小和幅度进行描述。
汽轮机振动的相位即振动过程中振动信号最大值与转子某一点的相对位置。
频率即汽轮机在特定时间内振动的次数。
汽轮机的振动方向包括,横向、轴向和扭转三个方向,根据汽轮机运行过程中振动的大小可以将其分为双向振幅和单向振幅两类。
1.2汽轮机异常振动的危害如果汽轮机振动的幅度在规定的范围内,是不会对汽轮机的运行正常工作产生影响的,但是当汽轮机出现异常振动时将会对发电机组的安全性以及经济效益产生巨大的负面影响。
因而汽轮机振动也是机械设备检修的重要内容。
汽轮机异常振动的危害主要表现在以下几个方面。
首先,当汽轮机出现异常振动时,过大的振动幅度有可能导致机组之间连接部位的零件松动,增加了机组运转的安全隐患。
其次,汽轮机振动过大还会增大机组支撑零件以及发电机部分的摩擦,给汽轮机的本体造成损害,导致汽轮机使用寿命的缩减。
最后,汽轮机异常振动会导致发电效率和发电质量的降低,进而影响经济效益的提升。
2汽轮机振动的特点分析设备第一次启动升速到超过其临界转速时,可通过轴承振动的大小来判断设备是否存在故障问题,若情况良好,一般可判断汽轮机转子与拖带机组转子在当前处于平衡状态,且轴承尚未受到任何损伤。
汽轮机振动的原因及处理分析
汽轮机振动的原因及处理分析摘要:汽轮发电组是我国发电工程中重要组成部分,是保障城市经济发展和居民生活用电的重要机械,其对发电的重要性不下与电力对人们生产、生活的重要性,对此,保证汽轮机的定期维修和保养是加强汽轮机的正常运行的关键性活动。
在汽轮发电机组运行过程中,不可避免的存在或大或小的振动,当振动在正常范围内时,其对汽轮机的逐渐没有任何影响;当振动超出正常范围内之时,将会对汽轮机组设备造成巨大的伤害。
关键词:汽轮发电机组振动监测故障原因故障排除引言电力能源是推动国家发展的重要基础,为了确保全国经济发展以及国民用电的需求,加强热电厂汽轮机组维修、养护工作,保证城市能够正常供电,是电厂最重要的工作。
汽轮机组在工作的过程中,无法避免会存在一定的振动,当振动超出一定范围时,振动会对设备产生极大的损害,因此,针对汽轮机振动原因及处理措施展开分析。
1汽轮机的概述汽轮机在电热厂的工作就是使蒸汽热能转化成机械能的旋转式动力的机械设备。
汽轮机能够在多方面进行使用,比如说它能够作为发电机组进行工作运转。
汽轮机的组成部分分为转动部分和静止部分。
其中连轴器,叶轮组轴和动叶片属于转动的部分。
而气缸轴、承隔板和静叶属于静止的部分。
汽轮机工作中配套使用的机械,部分还有锅炉和发电机,以及其他加热器的装置等。
值得引起注意的是,汽轮机是在高温高压的环境下工作的,并且他是被规划于精密类重型机械设备的范围。
进一步探究汽轮机的工作原理会发现,当锅炉内的蒸汽传输到蒸汽机内部时,蒸汽会在那个时候进入过机组的喷嘴,通过这种方法,蒸汽将自身所携带的热能转化为机械能。
现代的汽轮机,相比于传统的复式蒸汽机,汽轮机的转速更快,连续性也比较强,这一些明显的优势是汽轮机的输出功率高于复式蒸汽机的输出功率。
2汽轮机运行过程中出现的问题2.1由于运行过程机组旋转中心偏离导致振动1)汽轮机在启动的时候,如果暖机的时间不足,负载增加或者升速过快,将会导致气缸热膨胀或者系统调节不均,使得气缸无法自由膨胀,使转子与气缸产生变形,导致工作中产生振动。
第五章汽轮机零件的强度校核-第七节叶轮振动
第五章汽轮机零件的强度校核-第七节叶轮振动第七节叶轮振动叶轮的动强度主要分析叶轮振动时叶轮临界转速和叶轮共振转速,以及讨论它们与⼯作转速避开的要求。
⼀、叶轮的据型正如本章第六节所指出的,作⽤在叶⽚上的⽓动裁荷是不均匀的,因⽽导致轴向⼒的变化,引起叶轮弯曲振动。
叶轮振动时总是带动叶⽚⼀起振动,实际上是叶轮、叶⽚弹性系统的振动,称为轮系振动。
习惯上把轮系振动仍称为叶轮振动。
叶轮振动也可能由主轴振动引起。
叶轮振动计算可根据圆板振动理论进⾏,这个问题是相当复杂的。
因此,下⾯只介绍叶轮振动的基本概念。
不转动叶轮的据型⼤致可归纳为四类:(1)⽆节径和节圆的振动叶轮振动时,整个轮⾯沿铀向作同⽅向振动,因此轮⾯上既⽆不振动的节径,也⽆不振动的节圆,如图5.7.1(a)所⽰。
图5.7.1 不转动叶轮的振型(2)有节径的振动叶轮振动时,在轮⾯上出现不振动的节径,节径两侧轮⾯上各点在轴向的位移是相反的(⽤正负号表⽰),图5.7.1(b)与图5.7.1(c)分别表⽰⼀条和两条节径的振动,节径越多,振动频率越⾼。
(3)有节圆的振动叶轮振动时,轮⾯上出现不振动的节圆,节圆两侧各点的轴向位移相反,如图5.7.1(d)、(e)、(f)所⽰。
节圆越多,振动频率也越⾼。
(4)有节径和节圆的振动叶轮振动时,在轮⾯上既有节径,⼜有节圆,如图(g)、(h)、(i)所⽰。
上述有节径的振动统称为扇型振动,⽽有节圆的振动称为伞型振动。
振动频率最低的是⽆节径和节圆的振动,其次是只有⼀条节径的振动。
汽轮机运⾏实践表明扇型振动是最危险的振动。
⼆、不旋转叶轮的扇型振动现在分析具有i 条节径的不旋转叶轮的扇型振动,如图5.7.2所⽰。
图(a )中表⽰出三条节径,在极坐标(?、γ)系中,轮⾯上各点振动的挠度⽅程如下: s i n ()c o s (p y R i ?ωτ= (5.7.1)式中 R ——根据半径确定的叶轮振型函数;——由某条节径算起的⾓度;τ——时间。
汽轮机叶轮振动分析
模量 为 2 15×1 M a 密 度 为 7 7 .7 0 P; .5×1 k, 0 g
m 。叶轮 中心孔 三 向位移 约束 。 有限元 计 算 用 A S S程 序 , 用 Sl 5单 NY 采 od 9 i
元。
1 1 叶 轮整 体计 算 .
图 1 叶轮 进 行 整 体 计 算 时 的 模 型 , 点 数 为 节 为 1 1 4 , 元数 为 6 0 , 算 0~9 0H 左 右 9 7 单 8 3 7计 9 8 z 范 围 内的模态 频率 。 另外 再 计 算 0—4 0H 左 右 5 z 范 围 内的动频 。计 算动 频时 考 虑叶 轮 内孔 与转 轴
图 1 整 体 计 算 时 叶 轮 模 型 网 格 图
12 采用 A S S的循环 对称结构 的模态分析方法 . NY
维普资讯
发 电设 备 (0 6N. ) 2 0 o 2
汽轮机时轮振动分析
首先 确定 基 本扇 区模 型 , 后 确 定循 环对 称 然 面, 复制与基 本扇 区相 同 的复 制扇 区 , 对二 扇区边
振 动 的 安 全 性 作 出 了评 价 。 关 键 词 : 源 与 动 力 工 程 ; 轮 机 ; 片一 轮 系 统 ; 态 分 析 ; 动 能 汽 叶 叶 模 振 中圈 分 类 号 :K 6 .1 T 2 36 文 献 标识 码 : A 文 章 编 号 :6106 (06 0 — 8—5 17—8 X 20 )20 90 0
界根据不 同节 径 要 求 进行 约 束 , 上 述 模 型进 行 对
模态分析 求解 , 后 将 求解 结 果 按 不 同节 径扩 展 最
到 30 ,图 2即为 扩展 后的模 型 。 6。
2
循 环 对 称 结 构 分 析 时 展 丌 后 模 型
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施汽轮机是一种重要的动力设备,其运行振动问题一直受到重视。
本文通过分析振动的大原因,提出了应对措施,以期对汽轮机的运行稳定和安全起到一定的帮助和指导作用。
首先,汽轮机的结构和设计不合理是产生振动的主要原因之一。
例如,叶片的偏差、叶片与转子安装不紧、转子的不平衡、轮盘的不对称等都会导致振动的出现。
因此,在汽轮机的设计和制造过程中,需要严格遵循要求,确保各零件的加工精度符合标准,减小零件之间的误差,从而保证汽轮机的运转质量。
其次,汽轮机的信号处理和监测系统不够完善是产生振动的另一个重要原因。
信号处理和监测系统是汽轮机运行中的重要组成部分,它可以实时监控汽轮机的状态,通过数据分析和处理,发现异常情况并及时采取措施。
如果信号处理和监测系统不够完善,就无法全面了解汽轮机的运行情况,不利于及时发现和处理振动问题。
最后,汽轮机的维护保养不到位也是产生振动的重要原因之一。
汽轮机是一种高速旋转的设备,如果在使用过程中没有进行正确的保养和维修,就容易受到物理因素的影响,导致机器的运转不稳定。
因此,必须加强汽轮机的维护工作,定期进行检查和保养,及时更换损坏的零件,确保汽轮机的运行稳定和可靠性。
为了应对上述问题,我们可以采取以下措施:1、完善汽轮机的设计和制造。
在制造汽轮机之前,需大力加强汽轮机设计中的优化改进,提高零部件加工精度,以减少制造误差;同时在汽轮机的安装过程中要注意组配的认真细致,确保每一个部件的质量达到要求,保证汽轮机的运行质量;3、加强汽轮机的维护保养。
对汽轮机的各部分进行定期检查和保养,并及时更换损坏零件和损坏部分,以确保汽轮机的运行稳定和可靠性。
采用先进的技术和装备,包括红外线探测技术、振动分析技术、无损检测技术等,及时工程干预处理,在汽轮机内部安装相应的防护装置。
总之,振动是影响汽轮机运行稳定性和安全性的一个重要问题,我们必须采取措施来预防和解决振动问题。
只有在持续加强汽轮机设计、制造、维护、改进和改革的过程中,才能全面有效地消除汽轮机运行振动的大原因,确保汽轮机安全、可靠和持续运行。
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施汽轮机是一种将热能转换为机械能的装置,它广泛应用于发电厂和工业生产中。
在汽轮机的运行过程中,振动是一个常见的问题,它可能会影响到汽轮机的稳定运行,甚至造成机械损坏。
对汽轮机运行振动的大原因进行分析,并提出相应的应对措施具有重要的意义。
一、汽轮机运行振动的大原因分析1. 轴承故障汽轮机的轴承故障是造成振动的常见原因之一。
轴承的损坏或磨损会导致轴承支撑不稳,从而产生振动。
轴承故障的根本原因可能包括润滑不良、轴承安装不当、工作负荷过大等情况。
2. 不平衡不平衡是另一个常见的汽轮机振动原因。
汽轮机转子在加工或安装过程中,如果存在不平衡现象,就会产生不同程度的振动。
不平衡可能源于转子的设计、制造或安装过程中的不当安排。
3. 叶片故障汽轮机叶片的故障也会引起振动。
叶片的严重磨损、失调或裂纹,都会导致汽轮机的振动量增加,甚至产生共振现象。
4. 调速系统故障调速系统是汽轮机的重要组成部分,当调速系统发生故障时,汽轮机的排汽量和工作负荷无法得到有效的控制,导致汽轮机振动加剧。
5. 基础或支撑结构问题汽轮机的振动还可能与其基础或支撑结构有关。
如果汽轮机的基础不稳固或者支撑结构存在问题,都有可能引起振动。
6. 轴线偏移汽轮机的轴线偏移也是引起振动的原因之一。
轴线偏移可能由于装配不当、工作负荷不均或者机械材料变形等原因引起。
二、汽轮机振动的应对措施1. 轴承检查与维护定期对汽轮机的轴承进行检查和保养是防止振动的关键措施。
对润滑系统进行定期检查,并且在轴承出现异常磨损时及时更换轴承。
2. 动平衡对汽轮机的转子进行动平衡处理,是确保汽轮机稳定运行的重要手段。
在汽轮机的设计和制造过程中,应严格保证转子的动平衡性能。
3. 叶片保养保持汽轮机叶片的完好状态也是防止振动的重要措施。
定期对叶片进行检查和保养,及时清理叶片表面的积灰和异物,保证叶片的强度和刚度。
4. 调速系统维护对汽轮机的调速系统进行定期维护和检查,确保其正常运行,并且保证调速系统与汽轮机的协调性能。
汽轮机振动故障的原因分析与处理
汽轮机振动故障的原因分析与处理汽轮机是一种常见的发电机设备,而振动故障是汽轮机的常见问题之一。
振动故障会导致机器的寿命降低,甚至使机器处于危险状态。
为了保证汽轮机的运行安全和稳定性,需要对振动故障的原因进行分析和处理。
以下是汽轮机振动故障的原因分析与处理方案。
1、原因分析(1)叶轮不平衡——汽轮机在高速旋转时,叶片的不平衡会导致叶轮的振动。
这种振动会被传到轴承中,最终导致轴承和轴承支撑部位的磨损,从而产生更大的振动。
(3)轴向力不均——当汽轮机的负荷变化时,会导致轴向力不均,从而产生振动。
如果轴向力不平衡且超过轴承的承受极限,就会导致机器损坏。
(4)机座松动——机座松动会使汽轮机部件之间的连接松动,最终导致汽轮机振动。
2、处理方案(1)平衡叶轮——在检测到汽轮机振动时,首先应检查叶轮的平衡,并进行平衡处理。
可以使用专业的平衡设备来进行平衡检查和校准。
通过平衡叶轮,可以降低振动幅度,延长机器寿命。
(2)更换轴承——如果轴承磨损,应及时更换轴承。
在更换轴承之前,需检查轴承承载能力和安装情况。
合适的轴承和正确的安装方法可以减少汽轮机的振动,提高机器的使用寿命。
(3)调整轴向力——在发现轴向力不均时,应及时调整轴向力。
需要注意的是,轴向力的调整需要在汽轮机处于停机状态下进行,并且需要进行调整后的实际测试,确保汽轮机的轴向力正常。
(4)紧固机座——在发现机座松动时,应及时紧固机座。
机座不紧固会导致汽轮机部件之间的连接不紧密,造成振动和机器故障。
因此,在机座上使用正确的紧固方法和工具非常重要。
综上所述,汽轮机振动故障的原因和处理方案非常重要。
正确的分析和处理方案可以延长机器的使用寿命、提高机器安全性和运行稳定性。
在进行处理方案之前,需要检查或测试汽轮机的各个部件,确保方案正确且有效。
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施汽轮机是一种常用的热能动力设备,通常被用于发电站和工业生产中。
在汽轮机运行过程中,振动是一个常见的问题,如果振动过大或频率异常,将会对设备造成损坏甚至对安全带来威胁。
对汽轮机运行振动的大原因进行分析,并提出应对措施,对于保障汽轮机的安全运行具有重要意义。
一、振动的大原因分析1. 设备失衡汽轮机的转子在高速旋转时,如果存在失衡现象,将会导致设备振动过大。
设备失衡可能的原因有:制造不良、零部件磨损、安装不当等。
失衡导致的振动是汽轮机振动的重要原因之一。
2. 轴承故障轴承是汽轮机中重要的部件,负责支撑和保持转子的旋转。
如果轴承损坏或润滑不良,将导致振动增加,严重的情况下还会引起设备故障。
3. 转子不平衡汽轮机转子旋转时,如果存在不平衡现象,将导致振动增加。
转子不平衡可能是由于制造工艺不良、材料缺陷等原因造成的。
4. 叶片腐蚀或损坏汽轮机叶片在运行中会受到高温高压蒸汽的冲击,长时间的腐蚀和疲劳可能导致叶片损坏,进而引起振动。
5. 冲击负载汽轮机在启动和停车的过程中,由于受到冲击负载,会引起振动。
特别是在高速运行中,由于冲击负载的存在,振动往往会加剧。
6. 输送系统故障汽轮机的输送系统包括汽水系统、外部管道系统等,如果这些系统存在故障,将会影响汽轮机的正常运行,引起振动增加。
7. 系统共振汽轮机与其它设备或结构(如建筑物)之间的共振效应,会导致振动增加。
共振效应的产生可能由于结构设计不合理或装置不恰当引起。
8. 运行状况监测不足运行状况监测不足将导致对振动的监控不及时,可能会延长振动问题的存在时间,进而造成设备损坏。
二、应对措施1. 精确平衡对汽轮机的转子进行精确平衡,可避免由于设备失衡引起的振动问题。
通过动平衡仪等专业设备进行平衡校正,可以有效解决这一问题。
2. 定期检查轴承定期对汽轮机的轴承进行检查,并进行润滑维护。
一旦发现轴承存在故障,应立即更换或修理。
3. 定期检查转子定期对汽轮机的转子进行检查,发现发现不平衡或损坏情况,进行修复或更换。
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施汽轮机作为重要的能源转换设备,在不断的运行过程中都会存在一定的振动问题。
这些振动问题的出现,是由多种原因所造成的。
本文将从以下三个方面对汽轮机运行振动的大原因进行分析,并提出相应的应对措施。
1.机械因素机械因素是导致汽轮机振动问题的最主要因素之一。
在汽轮机运行过程中,机械部件之间的配合精度、轴承、支座及联轴节等零部件的合理性都会对汽轮机的振动产生直接或间接的影响。
具体表现如下:(1)轴承的选择不当。
汽轮机轴承往往负责着机械传动及流体流动等重要的任务。
若轴承设计或选择不当,容易导致振动问题。
如轴承有缺油、过紧或过松的情况等。
(2)联轴节的质量差。
由于汽轮机时常运转在高速和高温的恶劣环境中,联轴节的强度、稳定性都是振动控制的关键。
若联轴节的质量差劲,随时可能造成失效的情况,从而直接影响汽轮机的正常运转。
(3)叶轮的不对称性。
对于涡轮机,其叶轮薄弱的部位常常因高温和不对称的受力问题产生损坏,从而易造成轴承落位、轴弯曲、叶片断裂等严重的振动问题。
为处理机械因素所导致的振动问题,我们可以从以下几方面入手:(1)加强轴承的维护保障。
定期检查及更换轴承,增加轴承的润滑剂,都可有效降低振动问题的发生。
(2)加强水平联轴节的选择。
生产厂家应对联轴节的质量进行市场审核,保证联轴节强度具有可行性的同时满足汽轮机的正常使用标准。
2.流体因素流体因素是导致汽轮机振动问题的另一个、同等重要的因素。
汽轮机内部的流体是振动产生的最主要源头。
一般来讲,液体如果从具有不平滑的表面或弯曲的管道流过时,其流动状态是不稳定的。
如果液体流动速度超过一定的范围,其流动就会变为紊乱状态,引起涡旋和湍流的产生,从而使振动加速。
具体表现如下:(1)进口角过小或过大。
进口角决定了进口流道内的流体转动情况,如果进口角过小或过大会造成流体槽内湍流程度加剧,从而导致振动。
(2)导叶失效。
导叶通常被安装在叶轮前面的叶片,起着旋流器和阻隔等作用。
汽轮机异常振动的分析和治理
汽轮机异常振动的分析和治理汽轮机是一种重要的动力装置,广泛应用于各种工业和能源领域。
然而,在实际运行过程中,汽轮机的异常振动问题一直是一个引起广泛关注的现象。
汽轮机异常振动不仅会影响设备的正常运转,而且还会给设备带来安全隐患和经济损失。
因此,对汽轮机异常振动进行分析和治理,对维护设备运行稳定、提高生产效率具有重要意义。
一、异常振动的原因分析汽轮机异常振动的原因非常复杂,有多种可能性,如下:1、水路问题:过热器堵塞、水泵故障、水管漏水等,都可能导致汽轮机的振动异常。
2、燃气路问题:燃烧室积碳、过热器泄漏、火焰枪喷嘴磨损等,会导致燃气路的压力和流量不稳定,影响汽轮机的振动情况。
3、轴承失效:汽轮机的轴承是连接各个部件的重要部件,必须保持良好的状态。
轴承失效可能是由于轴承老化、过载、润滑不当等原因造成的。
4、润滑问题:润滑油脏、润滑油量少、润滑系统堵塞等,都会导致润滑不良,进而引起汽轮机的振动不稳定。
5、机械问题:缺乏保养、零部件损坏、加工质量差等都可能导致汽轮机的振动异常。
二、异常振动的危害汽轮机的振动异常不仅会对设备本身产生影响,还可能会对生产领域和环境产生较大的破坏力。
1、对设备带来的影响:汽轮机振动异常会引起主机、发电机等零部件的异常磨损和磨损,从而降低设备的寿命,并增加设备维修成本。
2、对生产带来的影响:汽轮机振动异常会降低生产效率,直接影响生产的进度和输出质量。
3、对环境带来的影响:汽轮机振动异常会产生噪音和震动,对周边居民和环境造成不良影响。
三、异常振动的治理方法针对汽轮机的振动异常,可以采取一些措施,较好地控制振动情况。
具体治理方法如下:1、检查和维修设备:经常检查汽轮机各部位的安装和连接,并及时处理设备的故障问题。
2、润滑调整:保持润滑油的清洁和及时更换,确保润滑系统的畅通,以保证设备的正常运转。
3、预防轴承失效:定期检查轴承的状态,并进行更新和更换,以保证汽轮机的稳定性。
4、加强设备运行监测:加强对汽轮机运行状态的监测,及时发现和处理异常振动的问题,并防止设备的进一步损害。
汽轮机振动故障的原因分析与处理
汽轮机振动故障的原因分析与处理汽轮机是一种重要的发电设备,其可靠性和稳定性直接关系到电网的稳定和电力的供应。
然而,汽轮机在长时间运行过程中容易出现振动故障,导致设备的运转不稳定,损坏甚至停机。
因此,汽轮机振动故障的原因分析及其处理对于保证汽轮机的正常运行非常重要。
1.原因分析1.1 设计因素汽轮机的结构设计是振动故障的主要因素之一。
偏心度、轴承刚度、转子不平衡度、轴向跳动、叶轮损伤等问题都可能导致振动故障的发生。
因此,在汽轮机的结构设计中,需要充分考虑结构的合理性和稳定性,确保其满足振动要求。
1.2 制造和装配因素汽轮机制造和装配过程中,如加工不精密、轴系安装过紧或过松、叶轮安装失误、轮毂与轮盘配套不合理等因素可能导致振动故障的发生。
因此,在制造和装配过程中,需要采用精密的加工技术和先进的装配工艺,确保汽轮机的各个部件的精度和质量。
汽轮机在长期运行过程中,由于磨损和老化等因素,容易导致振动故障的发生。
例如,滑动轴承磨损、叶轮损伤、发动机机油质量不佳等等。
因此,需要定期进行保养和维护,及时更换和修理损坏部件,确保汽轮机的正常运行。
2.处理方法2.1 对结构设计问题的处理针对汽轮机的结构设计问题,应根据振动故障的具体问题进行分析和处理。
首先,应对汽轮机的结构设计进行全面的检查和评估,并制定具体的振动消除方案。
例如,对于轴承刚度过低的情况,需要加强轴承支撑,提高轴承刚度;对于转子不平衡度过大的情况,需要对转子进行精细加工和平衡处理。
这样能够有效地减少振动故障的发生率,提高汽轮机的运行稳定性。
针对制造和装配问题,应加强管理和质量控制,严格按照标准化和规范化要求进行加工和装配。
对于已经制造和装配完成的汽轮机,在日常运行过程中应注意对设备进行检查和维护,及时发现和处理问题,并严格按照操作规程进行运行,遵循相关的检查检测标准,确保设备的安全运行。
针对运行问题,应定期进行检查和维护,并对设备进行及时处理和修理。
汽轮机异常振动原因分析及解决对策
汽轮机异常振动原因分析及解决对策一、汽轮机异常振动的原因分析1. 设备故障汽轮机异常振动的一个常见原因是设备本身的故障。
轴承损坏、叶轮脱落、机械松动等问题都有可能导致设备的振动异常。
这些故障可能是由于设备长时间的运行而导致的磨损,也可能是由于设备制造过程中的质量问题所导致的。
在分析汽轮机异常振动问题时,需要首先对设备进行全面的检查,找出可能存在的故障点。
2. 过载运行汽轮机在运行过程中如果超负荷工作,就会导致振动异常。
过载运行会导致设备受力过大,从而引起设备振动增大。
而且,长期的过载运行还会导致设备的损坏,严重影响设备的寿命。
在使用汽轮机时,必须严格按照设备的额定工况进行运行,不得超负荷使用。
3. 润滑不良汽轮机在运行过程中需要灯油润滑,如果润滑不良就会导致摩擦增大,从而引起设备的振动异常。
润滑不良还有可能导致设备的部件磨损加剧,对设备的安全运行造成严重威胁。
在使用汽轮机时,需要定期对设备进行润滑检查,确保设备的润滑系统正常运行。
4. 不平衡汽轮机在运行过程中,如果叶轮不平衡,就会导致设备的振动异常。
不平衡是由于叶轮制造过程中的不当操作、设备运输过程中的损坏等原因所导致的。
不平衡会引起设备振动增大,严重的还会导致设备的破坏。
在安装汽轮机时,需要对叶轮进行严格的动平衡检查,确保叶轮的平衡性。
二、汽轮机异常振动的解决对策1. 设备维护对于汽轮机异常振动问题,首先需要进行设备的维护保养。
及时更换轴承、叶轮等易损部件,确保设备的正常运行。
还需要定期进行振动检测,对设备的振动情况进行监测,及时发现问题并进行处理。
2. 增加防护设施为了防止汽轮机在运行过程中受到外部冲击,可以在设备周围增加防护设施,确保设备的安全运行。
可以在汽轮机周围设置振动传感器,一旦发现设备振动异常就可以及时进行处理。
3. 优化润滑系统为了确保汽轮机的正常运行,需要优化润滑系统,确保设备的摩擦系数在合理范围内。
可以通过增加润滑油流量、更换润滑油等方式来改善润滑系统,减小设备的摩擦损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机叶轮振动分析
摘要汽轮机是机组的重要组成部分,汽轮机的振动对机组的稳定安全的运行有很大的影响。
本文选择I—DEAS软件对叶轮振动进行建模和网格划分,对不同阶叶轮的振动频率进行分析,研究汽轮机叶轮的振动特性,为汽轮机叶轮的设计和安全运行提供参考。
关键词汽轮机;叶轮;振动;频率
汽轮机是机组的重要组成部分,叶轮在高速的旋转之下会产生振动,过大的振动会带来大的噪音,也会影响叶轮和叶片的使用寿命。
因此,对汽轮机的叶轮振动特性进行分析,不仅能够减少汽轮机在运行过程中的损耗,对整个机组的安全稳定运行也具有非常重要的意义。
汽轮机的叶轮在高速旋转之下会产生离心力,加上流场不均匀,很容易使叶片的升力发生变化,叶轮受到影响而发生振动。
在叶轮本身固有的频率和激振力的频率一样或者成整数倍的情况下,就会产生共振现象,影响叶轮的正常运转。
1 叶轮计算模型
1.1 叶轮计算模型的建立
本文研究的叶轮计算模型的建模,选择采用I-DEAS软件进行模型的建立和功能计算。
汽轮机的叶轮建模主要分为两个部分,一个是轮盘模型的建立,另一个是叶片模型的建立。
对于轮盘部分的模型绘制,通过旋转命令即可建档的绘制出来。
相比之下,叶片是呈曲面的,空间曲面比较复杂,所以叶片的建模采用的是三维实体扫描仪,配合使用建模软件进行模型的建立。
根据非均匀有理样条函数B-rep进行插值,将点阵进行连接从而形成一个曲面,然后将曲面在建模软件I-DEAS中导入进去缝合,完成缝合后的曲面能够生成一个边界为曲面的叶片实体。
在这个实体基础上输入阵列命令,在经过布尔运算最终生成一个汽轮机叶轮的模型。
本文研究分析的汽轮机叶轮模型如图1(a)所示:
图1叶轮计算模型
1.2 模型的网格划分
本文研究分析的叶轮的轮盘和叶片铸造材料为铝合金,设定密度为2880kg·m-3,叶轮轮盘的弹性模量是67680N·mm-2。
对模型进行网格划分采用的软件为I-DEAS软件,设定节点的数量是7590,单元数是28317,在0至980Hz 的范围内对模型的模态频率进行计算,再对0至450Hz的范围内对动态频率进行计算,需要注意的是在进行动频的计算的过程中,要对叶轮内孔和转轴之间的过盈量加以充分的考虑。
2 叶轮的振型和固有频率的分析
为了能够更加方便清晰的对叶轮的振型进行分析,我们采取了分析振动类型的方法。
如下图2所示:
图 2 模型各阶模态频率和振型的关系图
我们对上图的结果进行分析,叶轮的振动的类型可以总结起来可以分为五种类型:第一种是以轴向A0为振动方向的振动类型;第二种是以切向A0为振动方向的振动类型;第三种是以扭转方式为主的振动类型;第四种是以切向A1为主的振动类型;第五种是伞形的振动类型。
叶轮在高速旋转的过程中会产生离心力,在各个阶段转速不同,各阶的固有频率也不相同,叶轮的转速增加相应的其固有频率也增加,固有频率增加的幅度是和转速成正比例关系的。
叶轮在不同转速情况下各阶的固有频率参见下表1所示:
n/(r·min-1)0 1.0×105 1.2×105 1.5×105
第一阶 5520 5578 5603 5620
第二阶 16053 16334 16421 16589
第三阶 17650 17732 17891 17902
第四阶 17910 18124 18156 18172
第五阶 20985 21143 21329 21586
表 1 叶轮不同转速下的固有频率(单位Hz)
3 结论
本文对叶轮振动的研究,通过的有限元的方法,对叶轮进行建模和模型的网格划分,分析其振型,对固有频率进行计算和检测得出该叶片具有良好的刚度,运行安全性和稳定性良好。
针对叶轮在共振时所带来的一系列问题,可以通过改变叶轮的结构,同时避免在叶轮共振频率的范围内产生激振频率,可有效的解决共振问题。
参考文献
[1]张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京:国防工业出版社,2010.
[2]马玉星.涡轮增压器叶片振动分析[J].振动、测试与诊断,2012,25(2):131-133.
[3]潘宏刚,易东来等.汽轮机叶轮振动实验装置研发[J].沈阳工程学院学报,2013,10:314-316.。