电动机的自动控制
电力拖动自动控制系统 (2)
电力拖动自动控制系统简介电力拖动自动控制系统是一种通过电动机及其控制设备来实现机械设备运动的自动化控制系统。
它广泛应用于各个工业领域,如船舶、电厂、交通运输等。
电力拖动自动控制系统能够对电动机进行电压、电流和频率的调节,实现对被控制设备的精确控制。
通过采用先进的控制算法和传感器反馈,可以实现高效的运动控制、准确的位置控制和稳定的速度控制。
本文将从以下几个方面详细介绍电力拖动自动控制系统的组成、工作原理以及应用。
组成电力拖动自动控制系统由以下几个主要组成部分构成:1.电动机:电动机作为电力拖动自动控制系统的核心部件,负责将电能转化为机械能,驱动被控制设备运动。
2.控制器:控制器是电力拖动自动控制系统的大脑,负责对电动机进行控制和调节。
它接收传感器反馈的信号,并根据预设的控制算法进行运算,实现对电动机的精确控制。
3.传感器:传感器用于获取被控制设备的状态信息,如位置、速度、温度等。
传感器的反馈信号用于控制器进行实时调节,确保被控制设备的运动精确控制。
4.执行器:执行器负责将控制器输出的控制信号转化为实际的电压、电流或频率输出,通过控制电动机来实现对被控制设备的运动。
工作原理电力拖动自动控制系统的工作原理可以简述如下:首先,传感器捕捉被控制设备的状态信息,并将其转化为模拟信号或数字信号。
这些信号经过放大、滤波等处理后,传送给控制器。
控制器接收传感器信号后,根据预设的控制算法进行运算,并输出控制信号。
这些控制信号经过执行器的转化,最终作用于电动机。
电动机根据控制信号的输入,改变其电压、电流或频率,实现对被控制设备的运动。
电动机的运动状态被传感器继续监测,反馈给控制器进行调节。
通过不断的传感器监测和控制器调节,电力拖动自动控制系统能够实现对被控制设备的高精度控制和稳定运行。
应用电力拖动自动控制系统广泛应用于各个工业领域,其中一些常见的应用包括:1.船舶:电力拖动自动控制系统在船舶中起着关键作用,可以实现对推进器、舵机和起重设备等的精确控制,提高船舶的安全性和操纵性。
电动机控制原理
电动机控制原理电动机是现代社会中重要的动力设备,其控制原理对电机性能和工作效率具有重要影响。
本文将介绍电动机控制的原理和相关技术。
一、电动机基本原理电动机是将电能转换为机械能的装置。
其基本原理是利用电磁感应和洛伦兹力产生磁场,使得电流导线在磁场中受到力的作用而运动。
1.1 电磁感应原理根据法拉第电磁感应定律,当导线中通过电流时,会产生磁场。
而根据楞次定律,导线中通过变化的磁场时,会在导线中产生感应电动势。
因此,通过控制电流大小和方向,可以实现对电动机的控制。
1.2 洛伦兹力原理洛伦兹力是指导线中通过电流时受到的力的作用。
当导线通过磁场时,会受到垂直于导线和磁场方向的力。
根据洛伦兹力的大小和方向,可以控制电动机的转动。
二、电动机控制方式电动机控制可以分为直流电动机控制和交流电动机控制两种方式。
2.1 直流电动机控制直流电动机控制采用直流电源供电,可以通过调节电压和电流的大小和方向,来控制电机的转速和转向。
2.1.1 阻性控制阻性控制是采用可变电阻器调节直流电机的电流,从而实现对电机的控制。
通过增加或减小电阻的阻值,可以改变电机的转速。
2.1.2 电压控制电压控制是通过调节直流电机的电压,来控制电机的转速。
增加电压会增加电机的转速,减小电压会降低电机的转速。
2.2 交流电动机控制交流电动机控制主要有两种方式,一种是变频控制,另一种是调节电压和频率。
2.2.1 变频控制变频控制是通过变频器将固定频率的交流电源转换为可调频率的交流电源,从而实现对电机的转速和转向的控制。
通过改变变频器的输出频率,可以调整电机的转速。
2.2.2 调节电压和频率调节电压和频率控制是通过调节交流电源的电压和频率,来控制电机的转速和转向。
增加电压和频率会增加电机的转速,减小电压和频率会降低电机的转速。
三、电动机控制技术电动机控制技术不仅包括控制原理,还涉及到控制器、传感器和反馈控制等方面的技术。
3.1 控制器控制器是用于实现对电机的精确控制的设备。
电动机点动控制
感谢您的观看
THANKS
点动控制在未来的应用前景
自动化生产线
随着工业自动化水平的提高,电动机的点动控制将在自动 化生产线中发挥更加重要的作用,例如实现精准定位和快 速启动。
智能家居
在智能家居领域,电动机的点动控制可用于智能门窗、智 能窗帘等设备的控制,提高家居的智能化水平。
物流运输
在物流运输领域,电动机的点动控制可用于自动化输送带、 升降机等设备的控制,提高物流效率。
电动机点动控制
目录
• 引言 • 电动机的工作原理 • 点动控制的实现 • 点动控制的优缺点 • 电动机点动控制的未来发展
01
引言ห้องสมุดไป่ตู้
目的和背景
了解电动机点动控制 在工业自动化中的重 要性和应用场景。
分析电动机点动控制 在不同领域的应用案 例,为实际应用提供 参考。
掌握电动机点动控制 的基本原理和实现方 法。
1 2 3
手动控制
在某些需要频繁启动和停止的场合,如手动调节 机械设备的运行位置,可以使用点动控制电路。
调试设备
在设备调试过程中,需要频繁测试设备的运行状 态,点动控制电路可以方便地实现设备的启动和 停止。
紧急停车
在某些紧急情况下,需要立即停止设备的运行, 点动控制电路可以迅速切断电源,保护设备和人 员安全。
04
点动控制的优缺点
点动控制的优点
操作简便
点动控制操作简单,只需要通过按钮或开关来控制电 动机的启动和停止,不需要复杂的操作流程。
适用性强
点动控制适用于各种类型的电动机,无论是交流电动 机还是直流电动机,都可以采用点动控制方式。
成本低
点动控制电路简单,所需的电气元件较少,因此成本 较低。
机电控制
第一章 机电传动断续控制1、电动机的自动控制方式有(断续控制)、(连续控制)和(数字控制)三种方式。
机电传动系统:电源、控制设备、电动机、传动装置、工作机构。
旋转磁场的转速n 0称为同步转速,其大小取决于(电流频率f1)和(磁场的极对数p )。
人为机械特性有(降低定子电压)、(转子电路串接对称电阻)、(改变定子电源频率)、(改变极对数)等特性。
异步电动机的起动有(直接起动)、(降压起动)、(绕线型电动机转子串电阻起动),制动有(能耗制动)、(转子反转的反接制动)、(定子两相反接的反接制动)、(发电反馈制动)。
2、执行电器KM (电磁铁、接触器)、检测电器SB 、ST 、K 、KS (按钮开关、行程开关、电流及电压继电器、速度继电器)、控制电器KA 、KT (中间继电器、时间继电器)、保护电器FR 、FU 、QF (热继电器、熔断器、低压断路器)的定义。
a 、b 、c 、d 、e 、f 、g 、h 、i 、j 、k 分别表示(动合按钮)、(动断按钮)、(复合按钮)、(行程开关的动合触点)、(动断触点)、(时间继电器的得电延时型)、(得电延时型的动作触点)、(时间继电器的失电延时型)、(失电延时型的动作触点)、(热继电器的热元件)、(热继电器的动断触点)。
接触器的辅助动合触点。
3、电器设备图纸有(电气控制原理图)、(电气设备位置图)和(电气设备接线图)。
电器原理图中应将(电源电路)、(主电路)、(控制电路)和(信号电路)分开绘制。
电器原理图中同一电气元件的各个部件按其在电路中所起的作用,它的图形符号可以(不画)在一起,但代表同一元件的文字符号(必须相同)。
4、 每个接触器线圈的文字符号下面有两条竖直线分成左、中、右三栏,栏中写有受其控制而动作的触点所处图区数字。
左栏为(主触点)所处图区号,中栏为(辅助动合触点)所在图区号,右栏为(辅助动断触点)所在图区号。
每个继电器线圈文字符号下面有一条竖直线分成左、右栏,其左栏为(动合触点)所处图区号,左栏为(动断触点)所处图区号,对于(备用触点)用记号“×”标出。
电力拖动自动控制系统(名词解释)
电力拖动自动控制系统(名词解释)一、名词解释:1.G-M系统(旋转变流机组):由交流电动机拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁If即改变其输出电压U,从而调节电动机的转速n,这样的调速系统简称G-M系统,国际上统称Ward-Leonard系统。
2.V-M 系统(晶闸管-电动机调速系统):通过调解器触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现评平滑调速,这样的系统叫V-M系统。
3. (SPWM):按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波雨期望波的争先等效,这种调制方法称作正弦波脉宽调制(SPWM)。
4.(旋转编码器的测速方法)M法测速——在一定时间Tc内测取旋转编码器输出的脉冲个数M1,用以计算这段时间内的平均转速,称作M法测速。
T法测速——在编码器两个相邻输出脉冲间隔时间内,,用一个计数器对已知频率为f0的高频时钟脉冲进行计数,并由此来计算转速,称作T法测速。
M/T法测速——既检测Tc时间内旋转编码器输出的脉冲个数M1,又检测用一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。
5.无刷电动机:磁极仍为永磁材料,但输出方波电流,气隙磁场呈梯形波分布,这样就更接近于直流电动机,但没有电刷,故称无刷电动机(梯形波永磁同步电动机)。
6.DTC(直接转矩控制系统):它是利用转矩反馈直接控制电机的电磁转矩,是既矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。
7.恒Eg/f1=C控制:对于三相异步电动机,要保持气隙磁通不变,当频率从额定值向下调节时,必须同时降低气隙磁通在在定子每相中感应电动势的有效值Eg,使Eg/f1=恒定值,像这样的控制方法叫恒Eg/f1=C控制。
(譬如,对于异步电动机,如果在电压-频率协调控制中,恰当地提高电压Us的数值,使它在克服钉子阻抗压降以后,能维持Eg/f1为恒值,这种控制方法叫Eg/f1=C控制。
自控实验——电机控制
目录一.设计内容 (3)二.熟悉环境 (3)三.建立传递函数 (5)四.仿真设计 (9)五.完整接线及调试 (13)六.实验总结 (18)一. 设计内容1、 任务要求(1) 给小型直流电机系统或球式磁悬浮系统,设计完整的闭环控制系统,采用极点配置的现代理论控制方式, 可以借助Simulink 软件设计控制器算法,使系统满足给定的性能指标。
(2) 系统要准确建模。
(3) 要实物框图,要有Simulink 仿真框图和设计计算。
(4) 实物当面验收和实验报告。
(5) 时间约10个学时,即一周内完成。
2、 性能指标 (1) 无静态误差(2) 电机相应时间 < 0.3秒 (3) 磁悬浮响应时间 < 0.8秒 (4) 超调量 < 20%二. 熟悉环境1、 电机组(1) 电机的工作原理电磁力定律和电磁感应定律。
直流电动机利用电磁力定律产生力合转矩。
直流发电机利用电磁感应定律产生电势。
电动机包含三部分:固定的磁极、电枢、换向片和电刷。
只要维持电动机连续旋转,保证电磁转矩的方向不变,才能维持电动机不停地转动。
实现上述现象的方法是导体转换磁极时,导体的电流方向必须相应的改变。
而换向片和电刷就是实现转换电流方向的机械装置。
改变电刷A 、B 上电源的极性,也就改变了电机转动的方向。
这就是正转反转的原理 (2) 转矩平衡方程0()()()()()()()()()()()t a a e c a a a a a a dwT T T J em L dt T t K I t emE t K w t dw t T t J T t emdt dI t U t L R I t E t dt =++===+=++T em是电枢转子受到的电磁转矩,0T 是电机本身的阻转矩,T L 是电动机的负载转矩,dwJdt是负载折算到转子本身的转动惯量乘以转子的转速。
电机存在死区可以这样理解,死区主要由摩擦产生,开始时T em要克服0T 带来的转矩,所以电机在死区范围内,能量都消耗在阻力上。
运动控制或者电力拖动自动控制知识点整理
33、开环调速系统的机械特性
n U d 0 RI d KsUc RI d
Ce
Ce
Ce
34、开环调速系统稳态结构图
35、采用反馈控制技术构成转
速闭环的控制系统。转速闭环 控制可以减小转速降落,降低 静差率,扩大调速范围 36、反馈控制的基本作用。 根据自动控制原理,将系统的 被调节量作为反馈量引入系 统,与给定量进行比较,用比 较后的偏差值对系统进行控 制,可以有效地抑制甚至消除 扰动造成的影响,而维持被调 节量很少变化或不变,这就是 反馈控制的基本作用。 37、在负反馈基础上的“检测误 差,用以纠正误差”这一原理组 成的系统,其输出量反馈的传 递途径构成一个闭合的环路, 因此被称作闭环控制系统。在 直流调速系统中,被调节量是 转速,所构成的是转速反馈控 制的直流调速系统。 38、带转速负反馈的闭环直流 调速系统原理框图
速系统(V-M 系统)原理 图
VT 是晶闸管整流器,通过调节 触发装置 GT 的控制电压 Uc 来 移动触发脉冲的相位,改变可 控整流器平均输出直流电压 Ud,事先平滑调速。 14、V-M 系统有点 门极电流可以直接用电子控 制;有快速的控制作用;效率 高 15、 触发装置 GT 的作用 把控制电压 Uc 转换成触发脉 冲的触发延迟角α,用以控制 整流电压,达到变压调速的目 的。 16、带负载单相全控桥式整流 电路的输出电压和电流波形 由于电压波形的脉动,造成了
1、电力拖动实现了电能与机械 能之间的能量转变。 2、电力拖动自动控制系统—— 运动控制系统的任务是什么? 通过控制电动机电压、电流、 频率等输入量,来改变工作机 械的转矩、速度、位移等机械 量,是各种工作机械按人们期 望的要求运行,以满足生产工 艺及其他应用的需要。 3、运动控制系统及其组成 运动控制系统由电动机及负 载、功率放大与变换装置、控 制器及相应传感器构成
电力拖动自动控制系统介绍
电力拖动自动控制系统介绍电力拖动自动控制系统是一种基于电力传动原理的自动控制系统,广泛应用于机械设备的驱动和控制中。
该系统通过电动机将电能转化为机械能来驱动机械设备,利用传感器感知环境信号并通过自动控制器对电机进行控制,实现对机械设备的自动化控制。
电力拖动自动控制系统主要由电动机、传感器、自动控制器和驱动装置组成。
电动机是系统的动力源,通过电能转换为机械能来驱动机械设备。
传感器用于感知机械设备的状态和环境参数,如位置、速度、力等。
自动控制器负责接收传感器的信号并根据预设的控制策略对电动机进行控制,实现对机械设备的自动化控制。
驱动装置用于将控制信号转化为电机驱动信号,控制电机的启停、转速和转向。
首先,系统的控制精度高。
由于电力传动具有快速响应、高精度和可调性的特点,可以实现对机械设备的精确控制。
其次,系统的抗干扰能力强。
电力传动系统能够通过电机的转矩调节来适应外部负载的变化,从而保持机械设备的稳定运行。
再次,系统的可靠性高。
电力拖动系统中的关键部件如电动机和传感器都经过严格的测试和筛选,能够在长时间运行过程中保持稳定和可靠的性能。
此外,电力拖动自动控制系统还具有节能和环保的优势。
通过合理的控制策略和调节机制,可以减少系统的能耗,并减少对环境的影响。
电力拖动自动控制系统广泛应用于各个领域,如工业制造、交通运输、石油化工等。
以工业制造为例,电力拖动系统可以用于汽车生产线、机械加工设备、输送线等机械设备的驱动和控制。
通过自动控制,可以提高生产效率和产品质量,减少人力投入和人为错误,实现机械设备的自动化生产。
总之,电力拖动自动控制系统是一种利用电力传动原理实现对机械设备自动化控制的系统。
它具有控制精度高、抗干扰能力强、可靠性高、节能环保等优势。
在工业制造、交通运输、石油化工等领域得到广泛应用,为提高生产效率和产品质量发挥了重要作用。
电机控制系统
电机控制系统简介电机控制系统是一种用于控制电机运行的系统,它通过控制电流、电压或频率等参数来实现电机的运动控制。
电机控制系统在许多领域中被广泛使用,如工业自动化、交通运输和家用电器等。
本文将介绍电机控制系统的基本原理、分类和主要应用。
基本原理电机控制系统的基本原理是通过改变电机的输入参数来控制电机的运动。
电机的输入参数通常包括电流、电压和频率等。
通过改变这些参数,可以改变电机的速度、转矩和位置等。
电机控制系统通常由电机驱动器和控制器两部分组成。
电机驱动器是将电源输入转换为适合电机工作的电流、电压或频率的设备。
它可以根据不同类型的电机和应用需求,选择不同的驱动方式,如直流驱动、交流驱动和伺服驱动等。
控制器是用于控制电机运行的设备,它通常包括信号传感器、信号处理器和执行器等。
信号传感器用于检测电机的状态和运动信息,如速度、转矩和位置等。
信号处理器将传感器的信号转换为控制信号,并对其进行处理和调整。
执行器根据控制信号来调整电机的输入参数,以实现电机的运动控制。
分类根据电机的类型和控制方式的不同,电机控制系统可以分为多种类型。
常见的电机类型包括直流电机、交流电机和步进电机等。
而控制方式则包括开环控制和闭环控制两种。
直流电机控制系统直流电机控制系统是通过改变直流电压、电流和极性等参数来控制直流电机的运动。
直流电机通常由直流电源和直流电机驱动器组成。
直流电机驱动器可以实现电压调速、电流调速和PWM控制等。
交流电机控制系统交流电机控制系统是通过改变交流电压、频率和相位等参数来控制交流电机的运动。
交流电机通常由交流电源、变频器和控制器组成。
变频器可以实现电压调速、频率调速和矢量控制等。
步进电机控制系统步进电机控制系统是通过改变电流和脉冲信号等参数来控制步进电机的运动。
步进电机通常由驱动器和控制器组成。
驱动器可以实现全步进、半步进和微步进等控制方式。
主要应用电机控制系统在许多领域中都有重要的应用。
下面是一些常见的应用示例:工业自动化电机控制系统在工业自动化中被广泛应用。
电力拖动自动控制系统实验报告
电力拖动自动控制系统实验报告一、实验目的本实验旨在通过搭建电力拖动自动控制系统,实现对电动机的控制,加深对电力拖动控制原理的理解,并学会使用电力拖动自动控制系统进行实际操作。
二、实验仪器1.电力拖动自动控制系统2.电动机3.控制器4.电源5.测量仪器:电流表、电压表三、实验原理电力拖动自动控制系统是一种通过电动机驱动负载进行工作的自动控制系统。
该系统的基本原理是通过控制电动机的转速和负载之间的关系,从而实现对负载的控制。
电动机在工作时,根据控制信号调整输出转矩或转速,进一步改变负载运行状态。
拖动自动控制系统的调速效果主要由电机的调速功能(转矩与负载相关)、控制器和反馈传感器等设备共同决定。
四、实验步骤1.搭建电力拖动自动控制系统将电动机与电源、控制器等设备连接起来,确保电路连接正常,并通过电流表和电压表监测电流和电压的变化。
2.调节控制器参数根据实际需求,调节控制器的参数,如PID控制器的比例系数、积分系数和微分系数等,以控制电动机的速度和负载的运行状态。
3.实际运行测试打开电源,启动电机,观察电动机的转速和负载的运行状态,记录相关数据,并进行分析。
4.调整控制器参数根据实际观察到的数据结果,进一步调整控制器参数,以达到更好的控制效果。
五、实验结果与分析通过实验观察,我们发现调整控制器参数可以直接影响电动机的转速和负载的运行状态。
当比例系数增大时,电动机的加速度增加,但易产生震动;当积分系数增大时,电动机的速度稳定性增加,但容易产生超调;当微分系数增大时,电动机的速度调整时间缩短,但对于噪声信号的敏感性增加。
因此,需要根据实际情况进行综合考虑,调整合适的参数。
六、实验总结通过本次实验,我们对电力拖动自动控制系统的原理和操作有了更深入的了解。
通过调节控制器参数,我们成功实现了对电动机的控制,并观察到了不同参数对电动机转速和负载运行状态的影响。
同时,我们也了解到了参数调整需要综合考虑各个因素,并根据实际需求进行调整。
电力拖动自动控制知识点总结
电力拖动自动控制知识点总结电力拖动自动控制是一种利用电动机作为动力源,完成一系列运动控制和操作的技术。
它通过电力传动系统来把控制命令转换为电机动力输出,实现对设备的位置、速度和转矩等参数的精确控制。
电力拖动自动控制在各个行业的自动化生产中广泛应用,提高了生产效率和产品质量,降低了劳动强度和人为失误。
一、电力拖动自动控制基本原理电力拖动自动控制的基本原理是通过电动机来实现运动控制。
一般来说,电力拖动自动控制主要包括三个基本组成部分:传感器、控制器和执行器。
传感器用于采集反馈信号,控制器进行信号处理和计算,并将处理后的信号发送给执行器。
执行器则根据控制信号,调节电动机的转速、方向和输出力矩,实现对设备的运动控制。
二、电力拖动自动控制系统组成1.电动机电动机是电力拖动自动控制系统的核心部件,它将电能转换为机械能来驱动设备运动。
常用的电动机有直流电动机、交流感应电动机和步进电动机等。
选择合适的电动机型号和规格,对于实现精确控制至关重要。
2.传感器传感器用于采集各种物理信号,比如位置、速度、力矩等,并将其转换为电信号送入控制器。
常用的传感器有编码器、接近开关、力传感器和位移传感器等。
传感器的准确度和稳定性对于控制系统的精确性和性能至关重要。
3.控制器控制器是电力拖动自动控制系统的智能核心,负责信号的处理和控制算法的执行。
根据控制要求和应用场景的不同,常用的控制器有PLC(可编程逻辑控制器)、单片机和工控机等。
控制器的设计和参数设置决定了系统的稳定性和运行特性。
4.电力传动装置电力传动装置一般由电动机、传动装置和工作机构组成。
传动装置根据控制信号来调整输出轴的转速和转矩,使工作机构按照预设的规律运动。
常用的电力传动装置有齿轮传动、皮带传动、链传动和螺杆传动等。
5.控制回路控制回路是电力拖动自动控制系统中最关键的部分,它根据输入信号和反馈信号进行比较和判断,产生控制信号送入执行器。
常见的控制回路有位置闭环控制、速度闭环控制和转矩闭环控制等。
电动机顺序启动的自动控制线路原理
电动机顺序启动的自动控制线路原理引言电动机是工业生产中常用的动力装置之一,它的启动和停止是非常重要的控制过程。
在一些工业场所中,需要同时启动多个电动机,而同时启动时电网电压会瞬间下降,从而造成其他设备工作不正常。
为了解决这个问题,通常会使用电动机顺序启动的自动控制线路。
目的电动机顺序启动的自动控制线路的主要目的是按照设定的启动顺序逐个启动电动机,保证正常工作。
其工作原理是通过控制电动机的接线,使得电动机按照设定的时间间隔依次启动。
基本原理1. 接线原理电动机顺序启动的自动控制线路主要包括主电路和控制电路两个部分。
主电路主要是负责电动机的电源和起动设备的连接。
主电路的接线需要保证每个电动机的起动设备依次连接。
通常会使用接触器(也称为继电器)实现电动机的顺序启动。
接触器主要由线圈和触点组成,线圈连接于控制电路,触点负责控制电动机和起动设备的连接和断开。
控制电路主要负责控制接触器的通断,实现电动机的顺序启动。
控制电路由电路开关、按钮、限位开关等组成。
按钮用于手动控制电动机启停,电路开关用于选择自动控制或手动控制,限位开关用于检测电动机的运行状态和位置。
2. 控制原理电动机顺序启动的自动控制线路的控制原理是通过控制电路中的时间继电器来实现。
时间继电器是一种能在设定时间内自动切换电路的继电器,它具有一个可调节的时间延迟。
当控制电路的按钮按下时,电路上电,电源通过时间继电器的线圈,使得时间继电器吸合,控制电路闭合,接触器的线圈通电,接触器闭合,电动机启动。
同时,时间继电器开始计时。
一段时间后,时间继电器触发,断开控制电路,接触器的线圈断电,接触器断开,电动机停止运行。
同时,时间继电器复位,并等待下一次触发。
电动机的启动顺序可以通过连接多个时间继电器实现。
每个时间继电器的时间延迟可以根据需求来设定,从而实现电动机的顺序启动。
3. 安全保护电动机顺序启动的自动控制线路中通常还需要设置多种安全保护措施,以保证电动机和设备的安全运行。
电力拖动自动控制系统
电力拖动自动控制系统1. 系统简介电力拖动自动控制系统是一种基于电力传动和自动控制的系统,用于驱动和控制各种机械设备的运动。
该系统通过电动机将电能转化为机械能,实现对设备的拖动和控制。
电力拖动自动控制系统广泛应用于工业生产、交通运输、能源领域等各个行业。
2. 系统架构电力拖动自动控制系统主要由以下几个部分组成:2.1 电动机电力拖动自动控制系统的核心部件是电动机。
电动机负责将电能转化为机械能,驱动机械设备的运动。
根据实际需求,电动机可以采用不同的类型,如直流电动机、交流电动机等。
2.2 控制器控制器是电力拖动自动控制系统的核心部分,用于监测和控制电动机的运行。
控制器接收来自传感器的反馈信号,根据预设的控制算法和逻辑,控制电动机的启动、停止、速度调节等操作。
2.3 传感器传感器用于获取与机械设备运动相关的物理量信息,如速度、位置、温度等。
传感器通过将物理量转化为电信号,传递给控制器进行处理和决策。
2.4 电源系统电源系统为电力拖动自动控制系统提供稳定可靠的电能供应。
电源系统可以采用市电供电、蓄电池供电或者发电机供电等多种方式,以满足不同场景的需求。
2.5 人机界面人机界面是用户与电力拖动自动控制系统进行交互的窗口。
通过人机界面,用户可以设置运行参数、监测系统状态、获取报警信息等。
人机界面通常采用触摸屏、按钮、指示灯等形式,具备直观、便捷的操作方式。
3. 工作原理电力拖动自动控制系统的工作原理如下:1.用户通过人机界面设置运行参数,如设备运行速度、运行时间等。
2.人机界面将参数传递给控制器。
3.控制器根据参数和实时反馈信号来控制电动机的启动、停止和调速。
4.传感器将机械设备运动相关的物理量信息转换为电信号,传递给控制器。
5.控制器根据传感器的反馈信号进行实时监测和控制,调整电动机的运行状态。
6.电动机将电能转化为机械能,驱动机械设备的运动。
7.控制器不断与人机界面进行信息交互,向用户显示设备状态、报警信息等。
三相异步电动机自动往返控制电路
项目10 三相异步电动机自动往返控制电路
一、 电动机自动往返控制电路的安装与检修 1. 绘制元件布置图和接线图 电动机自动往返控制电路
的元件布置如图10-3所示,安装接线图请读者自行绘制, 在 此不再赘述。
项目10 三相异步电动机自动往返控制电路
2. 元器件规格、质量检查 (1)检查各元器件、耗材与表10-1中的型号规格是否一 致。 (2)检查各元器件的外观是否完整无损,附件、备件是否 齐全。 (3)用仪表检查各元器件和电动机的有关技术数据是否 符合要求。 3. 根据元件布置图安装和固定低压电器元件 元器件检查完毕后,按照图10-3所示的元件布置图安装 和固定电器元件。
项目10 三相异步电动机自动往返控制电路
(3)各电器元件接线端子引出导线的走向,以元件的水平 中心线为界线,在水平中心 线以上接线端子引出的导线,必须 进入元件上面的行线槽;在水平中心线以下接线端子引 出的 导线,必须进入元件下面的行线槽。任何导线都不允许从水 平方向进入行线槽内。
(4)各电器元件接线端子上引出或引入的导线,除间距很 小和元件机械强度很差允许 直接架空敷设外,其他导线必须 经过行线槽进行连接。
项目10 三相异步电动机自动往返控制电路
图10-2 三相异步电动机自动往返控制电路图
项目10 三相异步电动机自动往返控制电路
1. 电路说明 为了使电动机的正反转控制与工作台的左右运动相配合, 在控制线路中设置了四个位 置开关SQ1、SQ2、SQ3 和SQ4, 并把它们安装在工作台需限位的地方。
项目10 三相异步电动机自动往返控制电路
图和布置图。 能力目标:
1. 会按照工艺要求正确安装电动机自动往返控制电路。 2. 能根据故障现象,检修电动机自动往返控制电路。
三相电动机控制电路原理
三相电动机控制电路原理三相电动机是现代工业领域中最广泛应用的驱动装置之一,其工作常常需要依赖于相应的控制电路来实现。
三相电动机控制电路的原理为我们解决电动机控制难题提供了有效的方法。
下面将从三相电动机控制电路的原理来阐述。
第一步:三相电动机的基本原理三相电动机的工作原理基于三个电压相差120度的交流电力量作用于空心转子的线圈上,并通过磁场作用使其旋转。
在这个过程中,三相电动机的转速和转矩与电压、电流和电动机结构和电机类型等因素有关。
第二步:三相电动机的控制方式三相电动机的控制方式主要有两种:直接启动方式和间接启动方式。
其中,直接启动方式是最常见的方式,只需要将三相电源线连接到电动机的三个引脚上即可启动。
但直接启动方式的缺点在于启动电流过大,易损伤电动机和设备,另外电路容易发生过流保护开关跳闸的情况。
因此,间接启动方式逐渐被广泛应用,通过控制电路降低启动电流,减少电机损伤。
第三步:三相电动机控制电路设计三相电动机控制电路设计的关键是正确解决电动机的启动和停止问题。
电动机启动和停止时,需要实现电路的自动控制,保证安全、可靠运行。
其中,电动机的启动和停止,涉及到转速控制、反转控制、转矩控制等因素,并且这些需要与电路的保护功能相结合。
第四步:三相电动机控制电路的元件三相电动机控制电路的基本元件包括电容器、热继电器、磁力接触器等,其中热继电器和磁力接触器的作用有以下三点,保护电机,降低启动电流,改变电动机的工作方式。
第五步:三相电动机控制电路的实现三相电动机控制电路的实现,需要结合实际的工业场合,应灵活选择控制方案,满足具体的技术和经济要求。
关键是根据实际情况精心设计,并选用适合的器件和控制方法。
综上所述,三相电动机控制电路的原理涉及到电动机的基本原理、控制方式、电路设计、基本元件、实现等几个方面。
正确的应用这些原理,能够实现三相电动机高效、可靠、安全的控制。
因此在工业生产中掌握电动机控制的方法和技术,对于提高生产效率、管理升级等具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言实现电能与机械能相互转换的电工设备总称为电机。
电机是利用电磁感应原理实现电能与机械能的相互转换。
把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。
在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。
它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。
对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)基本控制方式;1.三相异步电动机的基本结构与工作原理1.1电动机的基本结构三相异步电动机有绕线转子和笼形转子两种结构,绕线转子异步电动机的起动性能和调速性能都较好,但其造价较高。
笼形转子异步电动机结构简单,容易维护,造价较低。
三相异步电动机由定子和转子两部分组成,定、转子之间有气1.定子定子主要由定子铁心、定子绕组和机座组成。
定子铁心是磁路的一部分,起导磁作用。
为了减少磁滞损耗和涡流损耗,定子铁心用0.5mm厚、表面涂有绝缘漆的硅钢片叠成。
硅钢片内圆边上冲有均匀分布的槽,用于嵌放三相对称绕组。
定子绕组是定子电路的一部分,一般由绝缘铜线绕制并按一定规律连接成相绕组,根据具体情况可以将三个相绕组连接成星形或三角形。
每个相绕组的首端和末端引接到出线盒的接线端子上。
机座由铸铁或铸钢制成,起固定定子铁心、轴承、端盖的作用。
在机座的表面及内部还采取了一些散热措施。
2.转子转子主要由转子铁心、转子绕组和转轴组成。
转子铁心固定在转轴上,它是磁路的一部分,由0.5mm厚、外圆边上冲有均匀分布槽的硅钢片叠成,用于嵌放绕组。
绕线转子绕组与定子绕组的结构一样。
绕线转子绕组的三个单相对称绕组在内部连接成星形,其三个首端分别引接到转轴上的三个互相绝缘的滑环上,滑环通过电刷与外电路连接。
笼形转子铁心的每个槽内嵌放有导体,这些导体的两端分别与两个导电端环连接,构成闭合的转子绕组。
如果去掉铁心,转子绕组的形状像老鼠笼,因此也称为鼠笼式电动机。
中、小型笼形转子电动机的转子绕组常常采用浇注铝的方法将导体、端环和风扇一次性地铸成一个整体,工艺简单,制造成本较低。
1.2工作原理1.2.1 三相异步电动机的基本工作原理三相异步电动机的原理图如图4.5所示,定子铁芯的槽内嵌放有连接成星形或三角形的三相对称绕组,转子绕组连接成闭合回路。
在定子的三相对称绕组中通入三相对称电流时,将在气隙中产生以转速n旋转的旋转磁场。
设旋转磁场顺时针旋转,则转子导体逆时针切割磁场。
根据电磁感应定律,转子导体中将产生感应电动势。
由于转子绕组连接成闭合回路,转子导体将有感应电流流过。
设电流的相位与电动势的相位相同,两者的方向可以由右手定则确定,如图4.5所示。
带电的转子导体在磁场中将受到电磁力的作用,电磁力的方向可以由左手定则确定,如图4.5所示,转子导体的受力方向与磁场旋转方向相同。
电磁力作用于转子表面的导体上形成电磁转矩M ,使转子以转速n 沿磁场旋转的方向旋转,从而实现了将电能转换成机械能。
改变旋转磁场的旋转方向时,转子的旋转方向相应改变。
1.2.2 旋转磁场(1).产生图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。
并接成星形与三相电源U 、V 、W 相联。
则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。
00sin sin(120)sin(120)U m V m W m i I t i I t i I t ωωω=⎧⎪=-⎨⎪=+⎩三相异步电动机定 子接线当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。
当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。
当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。
可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。
随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地旋,因此称为旋转磁场。
B图 5-4 旋转磁场的形成(2).旋转磁场的方向旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。
这时,转子的旋转方向也跟着改变。
1.2.3 转子转动原理(a) ωt = 0° (b) ωt = 120° (c) ωt = 240°X X X2.三相异步电动机的自动控制2.1三相异步电动机的Y—Δ起动自动控制图三相异步电动机Y—Δ降压启动控制线路图三相异步电动机的Y—Δ起动自动控制如图所示。
主要元器件介绍:a.起动按钮(SB2)。
手动按钮开关,可控制电动机的起动运行。
b.停止按钮(SB1)。
手动按钮开关,可控制电动机的停止运行。
c.主交流接触器(KM1)。
电动机主运行回路用接触器,起动时通过电动机起动电流,运行时通过正常运行的线电流。
d.Y形连接的交流接触器(KM3)。
用于电动机起动时作Y形连接的交流接触器,起动时通过Y形连接降压起动的线电流,起动结束后停止工作。
e.Δ形连接的交流接触器(KM2)。
用于电动机起动结束后恢复Δ形连接作正常运行的接触器,通过绕组正常运行的相电流。
f.时间继电器(KT)。
控制Y—Δ变换起动的起动过程时间(电机起动时间),即电动机从起动开始到额定转速及运行正常后所需的时间。
g.热继电器(或电机保护器FR)。
热继电器主要设置有三相电动机的过负荷保护;电机保护器主要设置有三相电动机的过负荷保护、断相保护、短路保护和平横保护等。
控制原理:三相异步电动机Y—Δ转换启动的控制原理大致如下:a.按下启动按钮SB2后,电源通过热继电器FR的动断接点、停止按钮SB1的动断接点、Δ形连接交流接触器KM2常闭辅助触头,接通时间继电器KT的线圈使其动作并延时开始。
此时时间继电器KT虽已动作,接点应断开,但其延时接点是瞬间闭合延时断开的(延时结束后断开),同时通过此KT延时接点去接通Y形连接的交流接触器KM3的线圈回路,则交流接触器KM3带电动作,其主触头去接通三相绕组,使电动机处于Y形连接的运行状态;KM3辅助常开触头闭合去接通主交流接触器KM1的线圈。
b.主交流接触器KM1带电启动后,其辅助触头进行自保持功能(自锁功能);而KM1的主触头闭合去接通三相交流电源,此时电动机启动过程开始。
c.当时间继电器KT延时断开接点(动断接点)KT的时间达到(或延时到)电动机启动过程结束时间后,时间继电器KT接点随即断开。
d.时间继电器KT接点断开后,则交流接触器KM3失电。
KM3主触头切断电动机绕组的Y 形连接回路;同时接触器KM3的常闭辅助触头闭合,去接通Δ形连接交流接触器KM2的线圈电源。
e.当交流接触器KM2动作后,其主触头闭合,使电动机正常运行于Δ形连接状态;而KM2的常闭辅助触头断开使时间继电器KT线圈失电,并对交流接触器KM3联锁。
电动机处于正常运行状态。
f.启动过程结束后,电动机按Δ形连接正常运行。
2.2 三相异步电动机的自动自偶降压起动控制图电动机自耦降压起动接线图图是交流电动机自耦降压启动自动切换控制接线图,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故控制过程如下:a、合上空气开关QF接通三相电源。
b、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。
c、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。
d、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源。
KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。
e、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。
f、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。
g、电动机的过载保护由热继电器FR完成。
2.3 三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。
所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。
典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。
点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS 作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。
点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。
2.4三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。
接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。
它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。