面面垂直证明

合集下载

面面垂直

面面垂直

面面垂直的判定、面面垂直的性质1.在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:2.在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3.几个常用的结论:(1)过空间任一点有且只有一条直线与已知平面垂直.(2)过空间任一点有且只有一个平面与已知直线垂直.4.判定面面垂直的方法:(1)面面垂直的定义.(2)面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).5.在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直.转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.6.证明直线和平面垂直的常用方法有:(1)利用判定定理.(2)利用判定定理的推论(a∥b,a⊥α⇒b⊥α).(3)利用面面平行的性质(a⊥α,α∥β⇒a⊥β).(4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l ∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是()A.①②B.②③C.②④D.③④解析:选D对于①:若α⊥β,β⊥γ,则α⊥γ,前者不是后者的充分条件,比如当α∥γ时,也有α⊥β,β⊥γ.对于②:显然错误,当l⊥α,l∩α=A时,l上到A距离相等的两点到α的距离相等.③④显然正确.4.(2013·济南模拟)如图,在斜三棱柱ABC-AB1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂面ABC,∴平面ABC1⊥平面ABC.∴C1在面ABC上的射影H必在两平面交线AB上.5.(2012·曲阜师大附中质检)如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③解析:选B对于①,∵P A⊥平面ABC,∴P A⊥BC.∵AB为⊙O的直径,∴BC⊥AC.∴BC⊥平面P AC.又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM ∥P A.∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.6.(2012·济南名校模拟)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:选D在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB,又AB⊥AD,故AB⊥平面ADC,所以平面ABC⊥平面ADC.10. 如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.证明:(1)由已知,得MD是△ABP的中位线,所以MD∥AP.又MD⊄平面APC,AP⊂平面APC,故MD∥平面APC.(2)因为△PMB为正三角形,D为PB的中点,所以MD⊥PB.所以AP⊥PB.又AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.因为BC⊂平面PBC,所以AP⊥BC.又BC⊥AC,AC∩AP=A,所以BC⊥平面APC.因为BC⊂平面ABC,所以平面ABC⊥平面APC.3.(2012·莆田模拟)如图,在三棱锥P-ABC中,△P AC,△ABC分别是以A,B为直角顶点的等腰直角三角形,AB=1.(1)现给出三个条件:①PB=3;②PB⊥BC;③平面P AB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:P A⊥平面ABC;(2)在(1)的条件下,求三棱锥P-ABC的体积.解:法一:(1)选取条件①在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC= 2.又∵P A=AC,∴P A= 2.∴在△P AB中,AB=1,P A= 2.又∵PB=3,∴AB2+P A2=PB2.∴∠P AB=90°,即P A⊥AB.又∵P A⊥AC,AB∩AC=A,∴P A⊥平面ABC.(2)依题意得,由(1)可知P A⊥平面ABC,V三棱锥P-ABC=13P A·S△ABC=13×2×12×12=26.法二:(1)选取条件②∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面P AB.∵P A⊂平面P AB,∴BC⊥P A.又∵P A⊥AC,且BC∩AC=C,∴P A⊥平面ABC.(2)依题意得,由(1)可知P A⊥平面ABC. ∵AB=BC=1,AB⊥BC,∴AC=2,∴P A=2,∴V三棱锥P-ABC=13P A·S△ABC=13×12AB·BC·P A=13×12×1×1×2=26.法三:(1)选取条件③若平面P AB⊥平面ABC,∵平面P AB∩平面ABC=AB,BC⊂平面ABC,BC⊥AB,∴BC⊥平面P AB.∵P A⊂平面P AB,∴BC⊥P A.∵P A⊥AC,且BC∩AC=C,∴P A⊥平面ABC.(2)同法二.。

面面垂直的判定定理

面面垂直的判定定理

例1 如图,AB是圆O的直径,PA垂直于⊙O所在的平面,C是
圆周上不同于A、B的任意一点, 求证:平面PAC⊥平面PBC. 分析:找面的垂线.
BC⊥平面PAC
证明:设⊙O所在平面为α,由已知条件,有 PA⊥α,BC在α内, ∴PA⊥BC,
∵点C是圆周上不同于A,B的任意一点, AB为⊙O直径,
∴∠BCA=90°, 即AC⊥BC 又∵ PA与AC是△PAC所在平面内
(一般通过计算完成证明。)
2、判定定理: 要证两个平面垂直,只要在其中一个平面内找到
另一个平面的一条垂线。 (线面垂直面面垂直)
线线垂直 线面垂直 面面垂直
作业
已知直线PA垂直正方形ABCD所在的平面,A为垂足。 求证:平面PAC平面PBD。
P
A
D
O
B
Cห้องสมุดไป่ตู้
谢谢!
面面垂直的定义:
一般地,两个平面相交,如果它们所成的二 面角是直二面角,就说这两个平面互相垂直.
β
α
直二面角?
1、二面角的定义: A
B
O
A
B
从一条直线出发的两个半平面所组
成的图形叫做二面角。
这条直线叫做二面角的棱。
这两个半平面叫做二面角的面。
2、二面角的画法:
(1)直立式: l
(2)正卧式:
l
(3)平卧式:
l
3、二面角的文字表示方法:
面1-棱-面2
二面角C-AB- D
二面角-AB-
C
A
点1-棱-点2
B D
A
F
E
B
二面角- l- A
P B
Q
l
D
C

面面垂直的条件

面面垂直的条件

面面垂直的条件
一个平面过另一平面的垂线,则这两个平面相互垂直。

如果两个平面的垂线互相垂直,那么这两个平面互相垂直。

如果一个平面的垂线平行于另一个平面,那么这两个平面互相
垂直。

定义:若两个平面的二面角为直二面角,则面面垂直
判定定理:一个平面过另一平面的垂线,则这两个平面相互垂直
性质定理:
1.若两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
2.若两个平面垂直,则过第一个平面内任意一点,向另一平面作这条垂线必在第一个
平面内
3.若两个平面垂直,则两个平面内除了交线的各任意的两条直线都互相垂直
如何证明面面垂直
面与面的垂直,其实就是两个面法向量的的垂直关系。

即是读者要找到两个面的法向量,然后判别两个法向量的位置关系即可。

分别算出两个平面的法向量,n1,n2.找法向量一般根据平面的书写形似即可找到。

两个面的法向量之间的向量积结果是零的话,就说明两个平面是垂直的。

感谢您的阅读,祝您生活愉快。

如何证明面面垂直

如何证明面面垂直

如何证明面面垂直设P是三角形ABC所在平面外的一点,P到A,B,C三点的距离相等,角BAC为直角,求证:平面PCB垂直平面ABC过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的中心,因为角BAC为直,所以Q在线段BC上,所以在面PCB上有线段PQ⊥平面ABC,故平面PCB⊥平面ABC2证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面然后转化成一条直线垂直于另一个平面内的两条相交直线也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2一、初中部分1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的'一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。

方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。

2.公理4(平行公理)。

3.线面平行的性质。

4.面面平行的性质。

5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。

2.平面外的一条直线与平面内的一条直线平行。

怎么证明面面垂直

怎么证明面面垂直

怎么证明面面垂直怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面然后转化成一条直线垂直于另一个平面内的两条相交直线也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE21利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。

方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。

2.公理4(平行公理)。

3.线面平行的性质。

4.面面平行的性质。

5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。

2.平面外的一条直线与平面内的一条直线平行。

3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。

线面垂直、面面垂直的性质与判定定理

线面垂直、面面垂直的性质与判定定理

a
l
a
a l
作用: 面面垂直线面垂直
垂直体系
判定
判定
线线垂
线面垂直 面面垂直

定义
性质
问题2 , a , a ,判断a与位置关系
α
a
a //
l
问题3: β
思考:已知平面,,直线a,且 , AB,
a //, a AB,试判断直线a与平面的位置关系。
α
Aa
β
a⊥β
符号语言:
ab
a ,b a / /b
α
线面垂垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
∵BC 平面SBC
A
C
∴AD⊥BC
∵SA⊥平面ABC,BC 平面ABC
B
∴SA⊥BC
“从已知想性质,从求证
∵SA∩AD=A,
想判定”这是证明几何问
∴BC⊥平面SAB
题的基本思维方法.
∵AB 平面ABC ∴AB⊥BC
课堂小结
1、证题原则:注从已意知想辅性助质,线从求的证作想判用定
B
例3 , a , a ,判断a与位置关系
证明:设 l
α a //
在α内作直线b⊥l
b
a
l
β
b
bl
l
b 又a
线面垂直
a // b 性质

面面垂直的判定与性质课件

面面垂直的判定与性质课件
详细描述
如果两个平面都与同一直线垂直,那 么这两个平面之间的夹角为90度,即 这两个平面互相垂直。
性质3:垂直于同一平面的两条直线互相平行
总结词
如果两条直线都垂直于同一个平面,则这两条直线互相平行。
详细描述
如果两条直线都与同一个平面垂直,那么这两条直线之间的夹角为0度,即这两 条直线互相平行。
应用场景1:建筑学中的面面垂直
逆定理的表述
• 逆定理:如果一个平面内的两条相交直线与另一 个平面垂直,则这两个平面互相垂直。
逆定理的证明
• 证明:设两条相交直线为$a$和$b$,它们与平面$\alpha$垂直。根据直线与平面垂直的性质,有$a \perp \alpha$和$b \perp \alpha$。由于$a$和$b$相交,根据平面的性质,过$a$和$b$的平面$\beta$与平面$\alpha$垂直。因此,逆定理 得证。
推论
总结词
如果两个平面都垂直于同一个平面,则这两个平面之间的距离相等。
详细描述
根据面面垂直的性质,如果两个平面都与第三个平面垂直,那么这两个平面之间的距离 是相等的。这是因为它们都与第三个平面形成相同的角度,所以它们之间的距离也是相
等的。
推论
总结词
如果两个平面都垂直于同一条直线,则 这两个平面之间的距离相等。
电子设备设计中,面面垂直的应用有助于提高设备的性能和稳定性。
详细描述
在电子工程中,电路板和电子元件的布局都需要遵循面面垂直的判定与性质。例如,在制造手机的过程中,利用 面面垂直的判定方法可以确保屏幕与机壳之间的垂直度,从而提高手机的显示效果和使用寿命。此外,在制造高 精度传感器的过程中,也需要利用面面垂直的判定方法来确保传感器的精确度和稳定性。

面面垂直线面垂直的判定定理

面面垂直线面垂直的判定定理

面面垂直线面垂直的判定定理一、引言在几何学中,面面垂直是一个基本的概念。

当两个平面垂直时,我们称它们是面面垂直的。

本文将介绍面面垂直线面垂直的判定定理。

二、定义1. 面:在三维空间中,由无数条线段组成的平坦曲面。

2. 平行:两条线或两个平面在同一平面内,且不相交。

3. 垂直:两条线或两个平面相交于一个角度为90度的交点。

4. 面面垂直:当两个平面相互垂直时,它们被称为“面面垂直”。

三、定理如果一条直线同时与两个不同的平面相交,并且这条直线与其中一个平面的交线是另一个平面上的一条直线,则这两个平面是“面面垂直”的。

四、证明假设有两个不同的平面A和B,并且这两个平面相互垂直。

我们需要证明如果一条直线同时与这两个不同的平面相交,并且这条直线与其中一个平面A的交线是另一个平面B上的一条直线,则这两个平面是“ 面面垂直”的。

首先,我们需要证明这条直线存在。

假设这两个平面A和B相交于一条直线L。

因为这两个平面相互垂直,所以它们的交角为90度,因此直线L与平面A和平面B的交线都是垂直的。

接下来,我们需要证明这条直线与平面A和平面B的交线是垂直的。

假设这条直线与平面A的交点为P,与平面B的交点为Q,并且PQ 在平面B上。

我们需要证明AP和BQ是垂直的。

由于PQ在平面B上,所以PQ与平面A的交线PA也在平面B上。

因此,我们可以得到三角形APQ和三角形BPQ共享一个角度PQB,并且它们有一个共同边界PQ。

根据余弦定理:cos(APQ) = (AQ² + PQ² - AP²) / (2 * AQ * PQ)cos(BPQ) = (BQ² + PQ² - BP²) / (2 * BQ * PQ)由于AP = BQ(因为它们都等于L),所以AP² = BQ²。

将其代入上式中可得:cos(APQ) = cos(BPQ)因此,APQ = BPQ因此,AP和BP是垂直的。

证明面面垂直的判定定理

证明面面垂直的判定定理

证明面面垂直的判定定理一、引言在几何学中,面面垂直的判定定理是一个非常重要的定理。

该定理指出,如果两个平面相交且其交线与第三个平面垂直,则这两个平面是相互垂直的。

这个定理在计算机图形学、建筑设计和机械制造等领域都有广泛的应用。

本文将详细介绍如何证明这个定理。

二、定义在证明该定理之前,我们需要先了解一些相关的定义。

1. 平面:平面是一个无限大的、完全平坦的表面,可以看作是由无数条平行于同一方向的直线组成。

2. 直线:直线是一个无限长的、完全笔直的线段,可以看作是由无数个点组成。

3. 垂直:两条线或两个平面相互垂直意味着它们之间存在一个90度角度。

三、证明现在我们来证明该定理。

为了方便起见,我们假设有三个不共面的点A、B和C,并且有两个不重合但相交的平面P和Q。

我们需要证明如果交线AB与第三个平面R垂直,则P和Q也相互垂直。

1. 画图首先,在纸上画出三条互不相交的直线,分别标记为AB、AC和BC。

然后在这些直线上随意选择三个点,分别标记为A、B和C。

接下来,画出两个平面P和Q,并使它们相交于一条直线AB。

最后,在平面P 和Q上各选择一个点,并将它们标记为D和E。

2. 找到垂足根据题目条件,我们已知交线AB与平面R垂直。

因此,我们可以从点D到AB上的垂足H画一条垂线。

同样地,我们可以从点E到AB上的垂足K画一条垂线。

3. 证明两个角度相等由于AH与AK都是R平面上的垂线,所以它们在R平面内是相等的。

又因为AD与AE都在PQ平面内,所以它们也是相等的。

因此,我们可以得出AHK是一个等腰三角形。

4. 证明两个角度之和为90度由于AHK是一个等腰三角形,所以角DAH+角EAK=180度-2*DAK=90度(其中DAK表示角DAH或EAK)。

又因为AD与AE 都在PQ平面内,所以它们也是相互垂直的。

5. 证明PQ互相垂直由于角DAH+角EAK=90度,所以它们是互相补充的。

因此,我们可以得出角DAP和角EAQ是互相补充的。

如何证明面面垂直(精选多篇)

如何证明面面垂直(精选多篇)

如何证明面面垂直(精选多篇)第一篇:如何证明面面垂直如何证明面面垂直设p是三角形abc所在平面外的一点,p到a,b,c 三点的距离相等,角bac为直角,求证:平面pcb垂直平面abc过p作pq⊥面abc于q,则q为p在面abc的投影,因为p到a,b,c的距离相等,所以有qa=qb=qc,即q为三角形abc的中心,因为角bac为直,所以q在线段bc上,所以在面pcb上有线段pq⊥平面abc,故平面pcb⊥平面abc2证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面然后转化成一条直线垂直于另一个平面内的两条相交直线也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2一、初中部分1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。

方法如下(难以建立坐标系时再考虑):ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。

2.公理4(平行公理)。

3.线面平行的性质。

4.面面平行的性质。

5.垂直于同一平面的两条直线平行。

证明平面与平面垂直(空间向量)

证明平面与平面垂直(空间向量)

1.利用空间向量证明面面垂直通常可以有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度..用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.4.若平面α与β的法向量分别是a=(4,0,-2),b=(1,0,2),则平面α与β的位置关系是( )A.平行 B.垂直C.相交不垂直 D.无法判断解析:∵a·b=4×1+0+(-2)×2=0.∴a⊥b,∴α⊥β.答案:B面面垂直.在正方体ABCD-A1B1C1D1中,E为CC1的中点,证明:平面B1ED⊥平面B1BD.【证明】 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E (0,1,12),DB 1→=(1,1,1),DE →=(0,1,12),设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .图3-2-124.在正方体ABCD -A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD .[证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝ ⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .例3:如图3-2-12,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .【解答】 由题意得AB ,BC ,B 1B 两两垂直,以B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·AA 1→=0n 1·AC →=0⇒⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0n 2·AE →=0⇒⎩⎪⎨⎪⎧-2x +2y +z =0,-2x +12z =0. 令z =4,得x =1,y =-1.∴n 2=(1,-1,4).∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2.∴平面AEC 1⊥平面AA 1C 1C .如图所示,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .思路探究:要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n 1,n 2,证明n 1·n 2=0.[解] 由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝ ⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧n 1·AA 1→=0,n 1·AC →=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE →=0⇒⎩⎨⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0, 令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .如图在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,F 为CD 的中点,G 为AB 的中点.求证:平面ADE ⊥平面A 1FG .证明:连结D 1F ,以D 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,设正方体棱长为1.∴D (0,0,0),E (1,1,12),A (1,0,0),A 1(1,0,1),G (1,12,0),F (0,12,0).∴AE →=(0,1,12),A 1G →=(0,12,-1),GF →=(-1,0,0).∴AE →·A 1G →=0+12-12=0,AE →·GF →=0+0+0=0. ∴AE →⊥A 1G →,AE →⊥GF →, ∵A 1G ∩GF =G , ∴AE ⊥平面A 1GF . 又AE ⊂平面ADE , ∴平面ADE ⊥平面A 1GF .6.如图, 正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别是棱AB 、BC 的中点,EF ∩BD =G .求证:平面B 1EF ⊥平面BDD 1B 1.[证明] 以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,由题意知:D (0,0,0)、B 1(22,22,4)、E (22,2,0)、F (2,22,0),B 1E →=(0,-2,-4)、EF →=(-2,2,0). 设平面B 1EF 的一个法向量为n =(x ,y ,z ). 则n ·B 1E →=-2y -4z =0,n ·EF →=-2x +2y =0. 解得x =y ,z =-24y ,令y =1得n =(1,1,-24), 又平面BDD 1B 1的一个法向量为AC →=(-22,22,0), 而n ·AC →=1×(-22)+1×22+(-24)×0=0,即n ⊥AC →.∴平面B 1EF ⊥平面BDD 1B 1. 10.如图在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,F 为CD 的中点,G 为AB 的中点.求证:平面ADE ⊥平面A 1FG .证明:连结D 1F ,以D 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,设正方体棱长为1.∴D (0,0,0),E (1,1,12),A (1,0,0),A 1(1,0,1),G (1,12,0),F (0,12,0).∴AE →=(0,1,12),A 1G →=(0,12,-1),GF →=(-1,0,0).∴AE →·A 1G →=0+12-12=0,AE →·GF →=0+0+0=0.∴AE →⊥A 1G →,AE →⊥GF →, ∵A 1G ∩GF =G , ∴AE ⊥平面A 1GF . 又AE ⊂平面ADE , ∴平面ADE ⊥平面A 1GF .11.在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为2,侧棱长为3,E 、F 分别是AB 1、CB 1的中点,求证:平面D 1EF ⊥平面AB 1C .证明:把正四棱柱如图放置在坐标系中,则各点坐标为A (2,0,0),C (0,2,0),B 1(2,2,3),D 1(0,0,3),E (2,22,32),F (22,2,32). 假设平面AB 1C 的法向量为n 1=(1,λ1,u 1),则n 1应垂直于AC →和AB 1→, 而AC →=(-2,2,0),AB 1→=(0,2,3),∴n 1·AC →=-2+2λ1=0, n 1·AB 1→=2λ1+3u 1=0. ∴λ1=1,u 1=-63. ∴n 1=(1,1,-63).再设平面D 1EF 的法向量为n 2=(1,λ2,u 2),则n 2应垂直于D 1E →、D 1F →. 而D 1E →=(2,22,-32),D 1F →=(22,2,-32),n 2·D 1E →=2+22λ2-32u 2=0,∴n 2·D 1F →=22+2λ2-32u 2=0.∴λ2=1,u 2= 6. ∴n 2=(1,1,6). 由于n 1·n 2=1+1-63·6=0, ∴n 1⊥n 2.∴平面D 1EF ⊥平面AB 1C .2.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为三角形A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.[证明] 如图,建立空间直角坐标系.则A (0,0,0),B (2,0,0),C (0,2,0), A 1(0,0,3),C 1(0,1,3),因为D为BC的中点,所以D点坐标为(1,1,0),所以BC→=(-2,2,0),AD→=(1,1,0),AA1→=(0,0,3),因为BC→·AD→=-2+2+0=0,BC→·AA1→=0+0+0=0,所以BC→⊥AD→,BC→⊥AA1→,所以BC⊥AD,BC⊥AA1,又AD∩AA1=A,所以BC⊥平面ADA1,而BC⊂平面BCC1B1,所以平面A1AD⊥平面BCC1B1.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=3,AB=2,AC=2,A1C1=1,BDDC=12.证明:平面A1AD⊥平面BCC1B1.证明:如图,建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,3),C1(0,1,3).∵BD∶DC=1∶2,∴BD→=13BC→,∴D点坐标为(223,23,0),∴AD→=(223,23,0),BC→=(-2,2,0),AA1→=(0,0,3).∵BC→·AA1→=0,BC→·AD→=0,∴BC⊥AA1,BC⊥AD.又A1A∩AD=A,∴BC⊥平面A1AD.又BC⊂平面BCC1B1,∴平面A1AD⊥平面BCC1B1.中等难度建系10.如图3-2-16所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .图3-2-16求证:平面DEA ⊥平面ECA .【答案】建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2, 则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧3x 1+y 1-2z 1=0,2z 1=0,解得⎩⎨⎧y 1=-3x 1,z 1=0,⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0, 解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0), n 2=(3,1,2),因为n 1·n 2=0,所以n 1⊥n 2. 所以平面DEA ⊥平面ECA .2017·开封模拟)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB .图7-7-4求证:平面BCE ⊥平面CDE . 【导学号:97190251】[证明] 设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).所以BE →=(a ,3a ,a ),BC →=(2a,0,-a ),CD →=(-a ,3a,0),ED →=(0,0,-2a ). 设平面BCE 的法向量为n 1=(x 1,y 1,z 1), 由n 1·BE →=0,n 1·BC →=0可得 ⎩⎪⎨⎪⎧ax 1+3ay 1+az 1=0,2ax 1-az 1=0, 即⎩⎪⎨⎪⎧x 1+3y 1+z 1=0,2x 1-z 1=0.令z 1=2,可得n 1=(1,-3,2). 设平面CDE 的法向量为n 2=(x 2,y 2,z 2), 由n 2·CD →=0,n 2·ED →=0可得 ⎩⎪⎨⎪⎧-ax 2+3ay 2=0,-2az 2=0,即⎩⎪⎨⎪⎧-x 2+3y 2=0,z 2=0.令y 2=1,可得n 2=(3,1,0). 因为n 1·n 2=1×3+1×(-3)=0. 所以n 1⊥n 2,所以平面BCE ⊥平面CDE .底面是梯形如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB . ∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP ,DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ→=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC→=0. 即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .[跟踪训练] 如图7-7-5所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .图7-7-5证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[证明] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形,∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3).∴BD →=(-2,-1,0),P A →=(1,-2,-3).∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A →⊥BD →,∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32. ∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .4.在正三棱锥P-ABC 中,三条侧棱PA,PB,PC 两两垂直,G 是△PAB 的重心,E,F 分别为BC 、PB 上的点,且BE∶EC=PF∶FB=1∶2.(1)求证:平面GEF ⊥平面PBC.(2)求证:EG ⊥BC,PG ⊥EG.【证明】(1)如图,以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在直线分别作为x 轴、y 轴、z 轴建立空间直角坐标系.设PA=PB=PC=3,则A(3,0,0),B(0,3,0),C(0,0,3),E(0,2,1),F(0,1,0),G(1,1,0),P(0,0, 0), 方法一:可得=(3,0, 0),=(1,0,0),故=3,所以PA ∥FG.而PA ⊥平面PBC,所以FG ⊥平面PBC.又FG ⊂平面GEF,所以平面GEF ⊥平面PBC.方法二:可得=(0,-1,-1),=(1,-1,-1).设平面GEF 的法向量是n =(x,y,z), 则有n ⊥,n ⊥,所以{y +z =0,x -y -z =0.令y=1,得z=-1,x=0,即n =(0,1,-1).显然=(3,0,0)是平面PBC的一个法向量.又n·=0,所以n⊥.所以平面GEF⊥平面PBC.(2)因为=(1,-1,-1),=(1,1,0),=(0,-3,3),所以·=1-1=0,·=3-3=0.所以EG⊥PG,EG⊥BC.。

怎样证明面面垂直

怎样证明面面垂直

怎样证明面面垂直第一篇:怎样证明面面垂直怎样证明面面垂直如果一平面经过另一平面的垂线,那么这两个平面垂直。

(面面垂直判定定理)为方便,下面#后的代表向量。

#cd=#bd-#bc,#ac=#bc-#ba,#ad=#bd-#ba.对角线的点积:#ac·#bd=(#bc-#ba)·#bd=#bc·#bd-#ba·#bd两组对边平方和分别为:ab2+cd2=ab2+(#bd-#bc)2=ab2+bd2+bc2-2#bd·#bcad2+bc2=(#bd-#ba)2+bc2=bd2+ba2+bc2-2#bd·#ba则ab2+cd2=ad2+bc2等价于#bd·#bc=#bd·#ba等价于#ac·#bd=0所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面然后转化成一条直线垂直于另一个平面内的两条相交直线也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2一、初中部分1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

如果一平面经过另一平面的垂线,那么这两个平面垂直。

(面面垂直判定定理) 1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

面面垂直的判定和性质定理

面面垂直的判定和性质定理

面面垂直的判定和性质定理面面垂直是几何学中一个重要的概念,它在几何证明和解题中扮演着重要的角色。

本文将介绍面面垂直的判定和性质定理,帮助读者更好地理解和应用这一概念。

一、面面垂直的判定面面垂直的判定有以下几种常见的方法:1. 垂直平分线判定法如果两个平面的垂直平分线相交于一点,那么这两个平面就是垂直的。

垂直平分线是指一个平面同时平分另外两个平面,并且相交于同一个点。

2. 垂直相交线判定法如果两个平面有一条相交线同时垂直于这两个平面,那么这两个平面就是垂直的。

垂直交线是指一个平面与另外两个平面相交,且与这两个平面的交线的方向垂直。

3. 法线向量判定法如果两个平面的法线向量互相垂直,那么这两个平面就是垂直的。

法线向量是指一个向量垂直于平面,其方向由平面的法线确定。

二、面面垂直的性质定理面面垂直的性质定理可以用于解决几何题目,以下是几个常见的定理:1. 两个垂直平面的截线是垂直的如果两个平面垂直,那么它们的任意一个截线与另一个截线的垂直切线是垂直的。

2. 两个垂直平面的夹角是锐角或钝角两个平面垂直的夹角是锐角或钝角,而不可能是直角或平角。

3. 直线与垂直平面的夹角等于直线与平面上法线的夹角如果一条直线与一个平面垂直,那么这条直线与平面上法线的夹角是相等的。

4. 直线与垂直平面的交点到平面的距离是最短的如果一条直线与一个平面垂直,那么直线上的任意一点到平面的距离都是最短的。

总结:面面垂直的判定包括垂直平分线判定法、垂直相交线判定法和法线向量判定法。

面面垂直的性质定理包括两个垂直平面的截线是垂直的、两个垂直平面的夹角是锐角或钝角、直线与垂直平面的夹角等于直线与平面上法线的夹角以及直线与垂直平面的交点到平面的距离是最短的。

这些定理在几何证明和解题中有着广泛的应用,对于深入理解和应用面面垂直概念非常有帮助。

结论:通过面面垂直的判定和性质定理,我们能够准确判断两个平面是否垂直,并且了解到垂直平面的一些重要性质。

高中面面垂直的判定定理

高中面面垂直的判定定理

高中面面垂直的判定定理高中面面垂直的判定定理在平面直角坐标系中,如果两条直线的斜率之积为-1,则这两条直线互相垂直。

这就是高中数学中常见的“面面垂直”的判定定理。

下面将从定义、证明、应用三个方面详细介绍这一定理。

一、定义在平面直角坐标系中,如果有两条不重合的直线L1和L2,它们的斜率分别为k1和k2,且k1×k2=-1,则称L1与L2互相垂直。

二、证明要证明“斜率之积为-1时,两条直线互相垂直”,我们需要用到向量的知识。

设向量a=(x1,y1)和向量b=(x2,y2),则a·b=x1x2+y1y2表示向量a和向量b的数量积。

同时,向量a和向量b垂直可表示为a·b=0。

现在考虑两条不重合的直线L1:y=k1x+b1和L2:y=k2x+b2(k1≠k2)。

分别取L1上一点A(x0,y0)和L2上一点B(x3,y3),则有:AB^→=AO^→+OB^→=(x0-b1,y0)-(x3-b2,y3)=(x0-x3-b1+b2,y0-y3)其中,^→表示向量,O为坐标系原点。

由于L1和L2垂直,所以向量AB^→与向量L1的方向向量a=(1,k1)垂直,即:AB^→·a=0展开得:(x0-x3-b1+b2)+k1(y3-y0)=0将L2的斜率k2=-1/k1代入得:(x0-x3-b1+b2)-(y3-y0)/k2=0也就是:(x0-x3-b1+b2)+k2(y3-y0)=0这表明向量AB^→与向量L2的方向向量b=(1,k2)垂直。

因此,L1和L2互相垂直。

三、应用面面垂直定理在高中数学中经常用于解决两条直线是否垂直的问题。

例如,在解决平面几何中的证明题目时,我们需要判断两条线段是否相互垂直。

此时,可以通过计算两条线段所在的直线的斜率之积是否为-1来判定它们是否垂直。

同时,在解决函数图像问题时,也需要运用面面垂直定理。

例如,在求解过给定点且与一条已知直线垂直的函数图像时,可以通过计算该函数图像所在直线与已知直线斜率之积是否为-1来确定该函数图像的斜率。

向量法证明面面垂直方法

向量法证明面面垂直方法

向量法证明面面垂直方法
向量法证明面面垂直主要基于两个平面的法向量的定义。

假设有两个平面α和β,要证明它们垂直,可以按照以下步骤进行证明:
1. 选取两个平面的法向量n1和n2。

通常,我们可以使用向量坐标表示法来定义这些法向量。

假设在平面α内选取基底{i1, i2},则n1可以表示为n1 = (n1x, n1y)。

类似地,在平面β内选取基底{j1, j2},则n2可以表示为n2 = (n2x, n2y)。

2. 证明两个法向量n1和n2相互垂直。

这可以通过验证它们的点积是否为零来实现。

具体来说,计算n1和n2的点积:(n1x, n1y)和(n2x, n2y)的乘积是否为-1。

如果是,那么n1和n2垂直。

3. 证明第一个平面α垂直于第二个平面β。

这可以通过验证它们的法向量n1和第二个平面的任意一个基向量是否垂直来实现。

假设在平面β内选取基向量k1,那么n1和k1应该垂直,即n1x*k1x + n1y*k1y = 0。

通过以上步骤,我们就可以使用向量法来证明两个平面是否垂直。

这种方法不仅简单易懂,而且还可以推广到证明任意数量的平面是否垂直的情况。

面面垂直的性质定理

面面垂直的性质定理

面面垂直的性质定理
性质定理∶如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。

一、面面垂直
(一)定义
若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。

(二)性质定理
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。

3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。

(判定定理推论1的逆定理)
二、线面垂直
(一)定义
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。

是将“三维”问题转化为“二
维”解决是一种重要的立体几何数学思想方法。

在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的"桥梁"。

(二)判定定理
直线与平面垂直的判定定理(线面垂直定理)∶一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

推论1∶如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

推论2∶如果两条直线垂直于同一个平面,那么这两条直线平行。

面面垂直的定理

面面垂直的定理

面面垂直的定理
面面垂直的性质定理有:1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另- 一个平面。

2、如果两个平面相互垂直,那么经过第一个平面内的一-点作垂直于第二个平面的直线在第一一个平面内。

3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

一、性质:
1、若两平面横向,则在一个平面内与交线横向的直线旋转轴另一平面。

2、若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。

二、其认定定理就是:一个面如果过另外一个面的垂线,那么这两个面相互横向。

即为一个平面过另一平面的垂线,则这两个平面相互横向。

定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。

面面横向的认定定理如下:
一个平面过另一平面的垂线,则这两个平面相互垂直。

证明:任一两个平面关系为平行或平行,设a⊥β,像距为p,那么p∈β
∴p∈α
即为α和β存有公共点p,因此α与β平行。

设α∩β=b,∵p是α和β的公共点
∴p∈b
过p在β内作c⊥b
∴a⊥b,像距为p
又c⊥b,垂足为p
∴∠apc就是二面角α-b-β的平面角
∴a⊥c,即∠apc=90°
根据面面横向的定义,α⊥β。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
a D
A a D2a
2a 2
2
C
思考题:
已知:平面α⊥平面β,在β内,CD∥AB α∩β=AB, 点E到AB距离为3cm , CD到AB间距离为4cm求:E 到CD的距离 解:在α内过E作EF⊥AB α ∵α⊥β ∴EF⊥β E 过F作FG⊥CD,连EG B D 由三垂线定理知EG⊥CD β ∴EG为到CD距离 Rt△EFG中, G F ∵EF=3cm,FG=4cm C ∴EG=5cm A
—a—
定理证明
已知:AB 平面α, AB ⊥平面β, 垂足为B 求证:α⊥β
α A D B E β
证:设α∩β=CD B∈CD 在β内作BE⊥CD ∵ AB⊥β CD β BE β ∴ AB⊥CD AB⊥BE ∴∠ABE为二面角α-CD-β的平面角 ∠ABE=90º ∴ α-CD-β为直二面角 C ∴α⊥β
平面与平面垂直的定义
定义:两个平面 相交,如果所成的二面 角是直二面角,就说这两个平面互相垂 直。 —a—
m
m a
a
n

n
面面垂直的判定定理:
如果一个平面经过另一个平面 的一条
垂线。那么这两个平面互相垂直。
α A D
B E β
面面垂直
线面垂直
C
证明思路:两平面 所成的二面角为直 角
C
平面α,
α A D B E
β
面面垂直的性质定理(2):
如果两个平面垂直那么经过第一 个平面内一点垂直于第二个平面的直线, 在第一个平面内。
C O
c b

A

D
B
A

O
B
小结
立体几何中化归思想的应用:
线线垂直 面面垂直 线面垂直 线面垂直 面面垂直 线线垂直
例1:
已知Rt∆ABC中AB=AC=a , AD是斜边上高,以AD为折痕, 使∠BDC成直角 求证1)平面ABD⊥平面BDC B 平面ACD⊥平面BDC 2)∠BAC=60º
A
D
C
A
证:1)∵AD⊥BD AD⊥DC BD∩DC=D AD⊥面BDC 而AD 面ABD ∴平面ABD⊥平面BDC 同理可证 平面ACD⊥平面BDC
D
D
B
C
例1:
a
A a D C
2)甲图中,∵在Rt△BAC中
AB=AC=a
2 ∴BD=DC= 2 a
B
2a
∴BC= 2 a 乙图中△BDC为等腰Rt△ ∴BC=a 乙图中,在△ABC中 AB=AC=BC=a ∴∠BAC=60º
面面垂直的性质定理(1):
如果两个平面垂直,那么在一个平面 内垂直于它们交线的直线垂直于另一个平 面。
α A D B C E
β
证明思路: 直线垂直 于平面的 判定定理
定理证明
已知:平面α⊥平面β,α∩β=CD,AB AB⊥CD, B为垂足。求证:AB⊥β
证:平面β内过点B作BE⊥CD, 则 ∠ABE是二面角α—CD—β平面角 ∵α⊥β ∴AB⊥BE 而 AB⊥CD CD∩BE=B ∴AB⊥β
相关文档
最新文档