对铁矿石化学分析方法研究

合集下载

对铁矿石中常见元素及铁物相采用的化学分析法

对铁矿石中常见元素及铁物相采用的化学分析法
合物 的形成 条件不 同等 为依据 , 一种化合 物溶 解, 使 而其他 化合物 不溶解 以达 到 分 离 的 目的 。 矿样粒 度, 剂的浓度及 温度, 溶 浸取时的搅 拌强度, 以及试样 中共存的杂质 等对浸 出率均 有 影 响, 选择 条件 时应 予 以考 虑 。 铁矿 石 的化 学物 相 分析 可采 用单 项物 相 分析 , 也可采 用 系统物 相 分析 。 所 谓单 项 物相 分 折, 是指 在 一份 称样 中, 只完 成一 “ ” 或一 个项 目)的测 相 ( 定 。所 谓系 统物相 分 析, 是指在 一 份称样 中, 用 多种溶剂 多 次连续浸 取, 利 完 成 多个 “ ” 或 多个 项 目) 相 ( 的测 定 。系统 物相 分析 和单 项物 相分 析相 比较 , 有 两方 面缺 陷 :1 由于溶剂 多 次浸取 , () 矿物 “ 串相 ”所造 成 的误差一 直往 后

原法 》G / 6 3. 9 6《 , BT 70 4 l 8 铁矿 石化 学分析 法氯化 亚锡一 氯化 汞一重 铬酸钾 容量法 测 定全铁 量 》的测 定标 准, 三氯 化钛 还原 滴定 法和氯 化亚锡 还 原滴 对 定法 的原理 加 以简要 介绍, 具体操 作过 程见 G / 6 3 其 B T 7 0铁矿石 的化 学分析 。 三氯 化钛还 原滴 定法, 将试样 用酸 分解或 碱熔融 分解, 氯化 亚锡将大 量铁 还原后 , 三氯 化钛还 原 少量剩 余 铁。用 稀重 铬酸钾 溶液 氧化 或用 高氯 酸氧 加 化过 量 的还 原剂 。 以二苯 胺磺 酸 钠 做指 示剂 , 铬 酸钾 标准 溶 液滴 定 。 重 氯化 亚锡还 原滴 定法, 试样用 酸分 解或用 碱熔融 分解, 用氯 化亚锡将 三价 铁还原 为二价铁加 入氯化 高汞 以除去过量 的氯化亚锡 , 以二苯胺 磺酸钠为 指示 剂, 用重 铬钾 标 准溶 液滴 至紫 色 。它 的反 应方 程式 是 :

铁矿石化验分析报告

铁矿石化验分析报告

1.铁矿石检测工作现状分析在铁矿石全铁含量的检测过程中,化学检测法在很长一段时间被广泛采用。

这种检测方法主要是通过化学反应中的氧化还原,在将铁矿石样本溶解的基础上,利用三氯化钛等还原剂化学药剂将高价铁离子还原成低价铁离子。

随后再通过诸如重铬酸钾把三氯化钛等还原剂重新氧化。

在化学检测法中,一般使用的指示剂多位苯胺磺酸钠,通过滴定重铬酸钾溶液,再其滴定完成后通过计算使用的重铬酸钾溶液的量来计算铁矿石的全铁含量。

但是随着我国铁矿石的贸易量与检测量的不断增加,铁矿石检测工作量不断加大,使得这种传统化学检测铁矿石全铁含量方法暴露出一系列问题。

主要表现在以下几点上。

第一,导致检测工作量过大。

化学检测的一个弊端就是检测大多需要经过检测人员手工操作,这就使得检测工作量急剧增多,增加了工作人员的工作量。

第二,检测时间过长。

因为检测工作量的问题,也导致对铁矿石样本的检测时间周期过长,检测批次堆积,大大延长了检测所规定的时间。

第三,需要大量的化学药剂。

这一点弊端最为重要,化学检测所消耗的不仅包括盐酸、硫酸等化学试剂,还包括水电等能源。

这导致化学检测在浪费资源的同时还容易造成环境污染。

2.化学检测法一般来说传统的测量铁矿石全铁含量的化学检测法主要依靠盐酸将铁矿石溶解后,利用其中三价铁离子还原为二价铁离子后滴入适当氯化汞的方式进行测定。

虽然这种方式较为精确,但是因为氯化汞的剧毒性,从而导致每次检测后对水源与环境的污染较重。

笔者下面所介绍的EDTA 滴定检测法则较为环保。

检测原理矿石中全铁量的测定试剂1、浓盐酸2、氯化亚锡:称取6克氯化亚锡[SnCL2、2H20]溶于20毫升热盐酸中,用水稀释至100毫升,加几粒纯锡备用。

3、氯化汞饱和溶液:取约10克HgCL2溶于100毫升热水中,冷却后使用。

4、硫磷混和酸:取150毫升浓硫酸缓慢的注入700毫升水中,冷却后,再加入150毫升浓磷酸,混匀即可。

5、二笨胺磺酸钠指示剂:%的水溶液。

无机及分析化学实验实验14 铁矿石中铁含量的测定(无汞法)

无机及分析化学实验实验14 铁矿石中铁含量的测定(无汞法)
实验十四
SnCl2-TiCl3-K2Cr2O7法 测定铁矿石中铁含量的(无汞法)
1
要求: 1.掌握SnCl2—TiCl3—K2Cr2O7法 测定铁的原理和操作方法; 2.了解测定前预处理的意义和 掌握预还原的操作; 3.了解氧化还原指示剂的应用 及指示终点的原理 4.了解无汞法测铁的环保意义
2
一、实验原理
量2g/L。
K2Cr2O7
6
三、试剂及仪器
仪器:分析天平、表面皿、锥形瓶、酸式滴定管、
容量瓶、移液管、洗瓶。
7
四、实验步骤
1. 矿样的溶解
250mL 锥形瓶(3个)+ 约0.2g (准确称) 铁矿石试样+ 少量水润湿 + 10mL 浓HCl + 8~10滴SnCl2溶液———————→ 残渣 近沸的水中△20~30min 变为白色,此时溶液呈橙黄色。用少量水
11
用K2Cr2O7标准溶液滴定
五、注意事项 1.滴定前的预处理,其目的是要将试液中 的铁全部还原为Fe2+,再用K2Cr2O7标准溶液测定 总铁量。 2.本实验预处理操作中,不能单独使用 SnCl2将试液中的Fe3+刚好定量还原,而往往会 稍过量;而过量的SnCl2又不能还原W(Ⅵ)为W(V) 出现蓝色指示预还原的定量完成;也不能单独用 TiCl3还原Fe3+,因为加入多量的TiCl3,在滴 定前加水稀释试样时,Ti(Ⅳ)将水解生成沉淀, 影响滴定。因此,目前采用无汞重铬酸钾法测铁 时,只能采用SnCl2—TiCl3的联合预还原法,进 行测定前的预处理。
9
上述冷却后的溶液 + 稀释 10 倍的 K2Cr2O7溶液(小心滴加)——→ 蓝色刚 消失,从而指示预还原的终点。

3. 测定

铁矿石化学分析方法:容量法测定磷量

铁矿石化学分析方法:容量法测定磷量

铁矿石化学分析方法:容量法测定磷量
磷量是铁矿石中重要化学成分,以含量高低可以预测铁矿石品位。

容量法是测定铁矿石磷量的常用方法,此方法简便有效。

容量法测定铁矿石磷量的基本原理是将铁矿石样品置于产气容器中,在指定条件下加热,使铁矿石中的硫形成硫酸,将其吸收在玻璃针中,再用浓硫酸滴定得到硫酸铁,正确测量所得数值即为样品中磷量。

测定步骤主要是:将铁矿石样品称量放入分析皿,用锡板封住样品的表面,放入真空保护性烧瓶中,加热到在高温条件下迅速分解,并将硫逸出并形成铁硫酸,再加入浓硫酸滴定出硫酸铁,以硫酸铁含量数值即为铁矿石样品中磷量。

容量法测定铁矿石磷量的优点是:快速、简便、准确;缺点是:需要较多仪器辅助,如真空保护性烧瓶,酶漆漆,锡板等,耗费时间大。

综上所述,容量法是测定铁矿石磷量的有效方法,能够快速准确的得出结果,但仪器辅助较多,耗时多。

经过正确的操作流程,以及控制好温度和时间等条件,能够准确有效的得出测定结果。

铁矿石化学分析方法

铁矿石化学分析方法

铁矿石化学分析方法1:目的:规范了铁矿石分析方法。

适应生产的需要,确保分析结果准确及时2:适应范围适用于铁矿石中全铁、全硫量的测定3:引用标准:GB/T6730-86铁矿石化学分析方法4:全铁量的测定—重铬酸钾容量法4.1方法提要:试样用硫磷混酸溶解,然后加入浓盐酸,氯化亚锡用氯化高汞除去,用二苯胺磺酸钠为指示剂,以重铬酸钾标准溶液滴定,借此测定全铁。

4.2试剂4.2.1硫酸磷酸1:1比例混合,硫酸(比重1.84),磷酸(比重1.7)4.2.2二氯化锡溶液(10%)称取100克二氯化锡溶于600ml盐酸(比重1.19)中用水稀释至1000ml,贮于棕色瓶中备用。

4.2.3 二氯化汞饱和溶液4.2.4盐酸(比重1.19)。

4.2.5二苯胺磺酸钠(0.2%)称取0.2克二苯胺磺酸钠溶于100ml水中,摇匀。

4.2.6重铬酸钾标准溶液(0.07162mol/L)TQ称取3.512克预先在105℃烘干1小时后重铬酸钾(基准试剂)溶于水中,移入1000ml容量瓶中用水稀释至刻度,摇匀。

4.3分析步骤称取0.2克试样放入500ml三角瓶中,加入10ml 1:1硫、磷混合酸,电炉上加热溶解三氧化硫白烟至离瓶底1/2时取下(试样完全)冷却,以水冲洗瓶壁,加入10ml盐酸,电热上加热至近沸取下,用10%的二氯化锡逐滴还原至无色,并过量1~2滴,流水冷却至室温,加入5ml的二氯化汞饱和溶液,摇匀、静止3分钟,加水150~200ml,加7~8滴二苯胺磺酸钠(0.2%),立即以重铬酸钾标准溶液滴定呈稳定紫色。

4.4计算:全铁(%)=(N*V*0.05585/W)*100式中V-消耗重铬酸钾标准溶液的毫升数N-重铬酸钾标准溶液摩尔浓度W-试样重(克)0.05585-1毫升重铬酸钾标准溶液相当于铁的毫克数。

5硫量的测定—燃烧碘酸钾滴定法5.1方法提要:试样在高温氧气流中燃烧,生成SO2以淀粉吸收液起始的兰色为终点。

5.2试剂5.2.1淀粉吸收液(0.05%):称取2克可溶性淀粉,搅成糊状,经沸水250ml冲溶并煮沸,加入12ml盐酸,用水稀释4000ml,摇匀。

铁矿石中全铁含量的测定实验报告

铁矿石中全铁含量的测定实验报告

铁矿石中全铁含量的测定实验报告一、实验目的。

本实验旨在通过化学分析方法,测定铁矿石中全铁的含量,为矿石的质量评价和冶炼工艺提供依据。

二、实验原理。

本实验采用重量法测定铁矿石中全铁的含量。

首先将铁矿石样品进行干燥和研磨,然后用酸溶解铁矿石中的铁成为可溶性铁盐,并通过沉淀法将铁从其他金属离子中分离出来,最后用称量法测定得到的沉淀物的质量,从而计算出铁矿石中全铁的含量。

三、实验步骤。

1. 取一定质量的铁矿石样品,进行干燥和研磨处理,使其颗粒均匀细小。

2. 将处理后的铁矿石样品加入稀盐酸中,使其完全溶解,生成可溶性铁盐。

3. 将溶解后的样品溶液进行加热,使其中的铁盐转化成氢氧化铁沉淀。

4. 用氢氧化铵将溶液中的其他金属离子沉淀成氢氧化物,然后用过滤纸过滤得到沉淀物。

5. 将得到的沉淀物进行干燥、烧灼,然后用天平称量得到的沉淀物的质量。

6. 根据称量得到的沉淀物的质量,计算出铁矿石中全铁的含量。

四、实验数据与结果。

经过实验测定,得到铁矿石中全铁的含量为XX%。

五、实验分析与讨论。

本实验通过重量法测定了铁矿石中全铁的含量,结果表明……(根据实验结果进行分析和讨论)。

六、实验结论。

本实验通过化学分析方法,成功测定了铁矿石中全铁的含量,为矿石的质量评价和冶炼工艺提供了重要依据。

七、实验注意事项。

1. 实验操作过程中要注意安全,避免酸碱溶液的飞溅和腐蚀。

2. 实验中使用的仪器和设备要保持干净,避免杂质的干扰。

3. 实验过程中要严格按照步骤进行操作,避免操作失误导致实验结果的不准确性。

八、参考文献。

[1] XXX,XXX. 化学分析实验指导[M]. 北京,化学工业出版社,20XX.[2] XXX,XXX. 分析化学实验教程[M]. 北京,高等教育出版社,20XX.以上是本次实验的全部内容,希望对大家有所帮助。

铁矿石化学分析方法:燃烧碘量法测定硫量

铁矿石化学分析方法:燃烧碘量法测定硫量

铁矿石化学分析方法:燃烧碘量法测定硫量铁矿石是最重要的金属原料,其质量与硫量有关。

因此,测定硫量是铁矿石分析的重要环节。

燃烧碘量法测定硫量,是测定铁矿石硫量的最常用的方法,也是对煤矿石分析的重要环节。

下面简要介绍此方法。

燃烧碘量法测定硫量是由两步组成的:1)将硫化物燃烧转化为碘化物,2)测定碘化物的量。

首先,把铁矿石样品中的硫化物燃烧为碘化物。

在实验室里,把铁矿石样品放入金属锥中,然后放入燃烧容器中,铁矿石样品被加热燃烧,硫被氧化成碘化物,如碘化钙、碘化镁、碘化钠等,蒸气吹入收集容器。

第二步是测定碘化物的量,在收集容器中,用酚指标纸测定碘浓度,再用计算公式计算收集容器中碘化物量,从而得出样品中硫含量。

燃烧碘量法测定硫量好处多多,首先,这种方法安全,可靠,准确,耗材有限,测定过程简单,操作简便,时间短,成本低。

其次,单位硫量可以测定碘元素比例,只要校准正确,结果也很可靠。

最后,这种方法不受水份和其他杂质的影响,可以得出满意的结果。

总之,燃烧碘量法测定硫量是一种可靠、简便、有效的方法,在铁矿石分析中被广泛使用。

为了了解铁矿石中硫含量,质量检测人员必须正确了解这一方法,以确保测定结果的准确性和可靠性。

- 1 -。

铁矿石化学分析方法

铁矿石化学分析方法

铁矿石分析铁矿石主要是赤铁矿(Fe2O3)、黄铁矿(FeS2)以及硫酸制造工业的废渣硫酸渣(以Fe2O3为主)。

一、二氧化硅(氟硅酸钾容量法)准确称取约0.3g已在105~110℃烘干过的试样,置于银坩埚中,在700~750℃的高温炉中灼烧20~30min。

取出,放冷。

加入10g氢氧化钠,盖上坩埚盖(应留一定缝隙),再置于750℃的高温炉内熔融30~40min(中间可取出坩埚将熔融物摇动1~2次)。

取出坩埚,放冷,然后将坩埚置于盛有约150ml热水的烧杯中,盖上表面皿,加热。

待熔块完全浸出后,取出坩埚,用水及盐酸(1+5)洗净。

向烧杯中加入5ml盐酸(1+1)及20ml硝酸,搅拌。

盖上表面皿,加热煮沸。

待溶液澄清后,冷至室温,移入250ml容量瓶中,加水稀释至标线,摇匀。

此溶液可供测定二氧化硅、三氧化二铁、三氧化二铝、二氧化钛、氧化钙、氧化镁以及氧化亚锰之用。

吸取50ml上述试样溶液,放入300ml塑料杯中,加入10~15ml 硝酸,冷却.加入10ml150g/L氟化钾溶液,搅拌.加固体氯化钾,搅拌并压碎未溶颗粒,直至饱和.冷却并静置15min。

以快速滤纸过滤,塑料杯与沉淀用50g/L氯化钾溶液洗涤2~3次。

将滤纸连同沉淀一起置于原塑料杯中,沿杯壁加入10ml50g/L氯化钾—乙醇溶液及1ml10g/L酚酞指示剂溶液,用0.15mol/L氢氧化钠溶液中和未洗净的酸,仔细搅动滤纸并随之擦洗杯壁,直至溶液呈现红色。

然后加入200ml沸水(此沸水应预先以酚酞为指示剂,用氢氧化钠溶液中和至微红色),以0.15mol/L氢氧化钠标准溶液滴定溶液滴定至微红色。

试样中二氧化硅的质量百分数按下式计算:TSiO2VSiO2= —————×100m×1000式中:TSiO2————每毫升氢氧化钠标准溶液相当于二氧化硅的毫克数;V———滴定时消耗氢氧化钠标准溶液的体积,ml;m———试料的质量,g。

铁矿石中铁含量的测定实验报告

铁矿石中铁含量的测定实验报告

铁矿石中铁含量的测定实验报告实验报告:铁矿石中铁含量的测定一、实验目的本实验旨在通过化学反应的方法,测定铁矿石中铁的含量。

二、实验原理铁矿石中的铁是以Fe2O3的形式存在的,而铁离子可以与邻菲罗啉发生络合反应生成深红色络合物。

根据络合反应生成的络合物的光吸收特性,可以测定样品中铁的含量。

三、实验步骤1.称取0.1g的铁矿石样品,加入100mL的蒸馏水中,混合均匀。

2.将样品转移到250mL锥形瓶中。

3.加入1.5mL的盐酸,加热至沸腾,使样品中的铁离子转化为Fe2+离子。

4.冷却后,加入10mL的邻菲罗啉溶液,在搅拌下混合均匀,生成深红色络合物。

5.将混合液转移至1cm比色皿中,用紫外-可见分光光度计测定混合液的吸收值(λ = 510nm)。

四、实验结果经过测定,样品的吸收值为0.644。

五、分析与讨论根据标准曲线的结果,可计算出样品中铁离子含量为0.0322g/L。

而样品的质量为0.1g,因此其中的铁含量可以计算为32.2%。

本实验的误差主要来源于邻菲罗啉的存储、操作的环境以及化学药品的纯度等方面,因此在实验的过程中,需要保证实验器材的洁净、药品纯度的准确性等因素。

六、结论通过化学反应的方法,本实验测定了铁矿石中的铁含量,结果表明该矿石中铁的含量为32.2%。

七、参考文献[1] 《基础实验指导》手册。

[2] W. L. Gardner, B. S. Weisman, and L. H. Lanzillotta, "Spectrophotometric determination of iron with o-phenanthroline", Anal. Chem., vol. 21, no. 8, pp. 990-992, 1949.。

铁矿石中铁元素的测定分析方式研究

铁矿石中铁元素的测定分析方式研究

铁矿石中铁元素的测定分析方式研究发布时间:2023-03-06T01:28:49.181Z 来源:《中国科技信息》2022年第10月19期作者:郞燕[导读] 随着矿业的不断发展,铁矿石中铁元素的测定方法呈现不断变化的趋势郞燕内蒙古包钢钢联股份有限公司巴润矿业分公司内蒙古包头市 014080摘要:随着矿业的不断发展,铁矿石中铁元素的测定方法呈现不断变化的趋势,铁属于重要的金属元素,铁矿石具有重要的作用,但是在铁矿石的使用中,需要对天然矿石进行处理,通过破碎以及筛选等措施来择出铁元素,然而铁矿石的种类较多,包括赤铁矿以及磁铁矿等,因此,需要探究铁矿石中铁元素的不同测定方法,以便更为准确的获取铁元素。

因此,探究铁矿石中的铁元素测定方法具有重要的意义。

关键词:铁矿石;铁元素;测定一、常用的铁矿石化学分析方法1、重铬酸钾滴定法。

重铬酸钾容量法被公认为是最准确的铁矿石中全铁测定方法,由于 HgCl2 的毒害性,要达到国家排放标准,对废水处理成本太高,所以使用无汞重铬酸钾法已经成为容量法分析的趋势。

即以 SnCl2-TiCl3 为还原剂,分别以钨酸钠及二苯胺磺酸钠溶液为指示剂,以重铬酸钾为标准溶液,将试液滴至稳定的紫红色为止。

但是该法所用的 TiCl3溶液具有成本高、极易被氧化、稳定性能非常差等缺点。

章志青改进样品制备方式,以硫磷混酸替代氟化钠,既可完全快速熔样,又可促进显色。

2、络合滴定法。

在络合滴定法中,EDTA 作为滴定剂应用最为广泛。

[1]将铁矿石用硫磷酸混酸溶解并消除干扰后,在 pH 值为 1.5~2.5的热溶液中,以 N- 苯甲酰羟胺为指示剂,用 EDTA 标准溶液直接滴定铁,测定结果的相对标准偏差 RSD<1%,加标回收率约为95.3%~101.5%。

该方法没有使用汞盐和铬盐,简单、准确、无污染,适合于实际生产和学生实验。

3、微量滴定法。

[3]研制成了 WD-CO Ⅱ型微量滴定管及其配套装置,滴定管结构简单,使用方便,毫升可读至小数点后第三位,并且微量滴定法处理样品时,因量少,试样溶解快,能减少酸雾污染。

无机及分析化学实验实验14 铁矿石中铁含量的测定(无汞法)

无机及分析化学实验实验14 铁矿石中铁含量的测定(无汞法)
16
由于滴定过程中生成黄色的Fe2+离子,影响终 点的正确判断,故加入H3PO4,使之与Fe3+离子结 合合成无色的 [Fe(PO4)2]3+络离子,消除了Fe3+离 子的黄色影响。H3PO4的加入还可以降低溶液中 Fe3+离子的浓度,从而降低Fe3+/Fe2+电对的电极 电位,使滴定突跃范围增大,用二苯胺磺酸钠指示 剂能清楚正确地指示终点。
量2g/L。
K2Cr2O7
6
三、试剂及仪器
仪器:分析天平、表面皿、锥形瓶、酸式滴定管、
容量瓶、移液管、洗瓶。
7
四、实验步骤
1. 矿样的溶解
250mL 锥形瓶(3个)+ 约0.2g (准确称) 铁矿石试样+ 少量水润湿 + 10mL 浓HCl + 8~10滴SnCl2溶液———————→ 残渣 近沸的水中△20~30min 变为白色,此时溶液呈橙黄色。用少量水

14
数据处理
用K2Cr2O7滴定Fe2+溶
铁矿石(克)
VK2Cr2O7 (mL) 初读数 VK2Cr2O7 (mL) 终读数 VK2Cr2O7 (mL)
Fe%
Fe%
相对平均偏差%
15
七、注意事项
1. K2Cr2O7法测定铁矿石中的铁时, 滴前为什么要加入H3PO4? 加入 H3PO4后为何要立即滴定? 2. 用SnCl2还原Fe3+时,为何要在 加热条件下进行?加入的SnCl2量不 足或过量会给测试结果带来什么影 想?
2 2 3 3 Cr O 6Fe 14H 2Cr 6Fe 7H2O 2 7
5
三、试剂及仪器 试剂: 0.017mol/LK2Cr2O7标准溶液、浓HCl、

铁矿石中铁元素的测定分析方式研究

铁矿石中铁元素的测定分析方式研究

铁矿石中铁元素的测定分析方式研究摘要:本论文旨在研究不同分析方法对铁矿石中铁元素测定的适用性,以确定最准确、可靠的分析方式。

通过对比常见的化学分析、光谱分析和仪器分析方法,本研究探讨了各种技术的优缺点,以及它们在不同样本类型和条件下的性能表现。

研究结果表明,X射线荧光光谱分析在铁矿石中铁元素测定方面具有高度的准确性和精密度,因此是最佳的分析方法之一。

关键词:铁矿石;铁元素;X射线荧光光谱;化学分析;仪器分析0引言铁矿石是世界上最重要的矿产之一,铁元素的测定是矿石质量控制和矿业生产中的关键环节。

因此,开发准确、可靠的铁元素分析方法对于矿业行业至关重要。

本研究旨在评估不同的分析方法,包括化学分析、光谱分析和仪器分析,以确定在不同情况下最适合铁矿石中铁元素测定的方法。

1化学分析方法化学分析方法是一种传统的铁元素测定方法,广泛应用于不同领域的分析化学实验中。

这些方法的基本原理涉及将铁矿石样品溶解,然后使用化学反应测定其中的铁含量。

在铁元素测定中,常见的化学分析方法包括滴定法、还原法和络合滴定法等。

滴定法是一种常见的化学分析方法,它涉及将已知浓度的化学试剂(称为滴定液)滴加到含有铁的样品中,直到达到反应终点。

通过测定滴定液的体积,可以计算出铁的浓度。

这种方法的优点是简单易行,但需要严格的实验条件和准确的滴定液浓度。

还原法是另一种常用的铁元素测定方法,它基于将铁酸盐还原成亚铁离子,并通过后续反应来测定亚铁离子的含量。

这种方法通常需要使用还原剂来促使反应发生,并且在实验室条件下进行。

虽然它相对准确,但需要精确的实验控制和样品准备。

络合滴定法是一种更复杂的化学分析方法,它基于铁离子与某种络合试剂之间的反应。

这种方法的优势在于它对铁的高选择性,但也需要复杂的实验步骤和精确的化学试剂制备。

尽管这些化学分析方法在测定铁元素方面具有一定的准确性,但它们也存在一些局限性。

首先,这些方法通常需要大量的时间和化学试剂,因此成本较高。

铁矿石中铁的分析

铁矿石中铁的分析

铁矿石化学分析方法氯化亚锡-氯化汞-重铬酸钾容量法测定全铁量方法提要试样用盐酸分解,过滤,滤液作为主液保存;残渣以氢氟酸除硅,焦硫酸钾熔融,盐酸浸取,用氢氧化铵使铁沉淀,过滤,沉淀用盐酸溶解于主液合并。

用氯化亚锡还原,再用氯化汞氧化过剩的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定,测定全铁量。

试剂焦硫酸钾盐酸浓,1+1,1+2,1+10氢氟酸氢氧化铵硫酸1+1氯化汞饱和溶液氯化亚锡溶液(6%):称取6克氯化亚锡溶于20毫升热盐酸中,用水稀释至100毫升,混匀。

硫磷混酸:将150毫升硫酸在搅拌下缓慢注入700毫升水中,再加150毫升磷酸。

二苯胺磺酸钠溶液0.2%甲基橙溶液0.1%硫酸亚铁铵溶液(0.05M),称取19.7克硫酸亚铁铵溶于硫酸(5+95)中,移入1000毫升容量瓶中,用硫酸(5+95)稀释至刻度,混匀。

重铬酸钾标准溶液(0.008333M)称取2.4514克预先在150℃烘干1小时的重铬酸钾(基准试剂)溶于水,移入1000毫升容量瓶中,用水稀释至刻度,混匀。

分析步骤称取试样0.2000克置于400毫升烧杯中,加入30毫升盐酸,低温加热(应控制在105℃以下)分解,待溶液体积至10-15毫升时取下,加温水至溶液量40毫升左右,用中速滤纸过滤,用擦棒擦净烧杯壁,再用热水洗烧杯3-4次,残渣4-6次,将滤液和洗液收集于500毫升烧杯中,作为主液保存。

将滤纸连同残渣置于铂坩埚中,灰化,在800℃左右灼烧20分钟,冷却,加水润湿残渣,加4滴硫酸,5毫升氢氟酸,低温加热,蒸发至三氧化硫白烟冒尽,取下。

加3克焦硫酸钾,在650℃左右熔融约5分钟,冷却,置于400毫升烧杯中,加50毫升盐酸(1+10)缓慢加热浸取,熔融物溶解后,用温水洗出铂坩埚。

加热至沸,加2滴甲基橙溶液,用氢氧化铵慢慢中和至指示剂变黄色,过量5毫升,加热至沸,取下。

待沉淀下降后,用快速滤纸过滤,用热水洗至无铂离子(收集洗涤8次后的洗液约10毫升,加1毫升盐酸1+1,10滴氯化亚锡溶液,溶液无色,即表明无铂离子)用热盐酸(1+2)将沉淀溶解于原烧杯中,并洗至无黄色,再用热水洗3-4次,将此溶液与主液合并,低温加热浓缩至约30毫升。

铁矿石化学分析方法:燃烧碘量法测定硫量

铁矿石化学分析方法:燃烧碘量法测定硫量

铁矿石化学分析方法:燃烧碘量法测定硫量随着现代工业的发展,铁矿石的化学分析方法越来越受到重视。

燃烧碘量法测定硫量(TIDM)是一种常用的用于测定铁矿石硫含量的化学分析方法。

本文将着重介绍燃烧碘量法(TIDM)的原理、步骤、误差控制、常见问题及结论。

首先,让我们了解燃烧碘量法(TIDM)的原理。

TIDM是一种利用了铁矿石中碘含量减少的概念,用碘盐水溶液把硫量转化成碘量,然后测定铁矿石中碘量变化,从而得到硫量。

即当碘溶液与铁矿石中的硫发生反应时,可得到硫改性剂,即亚硫酸盐;故此,根据碘溶液的变化量,可以推断出硫的量。

其次,让我们了解燃烧碘量法(TIDM)的具体步骤。

该方法通常分为三个步骤。

第一步是质量校准,即测量铁矿石中的硫量,并监测碘溶液的变化量;第二步是消耗碘量测定,即测量碘溶液中剩余碘量;第三步是计算硫量,根据质量校准和消耗碘量测定,通过计算得出硫量。

此外,我们还需要了解燃烧碘量法(TIDM)的误差控制。

当测量铁矿石硫含量时,必须考虑到误差的影响,以确保测量结果的准确性。

为了控制误差,应对碘溶液进行定期检查,检测碘量变化;同时,还应检查和调整设备,确保设备保持正确和准确的工作状态。

最后,我们还要了解燃烧碘量法(TIDM)中常见的问题及解决方案。

最常见的问题是测量结果偏高或偏低,这可能是由于在校准和测量过程中出现污染或温度过低所造成的。

可以通过检查并清理仪器或使用更高的碘溶液浓度来解决这一问题。

综上所述,燃烧碘量法(TIDM)是一种用于测定铁矿石中硫量的重要化学分析方法。

TIDM可以准确的测量铁矿石的硫含量,是工业生产过程中不可或缺的重要方法。

然而,此方法还存在一定的误差,因此必须对设备和碘溶液进行定期检查和维护,以确保测量结果的准确性。

铁矿石化学分析方法:燃烧碘量法测定硫量

铁矿石化学分析方法:燃烧碘量法测定硫量

铁矿石化学分析方法:燃烧碘量法测定硫量铁矿石是重要的矿物原料,也是现代工业和社会发展中不可或缺的成分。

因此,准确、准确、可靠的铁矿石化学分析方法至关重要。

燃烧碘量法是用于测定铁矿石中硫量的常见方法。

本文综述了燃烧碘量法测定硫量的性质、原理、基本原理、优缺点以及注意事项。

一、燃烧碘量法测定硫量的性质燃烧碘量法是一种微量元素的分析方法,它通过燃烧样品,将硫转化为H2SO4(硫酸),用碘法来测定残留的H2SO4,从而计算出样品中硫的含量,燃烧碘量法是铁矿石中硫氮含量测定中最常用的方法。

二、燃烧碘量法测定硫量的原理燃烧碘量法测定硫量的原理是:将样品加入适量的苏打,反复搅拌,然后加入适量的苏打和碘,再燃烧几分钟,把硫转化成硫酸。

然后加入碘,测定出未被碘完全中和的硫酸,从而计算出硫的含量。

三、燃烧碘量法测定硫量的基本原理1.先将样品加入适量的苏打,反复搅拌,使硫被完全溶解,准备测定。

2.完全溶解的样品加入适量的碘,再加入适量的苏打并燃烧,使硫转化为H2SO4。

3.烧完毕后,可以用碘法测定出未被完全中和的H2SO4,从而计算出样品中的硫含量。

4.定完毕后,将测试结果和标准值比较,评价样品的质量。

四、燃烧碘量法测定硫量的优缺点(1)优点:燃烧碘量法测定硫量精确,适用于实验室外部测定,可检测铁矿石中微量硫元素,不受其他元素的干扰,准确度较高。

(2)缺点:燃烧碘量法测定硫量耗时较长,误差较大,复杂且易出错,对硫量测定的技术要求也较高。

五、燃烧碘量法测定硫量的注意事项(1)在燃烧碘量法测定硫量之前,需要进行原料选择,要求样品无污染,完全溶解。

(2)测试时应注意安全,操作人员应穿戴防护用品,避免碘、苏打、样品等成分分散到空气中。

(3)测试中应注意控制温度,保持在一定的范围内,过高或过低的温度会影响准确性。

(4)确保碘的浓度正确,及时补充。

(5)确保实验室设备、器具等清洁,避免污染样品。

综上所述,燃烧碘量法是一种准确、可靠的铁矿石化学分析方法,在实际测试中,应注意安全措施,遵循标准流程,确保测定结果准确。

铁矿矿石的物化性质与实验研究

铁矿矿石的物化性质与实验研究
铁矿矿石的物化性质与 实验研究
汇报人:
目录
添加目录标题
01
铁矿矿石的物化性质
02
铁矿矿石的实验研究
03
铁矿矿石的应用前景
04
铁矿矿石的开采与加 工技术
05
铁矿矿石的环境影响 与可持续发展
06
添加章节标题
铁矿矿石的物化 性质
物理性质
光泽:铁矿矿石通常具有金 属光泽
颜色:铁矿矿石通常呈现深 褐色或黑色
铁矿矿石综合利用技术的研发:开 展铁矿伴生元素的提取和利用,提 高资源利用率
添加标题
添加标题
添加标题
添加标题
铁矿矿石加工技术的改进:采用新 型选矿技术和设备,提高铁矿品位 和回收率
铁矿矿石技术发展的趋势:智能化、 自动化、绿色化,推动铁矿产业可 持续发展
铁矿矿石的环境 影度:铁矿矿石的硬度较高, 不易碎
密度:铁矿矿石的密度较大, 通常在5g/cm³左右
化学性质
铁矿矿石的化学成分
铁矿矿石的溶解性
铁矿矿石的稳定性 铁矿矿石的氧化还原性
矿物组成与结构
铁矿矿石主要由磁铁矿、赤铁 矿、菱铁矿等组成
矿物颗粒呈结晶状,具有明显 的晶体结构
矿物之间常呈紧密的共生关系, 形成复杂的矿物集合体
矿物组成与结构对铁矿矿石的 物理和化学性质具有重要影响
铁矿矿石的分类
磁铁矿 赤铁矿 菱铁矿 褐铁矿
铁矿矿石的实验 研究
实验目的与意义
实验目的:研究铁矿矿石的物 理性质和化学组成
实验意义:为铁矿资源的合理 开发利用提供科学依据
实验目的:探究铁矿矿石的矿 物学特征和成矿机理
实验意义:为铁矿资源的找矿 和勘探提供理论支持
绿色矿山建设与生态恢复

铁矿石中全铁含量的测定实验报告

铁矿石中全铁含量的测定实验报告

一、实验目的本实验旨在通过化学分析方法,测定铁矿石中的全铁含量。

通过了解铁矿石中全铁含量的测定方法,掌握相关实验技能,为后续的矿物分析实验打下基础。

二、实验原理铁矿石中的全铁含量是指样品中铁的全量,包括铁的复杂硅酸盐。

本实验采用酸溶法,将铁矿石样品溶解于酸中,使铁离子变为可溶性离子,然后通过滴定法测定铁的含量。

三、实验材料与仪器1. 实验材料:(1)铁矿石样品(2)浓盐酸(3)浓硫酸(4)氯化亚锡(5)重铬酸钾(6)二苯胺磺酸钠(7)蒸馏水2. 实验仪器:(1)分析天平(2)锥形瓶(3)滴定管(4)烧杯(5)漏斗(6)玻璃棒四、实验步骤1. 称取0.15~0.20g(称准至0.0002g)铁矿石试样,置于250mL锥形瓶中。

2. 加入几滴蒸馏水润湿样品,再加入10-20mL浓盐酸,低温加热10~20min,使铁矿石样品溶解。

3. 溶解完毕后,冷却溶液。

4. 将溶液过滤,保留滤液。

5. 向滤液中加入适量的氯化亚锡,使三价铁离子还原为二价铁离子。

6. 向溶液中加入适量的重铬酸钾溶液,用二苯胺磺酸钠作指示剂,用重铬酸钾标准溶液滴定至溶液呈现紫红色即为终点。

7. 记录滴定过程中所消耗的重铬酸钾标准溶液体积。

8. 根据滴定结果计算铁矿石样品中的全铁含量。

五、实验结果与分析1. 根据实验结果,铁矿石样品中的全铁含量为x%。

2. 分析铁矿石样品中全铁含量的影响因素,如矿石成分、实验条件等。

六、实验讨论1. 在实验过程中,可能存在的误差来源有:称量误差、溶解度误差、滴定误差等。

2. 针对实验过程中可能出现的误差,提出相应的改进措施,如提高称量精度、控制实验条件等。

3. 通过本实验,掌握了铁矿石中全铁含量的测定方法,为后续的矿物分析实验提供了基础。

七、实验总结本次实验成功测定了铁矿石中的全铁含量,掌握了相关实验技能。

在实验过程中,对可能出现的误差进行了分析和讨论,为今后的实验提供了有益的借鉴。

通过本次实验,提高了自己的动手能力和分析能力,为今后的学习和工作打下了基础。

铁矿石中全铁分析方法的应用与探讨

铁矿石中全铁分析方法的应用与探讨

铁矿石中全铁分析方法的应用与探讨铁矿石是一种重要的矿产资源,其主要成分是铁氧化物,包括赤铁矿、磁铁矿和针铁矿等。

铁矿石的全铁含量是衡量其品质的重要指标之一,因此准确测定铁矿石中的全铁含量对于在矿石开采和冶炼过程中具有重要意义。

本文将讨论铁矿石中全铁分析方法的应用与探讨,介绍目前常用的分析方法及其优缺点,并对其在工业生产中的应用进行简要讨论。

一、铁矿石中全铁含量的分析方法1. 化学分析法化学分析法是最常用的测定铁矿石中全铁含量的方法之一。

其原理是通过一系列化学反应将铁矿石中的铁转化为易于测定的化合物,如氧化铁和亚铁酸盐等,然后利用化学分析方法测定化合物中的铁含量。

常用的化学分析方法包括滴定法、分光光度法和原子吸收光谱法等。

这些方法具有操作简便、成本低廉等优点,但其缺点是测定周期长、精度较低,并且受到杂质和其他元素的干扰较大。

2. X射线荧光分析法X射线荧光分析法是一种快速、准确测定铁矿石中全铁含量的方法。

其原理是通过激发样品表面产生X射线,并测定样品发出的荧光X射线的强度来确定样品中铁的含量。

这种方法具有分析速度快、样品消耗少、精度高等优点,但其需要专用仪器,成本较高,且对样品的制备要求较高,不适用于现场快速分析。

3. 磷酸盐浸出法磷酸盐浸出法是一种常用的测定铁矿石中全铁含量的方法。

其原理是将经过粉碎和混匀处理的铁矿石样品与过量的磷酸盐溶液反应,将样品中的全铁转化为磷酸盐,并通过测定溶液中的磷酸盐含量来确定样品中的全铁含量。

这种方法具有操作简便、成本低廉和精度较高的优点,但其受到矿石中其他成分的影响较大,需进行干扰校正。

铁矿石中全铁含量的准确测定对于矿石资源的评价、选矿生产过程的控制和冶炼工艺的优化具有重要意义。

在实际工业生产中,不同的分析方法可以根据具体情况进行选择和应用,以达到准确、快速、经济的测定目的。

化学分析法适用于一般分析实验室和研究机构,因其操作简便、成本低廉而得到广泛应用。

X射线荧光分析法适用于对于样品要求较快速分析和较高精度的场合,但其需要专用仪器和设备,因此在工业生产中的应用较为有限。

铁矿石中全铁含量的测定实验报告

铁矿石中全铁含量的测定实验报告

铁矿石中全铁含量的测定实验报告一、实验目的。

本实验旨在通过化学分析的方法,测定铁矿石中全铁含量,为矿石的加工利用提供准确的数据支持。

二、实验原理。

本实验采用的是重量法测定铁矿石中全铁含量。

首先将铁矿石样品与过量的硫酸铵混合,加热至沸腾,使铁矿石中的全铁转化为氧化铁。

然后用硫酸亚铁标准溶液滴定氧化铁,根据滴定所需的标准溶液的体积,计算出铁矿石中全铁的含量。

三、实验步骤。

1. 取一定质量的铁矿石样品,粉碎并混匀。

2. 称取0.5g左右的铁矿石样品放入烧杯中,加入过量的硫酸铵。

3. 将烧杯放在热板上加热至沸腾,使铁矿石中的全铁转化为氧化铁。

4. 冷却后,用去离子水洗净烧杯口和烧杯内壁,转移至250ml容量瓶中。

5. 加去离子水至刻度线,摇匀,得到铁矿石样品的稀释液。

6. 取适量的稀释液,加入显色指示剂,用硫酸亚铁标准溶液滴定至溶液由无色变为浅黄色。

7. 记录滴定所需的标准溶液的体积。

四、实验数据。

1. 样品质量,0.5g。

2. 标准溶液体积,25.0ml。

五、实验结果与分析。

根据实验数据,通过计算可以得出铁矿石中全铁的含量为40%。

六、实验结论。

本实验通过重量法测定了铁矿石中全铁的含量,得出了40%的结果。

实验结果准确可靠,为铁矿石的加工利用提供了重要的数据支持。

七、实验注意事项。

1. 实验中需注意安全,化学药品使用前需仔细阅读安全说明书。

2. 实验中需注意操作规范,严格按照实验步骤进行操作。

3. 实验后需及时清洗实验器材,保持实验环境整洁。

八、实验改进。

为提高实验结果的准确性,可以尝试采用其他测定方法,如光谱分析法或电化学分析法,以获得更加准确的数据。

以上为铁矿石中全铁含量的测定实验报告。

铁矿石化学分析方法铋磷钼蓝光度测定磷量

铁矿石化学分析方法铋磷钼蓝光度测定磷量

铁矿石化学分析方法铋磷钼蓝光度测定磷量一、方法提要:试样用盐酸、硝酸、氢氟酸分解、高氯酸冒烟赶氟,不溶残渣过滤,灰化,灼烧后,用无水碳酸钠熔融,盐酸溶解,高氯酸冒烟与主液合并。

在硫酸介质中磷与铋及钼酸铵生成络合物,继以抗坏血酸还原为钼蓝。

在波长700~800nm处,测量其吸光度。

显色液中存在二氧化钛20mg、锰10 mg、钴2 mg、铜10 mg、四价钒0.5 mg、镍3 mg、六价铬3 mg、铈10 mg、铁50 mg、锆5 mg、对测定无影响。

砷在处理试样时可用氢溴酸消除。

试样中五氧化二铌含量在0. 3%以下无干扰。

二、试剂:1、无水碳酸钠。

2、盐酸(1.19 g/ ml)。

3、硝酸(1.42 g/ ml)。

4、氢氟酸(1.15 g/ ml)。

5、硫酸(1.84 g/ ml)。

6、硫酸(1+1)。

7、高氯酸(1.67 g/ ml)。

8、过氧化氢(3%,V/V)。

9、抗坏血酸溶液(2%):用时现配。

10、氢溴酸—盐酸混合液(1+1):氢溴酸(1.48 g/ ml)与盐酸(1.19g/ ml)等体积混合。

11、钼酸铵溶液(3%):称取3g钼酸铵[(NH4)6MO7O24●4H2O]溶于水中,稀释至100 ml,混匀。

12、硝酸铋溶液:称取4g金属铋或称取9.30 g硝酸铋[Bi(NO3)●5H2O],加25 ml硝酸,加热溶解后,加水约100 ml,煮沸驱除氮氧化物,加100 ml硫酸(1+1),冷至室温,移入1000 ml容量瓶中,用水稀释至刻度,混匀。

此溶液1 ml含4.00 mg铋。

13、磷标准溶液:称取0.2196g预先在105~110℃烘干至恒量的磷酸二氢钾(KHPO4)(基准试剂),溶于水中,加5 ml硫酸(1+1),冷却至室温,移入500 ml容量瓶中,以水稀释至刻度,混匀,此溶液1 ml含100.0μg磷。

14、移取50.00 ml磷标准溶液,置于500 ml容量瓶中,以水稀释至刻度,混匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对铁矿石的化学分析方法研究
摘要:本文结合笔者多年工作经验介绍了铁矿石中常见元素和
铁物相采用的一些化学分析法,供同行参考。

关键词: 铁矿石;化学分析;物相分析
铁矿石中含有多种元素,常见的元素有铁、硅、铝、硫、磷、钙、镁、锰、钛、铜、铅、锌、钾、钠、砷等。

对铁矿石进行分析时,一般只测定全铁、硅、硫、磷。

在全分析中,为了考虑对铁矿的综合评价和综合利用,常常要测定钒、钛、镍、钴、灼烧减量、化合水、吸附水、稀有分散元素、甚至稀土元素等。

物相分析是指测定试样中,由同一元素组成的不同化合物的含量百分率。

对一般铁矿石而言,通常包括磁性铁、碳酸铁、硅酸铁、硫化铁、赤(褐)铁矿等。

1关于化学分析及铁物相
分析化学是研究物质化学组成,结构信息,分析方法及相关理论的科学,它所要解决的问题是确定物质中,含有哪些组分,这些组分在物质中是如何存在的,各个组分的相对含量是多少,以及如何表征物质的化学结构等。

分析化学包括成分分析和结构分析。

成分分析又分为定性分析和定量分析。

定性分析的任务是鉴定物质由哪些元素或离子所组成,对于有机物还需要确定其官能团和分子结构。

定量分析的任务是测定物质各组成部分的含量。

分析化学在各个领域中起着举足轻重的作用,在工业生产中,
从原料的选择、工艺流程的确定、生产过程中的“中控”到成品的质量检验,以及工业三废的处理和综合利用等。

同时在新产品、新工艺、新技术的开发研究和推广等方面,都离不开分析化学。

分析化学按其测定原理和操作方法的不同分析,为化学分析和仪器分析两大类。

滴定分析法按所用的化学反应类型不同,分为:酸碱滴定法(以质子传递反应为基础);沉淀滴定法(以沉淀反应为基础);络合滴定法(以络合反应为基础);氧化还原滴定法(以氧化还原反应为基础)。

铁物相指铁元素存在的化学相和矿物相。

铁有fe3+、fe2+、fe 等三种价态,铁物相特征是指指示层间氧化带各亚带地球化学环境变化的敏感标志,是反应地球化学环境变化的重要指标。

2对铁矿石中元素的化学分析
我国国家标准关于铁矿石分析方法的通则有gb/t1361-2008《铁矿石分析方法总则及一般规律》。

该标准规定了天然矿石、铁精矿及其他选块矿各成分的仲裁分析和标样制作,以及验证其他分析方法时必须采用的方法。

对矿石进行化学法分析,首先要采取化学分析试样:化学分析试样主要用来确定所取物料中某些元素或成分的含量,多用于原矿、精矿、尾矿或生产过程中其他产品的分析,以便检查数、质量指标并编制金属平衡表,它是选矿试验和生产检查中经常要取的试样。

选取试样后要对试样进行预处理。

通常是在试样分解后,使待
测组份以可溶盐的形式进入溶液,或者使其保留于沉淀之中,从而与某些组份分离,有时也以气体形式将待测组份导出,再以适当的试剂吸收或任其发挥。

在分析工作中对试样分析的一般要求是:试样应分解完全;待测组分不应有损失;在实际应用中,根据矿石的特性、分析项目的要求以及干扰元素的分离等情况,通常选用酸分解及碱熔融的方法分解铁矿石。

铁是铁矿石中主量元素,对它的测定在化学分析中,主要采用铬酸钾滴定法。

铁的还原方式有氯化亚锡一氯化汞还原和三氯化钛还原,目前使用比较多的是三氯化钛还原重铬酸钾滴定法。

下面就根据国家gb/t6730.5-2007《铁矿石全铁含量的测定三氯化钛还原法》,gb/t6730.4-l986《铁矿石化学分析法氯化亚锡—氯化汞—重铬酸钾容量法测定全铁量》的测定标准,对三氯化钛还原滴定法和氯化亚锡还原滴定法的原理加以简要介绍,其具体操作过程见gb/t6730铁矿石的化学分析。

三氯化钛还原滴定法,将试样用酸分解或碱熔融分解,氯化亚锡将大量铁还原后,加三氯化钛还原少量剩余铁。

用稀重铬酸钾溶液氧化或用高氯酸氧化过量的还原剂。

以二苯胺磺酸钠做指示剂,重铬酸钾标准溶液滴定。

此方法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度影响较小,测定的结果较准确。

3 对铁矿石中化学物相的分析
物相分析的方法是使溶剂与试样发生作用,其中某个化合物优先溶解,溶剂的选择是以各化合物在溶剂中的溶度积、氧化还原电位以及络合物的形成条件不同等为依据,使一种化合物溶解,而其他化合物不溶解以达到分离的目的。

矿样粒度,溶剂的浓度及温度,浸取时的搅拌强度,以及试样中共存的杂质等对浸出率均有影响,选择条件时应予以考虑。

铁矿石的化学物相分析可采用单项物相分析,也可采用系统物相分析。

所谓系统物相分析,是指在一份称样中,利用多种溶剂多次连续浸取,完成多个“相”(或多个项目)的测定。

系统物相分析和单项物相分析相比较,有两方面缺陷:(1)由于溶剂多次浸取,矿物“串相”所造成的误差一直往后积累,使误差越来越大。

(2)由于矿物组成的复杂性和某些矿物的相似性,在系统分析中几乎不能分别连续测定它们。

所以系统物相分析仅运用于简单矿石。

对于复杂矿石,普遍采用单项物相分析。

在系统物相分析流程过程中。

矿石经过磁选分为两部分,在磁性铁中测定磁铁矿及磁黄铁矿,非磁性部分以2mol/l乙酸处理,使菱铁矿溶解,残渣用含有3%氯化亚锡,4mol/l盐酸浸取赤铁矿,残渣用王水在水浴上浸取半小时,过滤,滤液测定黄铁矿,残渣为含铁部分的硅酸盐。

4结束语
当然,在对铁矿石中所含元素及铁物相的分析中,方法是多样
的,程序是复杂的,这要求实验室的工作者要有严肃认真而科学的态度。

参考文献
[1]冶金信息标准研究院.isogtc102铁矿石国际标准汇编[m] .北京:地质出版社,2001.
[2]曹宏艳.冶金材料分析技术与应用[m] .北京:冶金工业出版社,2008.
[3]陈永兆.络合滴定[m] .北京:科学出版社,1986.
[4]江祖成,蔡汝秀,张华山.稀土元素分析化学[m].北京:科学出版社,2000.。

相关文档
最新文档