网壳结构
网壳结构
图24 短程线球面网壳
7.两向格子型球面网壳
这种网壳一般采用子午线大圆划分法构成四 边形的球面网格,即用正交的子午线族组成网格, 如图25所示。子午线间的夹角一般都相等,可求 得全等网格,如不等则组成不等网格。
图25 二向格子型球面网壳网格划分
(二)双层球面网壳 主要有交叉桁架系和角锥体系两大类。
2.网壳的厚度
双层柱面网壳的厚度可取跨度的 1/50~1/20;双层球面网壳的厚度一般 可取跨度的1/60~1/30。研究表明,当 双层网壳的厚度在正常范围内时,结构不 会出现整体失稳现象,杆件的应力用得比 较充分,这也是双层网壳比单层网壳经济 的主要原因之一。
3.容许挠度
容许挠度的控制主要是为消除使用过程中 挠度过大对人们视觉和心理上造成的不舒适感, 属正常使用极限状态的内容。
(2)面心划分法
首先将多面体的基本三角形的边以N次等分, 并在划分点上以各边的垂直线相连接,从而构 成了正三角形和直角三角形的网格(图23)。再 将基本三角形各点投影到外接球球面上,连接 这些新的点,即求得短程线型球面网格。
面心法的特点是划分线垂直于基本三角形的边, 划分次数仅限于偶数。由于基本三角形的三条 中线交于面心,故称为面心法。
主要内容
3.1 网壳结构的形式 3.2 网壳结构的设计 3.3 网壳结构的温度应力和装配应力 3.4 网壳结构的抗震计算 3.5 网壳结构的稳定性 3.6 单双层网壳及弦支穹顶
3.1 网壳结构形式
一、网壳的分类
通常有按层数划分、按高斯曲率 划分和按曲面外形划分等三种分类 方法。
1.按层数划分
网壳结构主要有单层网壳、双层网壳和三层 网壳三种。 (如图1所示)
格加斜杆,形成单向斜杆型柱面网壳.
大跨结构第4讲-网壳结构
第4讲:网壳结构
北京体育学院体育馆 59.2m×59.2m 四块组合双层扭网壳 1988年建成,52kg/m2
第4讲:网壳结构
长春体育馆 120m×166m 1997年建成,80kg/m2
第4讲:网壳结构
国家大剧院, 212.2x143.6m,双层空腹椭球壳 137kg/m2
第4讲:网壳结构
=
4 R2
EBh
等效刚度B,等效厚度h
第4讲:网壳结构
考虑局部凹陷大变形影响系数η=0.25~0.3, 缺陷 敏感系数β=0.4~0.5,安全系数K=2.5~3.0
P des cr
=
βη
K
P lin cr
=
(0.04
~
0.05)
P lin cr
柱面网壳受径向均布荷载,也有近似临界荷载理论解
第4讲:网壳结构
国家大剧院椭球面
⎜⎛ x ⎟⎞2.2 + ⎜⎛ y ⎟⎞2.2 + ⎜⎛ z ⎟⎞2.2 = 1 ⎝ 105.963 ⎠ ⎝ 71.663 ⎠ ⎝ 45.203 ⎠
第4讲:网壳结构
②层数:单层、双层和单双混合;单层网壳应采用刚接节 点,双层网壳可采用铰接节点
③曲面曲率:正高斯—球面、抛物面;零高斯— 柱面、锥面;负高斯—马鞍面
∑ γ ∑ xj
=
m iX ji
m
i(X
2 ji
+
Y
2 ji
+
Z
2 ji
)
∑ ∑ γ yj =
m iY ji
m
i(X
2 ji
+
Y
2 ji
+
Z
2 ji
)
网壳结构
网壳结构
一、简介
1.1 何为网壳结构
网壳结构是曲面型的网格结构,兼有杆系结构和薄壳结构的固有特性,受力合理,覆盖跨度大,其外形为壳,是格构化的壳体,也是壳形的网架。
它是以杆件为基础,按一定规律组成网格,按壳体坐标进行布置的空间构架,其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。
它既有靠空间体形受力的优点,又有工厂生产构件现场安装的施工简便、快速的长处,而且他以结构受力合理,刚度大,自重轻,体形美观多变,技术经济指标好,而成为大跨结构中备受关注的一种结构形式。
1.2 网壳的形式与分类
(1)按网壳的层数来分,有单层网壳和双层网壳,其中双层网壳通过腹杆把内外两层网壳杆件连接起来,因而可把双层网壳看作由共面与不共面的拱桁架系或大小相同与不同的角锥系(包括四角锥系、三角锥系和六角推系)组成。
(一般来说,中小跨度(一般为40m以下)时,可采用单层网完,跨度大时,则采用双层网壳。
)如图1
图1 单层网壳与双层网壳
(2)按网壳的用材分,主要有木网壳、钢网壳、钢筋混凝土网壳以及钢网壳与钢筋混凝土屋面板共同工作的组合网壳等四类。
(3)按曲面的曲率半径分,有正高斯曲率网壳、零高斯曲率网壳和负高斯曲率网壳等三类。
(4)按曲面的外形分,主要有球面网壳、圆柱面网壳、扭网壳(包括双曲抛物面鞍型网壳、单块扭网壳、四块组合型扭网壳)等。
(5)按网壳网格的划分来分,有以下两类。
对于圆柱面网壳主要有单向斜杆型、交叉斜杆型、联方网格型、三向型,如图2所示。
对于球面网壳主要有肋环型、Schwedler型、联方网格型、三向网格型,如图3所示。
网壳结构简介
a):刚度差,适用于中,小跨度 b):刚度好,适用于大,中跨度
C):适合大批量生产
e)三向网格型球面网壳
d)双向子午线网格
d):菱形网格,造型美观。刚度 好。网格不均匀;刚度好,大 跨度。例中国科技馆。 e):杆件种类少,受力明确适用 于中,小跨度。例济南动物园 亚热带鸟馆。
日本名古屋网壳穹顶
二、双层球面网壳 双层球壳是由两个同心的单层球面通过腹杆连接而成。各层网格形成与单层网壳 同。
平板组合球面网壳
双曲扁网壳
双曲扁网壳
网壳结构的选型
网壳选型应对建筑使用功能、美学、空间利 用、平面形状与尺寸、荷载的类别与大小、边界 条件、屋面构造、材料、节点体系、制作与施工 方法等作综合考虑。 应考虑以下几个方面: 1、体型应与建筑造型相协调 与周围环境相协调,整体比例适当。当要求 建筑空间大,选用矢高较大的球面或柱面壳;空 间要求小,矢高较小的双曲扁网壳或扭网壳。
三、球网壳结构受力特点: 受力与圆顶相似。网壳的杆件为拉杆或压杆。 节点构造也需承受拉力和压力。球网壳的底座可 设置环梁,可增加结构的刚度。 网壳支座约束增强,内力逐渐均匀,且最大 内力也减小,稳定性提高,因此周边支座以固定 支座为宜。 为使薄膜理论适用,球网壳应沿其边缘设置 连续的支承结构。
扭网壳结构
2、双层筒壳(按几何组成规律分类):
a)正放四角锥柱面网壳b)正放抽空四角锥柱面源自壳c)斜置正放四角锥柱面网壳
d)三角锥柱面网壳
e)抽空三角锥柱面网壳
双层柱面网壳的网格形式 1.交叉桁架体系(略) 2.四角锥体系 a):刚度大,杆件少,最 常用 b):适用于小跨度,轻屋 面 c):系将a)斜置 3.三角锥体系 常用d) , e) 两种
a)肋环型四角锥球面网壳
结构选型7-网壳结构
单层网壳杆件计算长度系数
┌───────────┬───────────┐ │ 壳体曲面内 │ 壳体曲面外 │ ├───────────┼───────────┤ │ 0.9 │ 1 │ └───────────┴───────────┘
六、杆件、节点和支座设计和构造 2 杆件的计算长度和容许长细比
1)按层数分类
单层网壳
双层网壳
§1.网壳结构的类型 一、网壳的分类
2)按高斯曲率分类
高斯曲率
1 1 K k1 k 2 R1 R2
(1)
§1.网壳结构的类型 一、网壳的分类
2)按高斯曲率分类
零高斯曲率
正高斯曲率
负高斯曲率
§1.网壳结构的类型 一、网壳的分类
3)按曲面外形分类
球面网壳
{P} (0.3 ~ 0.4){P}cr
D cr
§2.网壳结构设计 五、网壳结构的稳定计算
网壳的失稳有许多不确定的因素,失稳又会造成 灾难性的破坏,而且发生突然,因此在设计网壳时, 应做到使网壳最大受力杆件达到其承载能力时荷载 {P}max要小于网壳的临界荷载设计值,即
{P}max {P}
§2.网壳结构设计 五、网壳结构的稳定计算
很早以前人们就开始采用线性理论分析网壳的稳 定性,但是用线性理论求得的临界荷载都得不到试验 的证实,大大高于试验所得到的临界荷载。
随着非线性理论的发展,目前非线性理论在网壳 稳定性分析中得到了广泛的采用。它不但可以考虑材 料非线性而且能够考虑结构变形的影响,在不断修正 的新的几何位置上建立平衡方程式,还可以考虑应变 中高阶量的影响和初应力对结构刚度的影响。另外在 分析中也便于把结构的初始缺陷计入。因此所得到临 界荷载和失稳现象都比较接近试验结果。
网壳结构
都能给设计师以充分的创作自由。
应用范围广泛,即可用于中、小跨度的民用和工业建 于大跨度的各种建筑,特别是超大跨度的建筑。 筑,也可用
结构的形式
分类方法 单层网壳 按网壳层数: 双层网壳 球面网壳 柱面网壳 按曲面外形: 钢网壳 木网壳 按结构材料: 钢筋混凝土 网壳 组合网壳
双曲扁网壳 扭曲面网壳 单块扭网壳
上海科技馆
上海科技馆是典型的网壳结构在建筑物中轴线上有一由单层网壳和通透 玻璃组成的椭圆球体 大厅,是建筑设计中的重点。球体在整个建筑物中相对独立,与周边 环境脱离,形成一个巨型通透中庭空间。科技馆椭圆形球体结构单层网 壳的长轴67m,短轴51m,椭球体为沿椭圆平面长轴旋转体,削去下半 部分而成。球高42.2m。 球体两侧各开有宽 9m,高16m的大门洞,端部有个宽9m、高5m的小门洞。 网壳结构适合制造中 庭空间,适合客运站 里的候车厅的设计, 而且该结构容易塑造 建筑形态。
Байду номын сангаас •
科技馆网壳结构主要依靠肋向杆件传递地震力,主要反映在肋向杆件 地震轴力系数大于环向杆件;铝网壳的地震效应较钢网壳动力效应明 显,所以在采用铝网壳时,不可因为其质量较轻而忽视地震效应;与 铰支、固支支承相比,在弹性支承条件下,钢、铝两种网壳结构体系 的地震效应均大大减小。
网壳结构
结构特点:网壳结构是一种曲面网格结构,兼有杆系结构构造简单和 薄壳结构受力合理的特点,因而具有跨越能力大,刚度好、材料省、 杆件单一、制作安装方便等特点,是大跨空间结构中一种举足轻重的 结构形式。
优点:网壳结构兼有杆件结构和薄壳结构的主要特性,受力 合理,可以跨越较大的跨度。 具有优美的建筑造型,无论是建筑平面、外形和形体
单层网壳最大跨度
1)圆柱网壳 L≤25m(30m)
结构设计攻略之网壳结构完美设计法
结构设计攻略之网壳结构完美设计法1、网壳是什么网壳是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间构架,它兼具杆系和壳体的性质。
其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。
此结构是一种国内外颇受关注、有广阔发展前景的空间结构。
网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。
2、网壳的发展史网壳结构的雏形——穹顶结构。
在人类社会的发展历程中,大跨度空间结构常常是建筑人员追求的梦想和目标。
其中,网壳结构的发展经历了一个漫长的历史演变过程。
古代的人类通过详细观察,利用仿生原理,为了有一个更好的生存空间,常常以树枝为骨架、以稻草为蒙皮来模仿如蛋壳、鸟类的头颅、山洞的,搭造穹顶结构,即最初的帐篷。
随着建筑材料的发展,穹顶的石料,后面逐渐被砖石取代。
穹顶的跨度一般不大,在30m~40m左右,其中建于公元120~124年的罗马万神庙是早期穹顶的典型代表。
到19世纪,铁的应用为穹顶的发展开创了一个新纪元,近代钢筋混凝土结构理论的出现及应用开辟了大跨度薄壳穹顶的新领域。
1922年在德国耶拿建造了土木工程史上第一座钢筋混凝土薄壳结构———耶拿天文馆。
耶拿天文馆随着铁、钢材、铝合金等轻质高强材料出现及应用,富有想象力的工程师开始了对穹顶结构使用各种杆件形式。
公认的“穹顶结构之父”—德国工程师施威德勒对穹顶网壳的诞生与发展起了关键性的作用, 他在薄壳穹顶的基础上提出了一种新的构造型式,即把穹顶壳面划分为经向的肋和纬向的水平环线,并连接在一起,而且在每个梯形网格内再用斜杆分成两个或四个三角形,这样穹顶表面的内力分布会更加均匀,结构自身重量也会进一步降低,从而可跨越更大空间。
这样的穹顶结构实际上已是真正的网壳结构,即沿某种曲面有规律的布置大致相同的网格或尺寸较小的单元,从而组成空间杆系结构。
施威德勒网壳3、已建成的网壳赏析富勒球1962年11月13日,经过百般周折,加拿大终于获得1967年蒙特利尔世博会的举办权。
第五章网壳结构
二向正交型 双曲抛物面网壳
五.网壳结构的选型
根据跨度大小、刚度要求、平面形状、支承条件、制 作安装以及技术经济指标综合考虑。
1. 双层网壳可采用铰接节点,单层网壳采用刚接节点;
2. 双层网壳适合大中跨度的结构,中小跨度可采用单层 网壳;
3. 跨度大时,宜采用矢高大的球面或柱面网壳;跨度小 时,可选用矢高较小的双曲扁壳或双曲抛物面壳;
矢跨比F/S与耗钢量W的关系
跨度S与耗钢量W的关系
(4)柱面网壳的水平推力
圆柱面网壳由于 环向力的作用而产生 较大的水平推力。水 平推力N的大小也与 矢跨比有关。
水平推力的处理可采用: ① 加水平拉杆; ② 结构落地; ③ 增加下部柱的刚度; ④ 利用下部结构吸收推力。
二.计算方法 网壳结构的分析不仅仅是强度的分析,通
正放四角锥
抽空四角锥
斜置正放四角锥
三角锥柱面网壳
抽空三角锥柱面网壳
清华大学游泳馆
柱面网壳的组合应用—— 成渝高速路二郎收费站
三.球面网壳 当跨度较小时可以 采用单层,也可采 用双层。 球面网壳的网格分 割方法很多,主要 有:
大英博物馆
肋环型球面网壳
施威德勒球面网壳
单层球 联方型球面网壳
面网壳 三向网格型球面网壳
(c) 联方型(d)三向网格型(e) 交叉斜杆型
单斜杆型与交叉斜杆型相比,前者杆件数量少, 杆件连接易于处理,但刚度稍差,适于小跨度、小 荷载网架;
联方网格杆件数量最少,杆件长度统一,节点 上只有四个杆件,节点构造简单,刚度较差;
三向网格刚度最好、杆件数量较少。
悉尼国际水上运动中心
2. 双层柱面网壳
第五章 网壳结构
一.网壳结构的形式与选型 二.网壳结构分析 三.网壳结构的杆件设计和节点构造 四.网壳结构的施工和验收
2结构选型-网壳
网壳结构是曲面型的网格结构, 即由曲面形板与边缘构件(梁、拱 或桁架)组成的空间结构。具有杆 系结构和薄壳结构的特性,受力合 理,覆盖跨度大,施工简便,可创 造新颖的建筑造型,是有着广阔前 景的空间结构。
11.3.1 满足建筑使用要求
对于高、大跨度的网壳结构应与建筑紧密配合,使网壳结构与建筑 造型一致,与周围环境协调,整体比例适当。
1、立面设计 建筑空间大,可选用矢高较大的球面或柱面网壳; 建筑空间小,可选用矢高较小的双曲扁网壳或落地式抛物面网壳; 建筑空间大,但矢高受到控制,可选择网壳支承于墙或柱上。
采用网壳厚度不等或 局部网壳厚度改变。
15
曲 面的剪裁组合
美国麻省理工学院礼堂:为从球面壳上切出的1/ 8部分,球面直径51m,80%的壳面厚度9cm,支座附 近应力集中,并有弯矩,壳厚达60cm 。 16
2.2.3 按材料分类
材料的选择取决于网壳形式、跨 度与荷载、计算模型、节点体系、材 料来源于价格,以及制造与安装条件。 1. 钢筋混凝土网壳:自重大,节点构 造复杂。
23
24
中部圆柱面壳和两端 半球壳组成的巨型双 层网壳,尺寸为
三角锥
86.2×191.2m;网格
尺寸为3m。 正放四角锥
黑龙江滑冰馆, L=86m, 1996
25
北京体育大学体育馆
屋架结构为正交正放网格的双层扭面网壳 结构,建筑平面尺寸为59.2m×59.2m,跨度为 52.5m,四周悬挑3.5m,四角带落地斜撑,网格 尺寸2.9m×2.9m ,网壳厚度2.9m,矢高3.5m, 柱距5.8m,支座为球铰,整个结构桁架上、下 弦等长、斜腹杆等长,竖腹杆等长。
3.1网壳结构的形式及特性09
内部网架
三、双曲抛物面网壳的形式
双曲抛物面网壳在几何学上的特点是其曲面的
形成方式属移动式,具有直纹性。 即曲面是由无数根斜交的直线组成。 通过一定的组合,双曲抛物面网壳还可以发展出 不同的造型。
1.正交正放类 组成网格为正方形,单层时方格内设斜杆;双 层时可组成四角锥体。
2.正交斜放类 杆件沿曲面最大曲率方向设置,抗剪刚度较弱。
5)三向网格型柱面网壳
在联方网格上加纵向杆件,菱形变为三角 形。
2 双层柱面网壳:
(1)交叉桁架体系
单层柱面网壳都可成为的双层柱面网壳。 网片形式
(2)四角锥体系
四角锥网架结构有六种形式,但不一定都 适用于双层网壳。
网架结构受力明确,周边支承网架,上弦 杆总是受压,下弦杆总是受拉;而双层网壳上 层杆和下层杆都可能受压。 因此,上弦杆短、下弦杆长的网架,在双层 柱面网壳中,并不一定适用。
结构刚度差,弯曲内力大,甚至大于轴力;杆件的剪 力也不容忽视,不能实现以薄膜内力为主的受力状态。 节点必须设计为刚节点,以传递弯矩、剪力。
(1)单斜杆柱面网壳
2)人字形柱面网壳(弗普尔型柱面网壳)
斜杆布置成人字形。
3)双斜杆型柱面网壳
提高网壳的刚度。
4)联方网格型柱面网壳
网格为菱形,杆件的夹角在30~50之间。
在第三方向全部或局部设置杆件,提高抗剪 刚度。
北京石景山体育馆
1989年
三叉拱支双曲抛物面网壳 ,用钢44.6 kg/m2。
北京石景山体育馆
平面为正三角形,边长99.7m。屋盖由三片四边形双曲抛物面 双层网壳 组成,支撑在三叉形格构式刚架和钢筋混凝土边梁上。
四 柱面网壳的形式
1 单层柱面网壳:
网壳结构
影响网壳结构静力特性的因素很多,主要有:结构的 几何外形、荷载类型及边界条件等。 网壳的类型和形式很多,型式不同的网壳,结构的变 形规律及内力分布规律相差甚远。即使是同一种型式的 网壳,当几何外型尤其是矢跨比不同时,都将有不同的 结构反映。此外,网壳结构是一类边界条件敏感型的结 构,边界约束条件的细微变化将有可能使结构的静力性 能产生相当的变化。
球
凯威特型球面网壳
面
短程线球面网壳
网 壳
交叉桁架体系
双层球 角 肋环型四角锥球面网壳 面网壳 锥 联方型四角锥球面网壳
体 联方型三角锥球面网壳 系 平板组合式球面网壳
肋环型球面网壳
适于中小跨度
联方型球面网壳— — 无纬向杆
联方型球面网壳—— 有纬向杆
适于大中跨度
斯威德勒型球面网壳(肋环斜杆型)
适于大中跨度
L≤30m 纵边落地时,
B≤25m
D≤60m
L2≤40m
L1 / L2 1.5
f 、f 1 ~ 1 h 1 ~ 1 L1 L2 2 4 L2 20 50
L2≤50m
L1 / L2 1.5
f1 、f 2 1 ~ 1 L1 L2 4 8
h 11 ~
L2 20 50
L2≤50m
第二节 网壳结构分析
单斜杆柱面网壳
单层 弗普尔柱面网壳
柱面 交叉斜杆型柱面网壳
柱 网壳 联方网格型柱面网壳
面
三向网格型柱面网壳
网
壳
双层
交叉桁架体系 正放四角锥柱面网壳
柱面 网壳
四角锥 体系
抽空正放四角锥柱面网壳
斜置正放四角锥柱面网壳
第八章 网壳结构
类似于筒壳,端部设置横向端肋拱(横隔),必要时中间也要设。
➢ a)单斜杆柱面网壳:
➢ b)人字形柱面网壳:
杆件数量少,节点构造简单; 刚度差
亦称弗普尔形柱面网壳
➢ c)双斜杆柱面网:
壳杆件数量多;刚度好
➢ d)联方网格柱面网壳:
杆件组成菱形,夹角为30 50
➢ e)三向网格柱面网壳:联方网格
22
8.4 扭网壳结构
8.4.1 单层扭网壳
1.正交正放类 a):单层时在方格内设斜杆 双层时组成四角锥体
2.正交斜放类 b):抗剪强度弱 c):第三方向局部设斜杆 d):全部方格内设双斜杆 e):第三方向全局设斜杆
8.4.2 双层扭网壳
构成与双层网壳相似; 形式与单层扭网壳相似。 1、两向正交正放网格的扭网壳 2、两向正交斜放的扭网壳 四川省德阳市体育馆--两向正交斜放的扭网壳
看台结构:沿射线方向为36对72 个框架
20
大阪穹顶
21
8.4 扭网壳结构
扭网壳为直纹曲面,壳面上每一点都可作为两根相互垂直 的直线。
优点:1、可以采用直线杆件直接形成。 2、负高斯曲壳,可避免其他扁壳所产生的聚焦现 象,能产生良好的室内声响效果。 3、造型轻巧活波,适应性强。
8.4.1 单层扭网壳 8.4.2 双层扭网壳 8.4.3 受力特点
特点:网格大小均匀,内力分 布均匀,刚度好,常用于大跨 度的穹顶中。
d)联方型球面网壳
菱形网格,造型美观
e)三向网格型球面网壳
适用于中,小跨度
f):短程线型(富勒式):大中跨度
短程线,指球面上两点之间最短的曲线,这条最短的曲线必定位于 由该点及球心所组成的平面与球面相交的大圆圆周上。正二十面体网格 的边长0.527D,杆件太长,只能根据弧长相等的原则进行二次(三次) 划分,得到的网格称为短程线网格。
网壳结构
§1.网壳结构的类型 一、网壳的分类
3)按曲面外形分类 组合扭网壳
§1.网壳结构的类型 一、网壳的分类
3)按曲面外形分类 球面与柱面组合网壳
§1.网壳结构的类型 二、网壳的网格形式
1)球面网壳 肋环型球面网壳
±
整体刚度差,适用于中、小型网壳
§1.网壳结构的类型 二、网壳的网格形式
1)球面网壳 施威德勒型球面网壳(Schwedler)
±
采用时程分析法和振型分解反应谱法求解,按两阶 段进行设计
§2.网壳结构设计 四、网壳结构装配应力
±
装配应力往往是在安装过程中由于制作和安装等原 因,使节点不能达到设计坐标位置,造成部分节点间 的距离大于或小于杆件的长度。在采用强迫就位使秆 件与节点连接的过程中就产生了装配应力。
±
由于网壳对装配应力极为敏感,一般都通过提高制 作精度、选择合适安装方法和控制安装精度使网壳的 节点和杆件都能较好地就位,装配应力就可减少到可 以不予考虑。 当需要计算装配应力时,也应采用空间杆系/梁系有 限单元法,采用的基本原理与计算温度应力时相仿, 即把杆件长度的误差比拟为由温度伸长或缩短即可。
±
可以考虑调整支座类型来考虑释放温度应力
§2.网壳结构设计 三、网壳结构地震作用
±
地震发生时,由于强烈的地面运动而迫使网壳结 构产生振动,受迫振动的网壳,其惯性作用一般来说 是不容忽视的。正是这个由地震引起的惯性作用使网 壳结构产生很大的地震内力和位移,从而有可能造成 结构破坏或倒塌,或者失去结构工作能力。因此在地 震设防区必须对网壳结构进行抗震计算。
第三章
网壳结构
网壳结构
Reticular Shell
网壳结构受力特点
± 网架结构就整体而言是一个受弯的平板 ± 网壳结构则是主要承受膜内力的壳体 ± 一般情况下,同等条件的网壳比网架要 节约钢材约20% ± 网壳结构外形美观,富于变化
第八章网壳结构
建 筑 结 构 选 型
建 筑 结 构 选 型
(3)由于杆件尺寸与整个网壳结构相比很小,可把
建
网壳结构近似地看成各向同性或各向异性连续体,利
筑
用钢筋混凝土薄壳结构分析结果进行定性的分析。 (4)网壳结构中网格的杆件可以用直杆代替曲杆,
结
即以折面代替曲面,如果杆件布置和构造处理得当,
型
3.钢网壳结构:钢网壳结构目前在我国应用广泛,
其钢材可以采用钢管、工字钢、角钢、薄壁型钢等。钢
建
网壳具有重量轻、强度高、构造简单、施工方便等优点。
筑
结 4.铝合金网壳:
构
5.塑料网壳:
选
目前较少用。 6.玻璃网壳:
型 目前较少用。
第二节 筒网壳结构
建
筒网壳也称为柱面网壳,是单曲面结构,其横截面常
选
但单层网壳曲面外刚度差、稳定性差、各种因素
型
都会对结构的内力和变形产生明显的影响,因此
在结构杆件的布置、屋面材料选用、计算模式的
确定、构造措施的落实及结构的施工安装中,都
必须加以注意。
建
筑
2.双层网壳: 双层网壳可以承受一定的弯
结 矩,具有较高的稳定性和承载力。当屋顶上需
构 要安装照明、音响、空调等各种设备及管道时,
建
联方型筒网壳受力明确,屋面荷载从 两个斜向拱的方向传至基础,简捷明了。
筑
室内呈菱形网格,犹如撒开的渔网,
结
美观大方。其缺点是稳定性较差,由于
构
网格中每个节点连接的杆件数少,故常 采用钢筋混凝土结构。
选
型
如同济大学大礼堂(图),平面尺寸为
建
40m×56m,矢高为8~8.5m;乌鲁木齐机场
网壳结构
网壳结构一、简介1.1 何为网壳结构网壳结构是曲面型的网格结构,兼有杆系结构和薄壳结构的固有特性,受力合理,覆盖跨度大,其外形为壳,是格构化的壳体,也是壳形的网架。
它是以杆件为基础,按一定规律组成网格,按壳体坐标进行布置的空间构架,其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。
它既有靠空间体形受力的优点,又有工厂生产构件现场安装的施工简便、快速的长处,而且他以结构受力合理,刚度大,自重轻,体形美观多变,技术经济指标好,而成为大跨结构中备受关注的一种结构形式。
1.2 网壳的形式与分类(1)按网壳的层数来分,有单层网壳和双层网壳,其中双层网壳通过腹杆把内外两层网壳杆件连接起来,因而可把双层网壳看作由共面与不共面的拱桁架系或大小相同与不同的角锥系(包括四角锥系、三角锥系和六角推系)组成。
(一般来说,中小跨度(一般为40m以下)时,可采用单层网完,跨度大时,则采用双层网壳。
)如图1图1 单层网壳与双层网壳(2)按网壳的用材分,主要有木网壳、钢网壳、钢筋混凝土网壳以及钢网壳与钢筋混凝土屋面板共同工作的组合网壳等四类。
(3)按曲面的曲率半径分,有正高斯曲率网壳、零高斯曲率网壳和负高斯曲率网壳等三类。
(4)按曲面的外形分,主要有球面网壳、圆柱面网壳、扭网壳(包括双曲抛物面鞍型网壳、单块扭网壳、四块组合型扭网壳)等。
(5)按网壳网格的划分来分,有以下两类。
对于圆柱面网壳主要有单向斜杆型、交叉斜杆型、联方网格型、三向型,如图2所示。
对于球面网壳主要有肋环型、Schwedler型、联方网格型、三向网格型,如图3所示。
(a)(b)(c)(d)图2 圆柱面单层网壳网格(a)单向斜杆型(b)交叉斜杆型(c)联方型(d)三向网格型图3单层球面网壳网格类型二、受力特点和典型工程应用1、圆柱面网壳受力特点1.1两对边支撑对于以跨度方向为支座,拱脚常支撑于圈梁、柱顶或基础上产生推力。
对于以波长方向为支座,柱面网壳端支座若为墙,则为受拉构件,若端支座为边高度梁,则为拉弯构件,此时应设边梁。
网壳结构简介
双层网壳杆件计算长度
表3-10
连接形式
螺栓球点 焊接球结点
板节点
弦杆
l 0.9l
l
腹杆
支座腹杆
其他腹杆
l
l
0.9l
0.9l
l
0.9l
网壳类别 双层网壳 单层网壳
网壳杆件容许长细 比λ
压杆 200 150
静荷载 300 300
表
拉杆
3-11
动荷载
250
250• 感谢阅读Fra bibliotek感谢阅读
• 感谢阅读
为使薄膜理论适用,球网壳应沿其边缘设置 连续的支承结构。
第四节 扭网壳结构
双曲面网壳可采用直线杆件直接形成。施工简单。造型轻巧活泼,适应性强。 一、扭网壳
a) 正交正放类 d) 正交斜放设斜杆类
b) 正交斜放类 e) 正交斜放设斜杆类
c) 正交斜放设斜杆类
双曲面网壳的网格形式 1.正交正放类
a):单层时在方格内设斜杆 双层时组成四角锥体 2.正交斜放类 b):抗剪强度弱 c):第三方向局部设斜杆 d):全部方格内设双斜杆 e):第三方向全局设斜杆
2、四边支承或多点支承 筒网壳的受力同时有拱式受压和梁式
受压两方面。两种作用的大小同网格的构 成及网壳的跨度与波长之比有关。
工程中常用短壳。如因功能要求必须 为长网壳时,可在纵向中部增设加强肋。
第三节 球网壳结构
关键球面划分。基本要求:1)杆件规格尽可能少 2)形成结构为几何不变体。 一、单层球面网壳
二、受力特点:
本身具有较好的稳定性,但出平面刚度 较小,控制挠度成关键。
在屋脊处设加强桁架,能明显减少屋 脊附近的挠度,但随着与屋脊距离的增加, 加强桁架的影响下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)复杂曲面网壳
网壳结构可根据建筑平面、空间和功能的 需要,通过对某种基本曲面的切割与组合,可 以得到任意平面和各种美观、新颖的复杂曲面。 基本形式有柱面的切割与组合、球面的切割与 组合、双曲抛物面的切割与组合及柱面与球面 的组合等。
4.曲面的形成方法
(1)旋转法
由一根平面曲线作母线,绕其平面内的 竖轴在空间旋转而形成的一种曲面,该种曲面 称为旋转曲面。如图7所示。
d ---承载力加肋提高系数, 受拉 d =1.1, 受压d =1.4,不加肋时
d =1.0。
6.螺栓球节点设计
高强度螺栓的直径应由杆件内力控制。每 个高强度螺栓的受拉承载力设计值,应按下式计 算:
3.2 单层网壳的设计
1.计算模型
单层网壳应根据节点类型选择不同的模型 进行分析计算。当采用螺栓球节点时,应采用 空间杆系有限元法计算;当采用焊接空心球节 点时,可采用空间梁系有限元法进行分析。
(2)平移法
由一平面曲线(母线)在空间沿着另两根(或 一根)平面曲线(导线)平行移动而形成的曲面, 称为平移曲面。如图8所示 。
图7 旋转曲面
图8 平移曲面
二、柱面网壳
1.单层柱面网壳的形式
按网格形式划分,主要有以下几种形式。
(1) 单向斜杆型柱面网壳
做法: 如图9(a)所示,首先沿弧等分弧长,通 过等分点作平行的纵向直线,而将直线等分, 作平行于弧线的横线,形成方格,最后每个方
图26 肋环型四角锥双层球面网壳
第二节 网壳结构的设计
一、双层网壳的设计
双层网壳结构的设计与平板网架基本 相同,计算模型也是采用空间桁架位移法, 节点假定为铰接,杆件只承受轴向力,但有 以下几点不同。
1.网格形式
双层网壳结构的网格形式与平板网架相比, 种类大为减少,由于网壳结构除承受弯曲以外, 尚有薄膜力的作用,所以双层网壳的上弦杆和 下弦杆都可以是受压的,因此适用于平板网架 中的上弦杆短、下弦杆长的很多形式,并不一 定适用于双层网壳。
(2)面心划分法
首先将多面体的基本三角形的边以N次等分, 并在划分点上以各边的垂直线相连接,从而构 成了正三角形和直角三角形的网格(图23)。再 将基本三角形各点投影到外接球球面上,连接 这些新的点,即求得短程线型球面网格。
面心法的特点是划分线垂直于基本三角形的边, 划分次数仅限于偶数。由于基本三角形的三条 中线交于面心,故称为面心法。
(2)正高斯曲率的网壳
正高斯曲率是指曲面的两个方向主曲率 同号, 均为正或均为负,即K1*K2>0,
如图3(b)所示
(3)负高斯曲率的网壳 负高斯曲率是指曲面两个主曲率符号相
反, 即K1*K2<0, 这类曲面一个方向是凸面, 一个方向是凹面. 如图3(c)所示。
图3 高斯曲率网壳
3.按曲面外形划分
四角锥体系的柱面网壳形式主要有四种
1)正放四角锥柱面网壳
如图11(a)所示,由正放四角锥体按一定规 律组合而成,杆件种类少,节点构造简单,是 目前最常用的形式。
2)正放抽空四角锥柱面网壳
如图11(b)所示,这类网壳是在正放四角锥 柱面网壳的基础上,适当抽掉一些四角锥单元 体件的腹杆和下弦杆.适用于小跨度、轻屋面 荷载。
网壳结构的最大挠度值不应超过短向跨度 的1/400。由于网壳的竖向刚度较大,一般情 况均能满足此要求。对于悬挑网壳,其最大位 移不应超过悬挑跨度的1/200。
4.杆件的计算长度系数
由于双层网壳中大多数上、下弦杆均受压,它 们对腹杆的转动约束要比网架小,因此其计算长度 与网架相比稍有不同,系数值见表3—3所示
部分网格呈梯形。由于它的杆件种类少,每个 节点只汇交四根杆件,故节点构造简单,但是 节点一般为刚性连接,承受节点弯矩。
图12 肋环型球面网壳
2.施威德勒型球面网壳
这种网壳由经向杆、纬向杆和斜杆构成, 是肋环型网壳的改进型。设置斜杆的目的是为 了增强网壳的刚度并能承受较大的非对称荷载。
斜杆布置方法主要有:左斜单斜杆、左右 斜单斜杆、双斜杆和无纬向杆的双斜杆。
图2l 弦均分法
2)等弧(等角)再分法
首先将多面体的基本三角形的边进行二 等分或三等分,并从其外接球中心将等分点 投影到球面上,把投影点连线形成新多面体 的棱(弦),此时原弦长缩小一半或1/3(图 22).
图22 等弧(等角)再分法
3)等分弧边法 该法与等弧(等角)再分法不同之处是将基本
三角形各边所对的弧直接进行等分,连接球面 上各划分点,即求得短程线型球面网格
曲率半径用Rl,R2表示,它们之间的关系为 :
图2 曲线坐标
曲面的两个主曲率之积称为曲面在该点的高斯曲 率,用K表示 :
网壳按高斯曲率划分有以下三种
(1)零高斯曲率的网壳
零高斯曲率是指曲面一个方向的主曲率 半径R1=∞,即K1=0; 而另一个主曲率半径 R2=a或-a(a为某一数值),即K≠0, 故又称为 单曲网壳. 如图3(a)所示。
如图9(e)所示,三向网格可以理解为联方型 网格再加上纵向杆件使菱形变为三角形。
图9 单层柱面网壳的网格形成
2.双层柱面网壳的形式
主要有交叉桁架体系和四角锥体系 (1)交叉桁架体系
单层柱面网壳的各件形式均可成为交叉 桁架体系的双层柱面网壳,每个网片形式如
图10所示。
图10 交叉桁架体系基本单元
(2)四角锥体系
三、球面网壳
球面网壳结构也是目前常用的形式之 一.可分单层与双层两大类。
(一)单层球面网壳
按网格形式划分主要有7种,即肋环型、施 威德勒型(SchwedIer)、联方型、凯威特型 (Kiewitt)、短程线型、三向网格及两向格子型。
1.肋环型球面网壳
肋环型球面网壳是从肋型穹顶发展起来的。
特点: 肋环型网壳只有经向和纬向杆件,大
(1)交替划分法
一般用于20面体,用划分线平行于基 本三角形各边组成网格,划分频率N为奇数 或偶数均可。划分时常用的有三种方法。
1)弦均分法
将多面体的基本三角形各边等分若干点, 作划分线平行于该三角形的边,形成三角形 网格,再将各点投影到外接球面上,连接球 面上各点,即求得短程线型球面网格(图21)。
图16 三向格子型球面网壳
6.短程线型球面网壳
短程线型球面网壳是多面体划分法中最 典型、应用最广的一种网壳。
网格划分: 当选定了多面体和基本三角 形之后,进行再划分的方法很多,主要有两 类,第一类是交替划分法(A1ternate),第 二类是面心划分法(Triacon),而每一类又 有不同的方法。
格加斜杆,形成单向斜杆型柱面网壳
(2)人字型柱面网壳
如图9(b)所示,与单向斜杆型网壳的不同
之处在于斜杆布置成人字形。
(3)双斜杆型柱面网壳
如图9(c)所示,每个方格内设置交叉斜杆, 以提高网壳的刚度。
(4)联方型柱面网壳
如图9(d)所示,其杆件组成菱形两格,杆 件夹角为30度~50度。
(5)三向网格
2.杆件及节点设计 (1)杆件设计
优点:网格大小匀称,内力分布均匀,常
用于大、中跨度的弯顶中。如目前世界上跨 度最大的新奥尔良超级弯顶,它的网壳采用 了12个扇形面。
在实际工程中,有时在网壳的上部采用 凯威特型而在下部采用具有纬向杆的联方型, 如图15(c)、(d)所示。
图15 凯威特型球面网壳
5.三向格子型球面网壳
这种网壳的网格是在球面上用三个方向 的、相交成60度的大圆构成(图16),或在 球面的水平投影面上,将跨度n等分,再作 出正三角形网格,投影到球面上后,即可得 到三向格子型球面网壳。这种网壳的每一杆 件都是与球面有相同曲率中心的弧的一部分; 它的结构形式优美,受力性能较好,在欧洲 和日本很流行,多用于中、小跨度的弯顶。
1.交叉桁架体系
各种形式的单层球面网壳的网格形式均可适 用于交叉桁架系,只要将单层网壳中的每根杆件 用平面网片来代替,即可形成双层球面网壳,注
意网片竖杆的方向是通过球心的。
2.角锥体系
由角锥体系组成的双层球面网壳的基本单 元为四角锥或三角锥,而实际工程中以四角锥 体居多。如图26所示,为肋环型四角锥双层球 面网壳。为保证杆件具有合理的加工长度且减 少汇交于中心点的杆件数,网格中有过渡三角 形。
(3)、这种网壳在非常大的风载及地震灾 害作用下仍具有良好的性能,可用于大、 中跨度的弯顶。
图14 联方型球面网壳
4.凯威特型球面网壳
它是由n(n=6、8、12……)根通长的经 向杆先把球面分为n个对称扇形曲面,然后在 每个扇形曲面内,再由纬向杆系和斜向杆系将 此曲面划分为大小比较匀称的三角形网格(图 15(a)、 (b)),在每个扇形平面中各左斜杆平 行,各右斜杆平行,故这种网壳亦称为平行联 方型网壳。
双层网壳杆件的容许长细比,对受压杆件取 [λ] =180;对受拉杆件,若承受静载则[λ] = 300,若直接承受动载则[λ] =250。
5.焊接空心球节点承载力
当空心球直径为120一900mm时,其拉 压极限承载力设计值可按下式计算:
式中: Ntc——焊接空心球的轴心受拉、受压承 载力设计值 d-----钢管外径(mm); D-----空心球外径(mm); t----- 空心球壁厚(mm); f----- 钢球的抗拉、抗压强度设计值(MPa);
(1)柱面网壳
柱面网壳是由一根直线沿两根曲率相同的曲 线平行移动而成, 如图4所示。根据曲线形状不 同,有圆柱面网壳、椭圆柱面网壳和抛物线柱 面网壳
图4 柱面网壳
(2)球面网壳 球面网壳是由一母线(平面曲线)绕z
轴旋转而成, 如图5所示。
图5 球面网壳
(3)双曲抛物面网壳
双曲抛物面网壳是由一根曲率向下(K1>o) 的抛物线(母线)沿着与之正交的另一根具有曲 率向上(K2<0)的抛物线平行移动而成。该曲 面呈马鞍形,如图6所示。其高斯曲率K<O, 适用于矩形、椭圆形及圆形平面。