中格栅和细格栅的设计

中格栅和细格栅的设计
中格栅和细格栅的设计

一、进水闸井的设计

1、污水厂进水管

1.设计依据:

(1)进水流速在0.9—1.1m/s;

(2)进水管管材为钢筋混凝土管;

(3)进水管按非满流设计,n=0.014。

2.设计计算

(1)取进水管径为D=800mm,流速v=1.00 m/s,设计坡度I=0.5%。

(2)已知最大日污水量Q max=0.6481m3/s;

(3)初定充满度h/D=0.75,则有效水深h=1000×0.75=750mm;

(4)已知管内底标高为67.1m,则水面标高为:67.1+0.75=67.85m;

(5)管顶标高为:67.1 +1.0=68.1m;

(6)进水管水面距地面距离72.4-67.85=4.55m。

2、进水闸井工艺设计

进水闸井的作用是汇集各种来水以改变进水方向,保证进水稳定性。进水闸

井前设跨越管,跨越管的作用是当污水厂发生故障或维修时,可使污水直接排入水体,跨越管的管径比进水管略大,取为1200mm。

其设计要求如下:

设在进水闸、格栅、集水池前;

形式为圆形、矩形或梯形;

尺寸可根据来水管渠的断面和数量确定,但直径不得小于1.0m 或

1.2×1.0m;

井底高程不得高于最低来水管管底,水面不得淹没来水官管顶。

考虑施工方便以及水力条件,进水闸井尺寸取3×6m,井深5.3m,井内水深0.75m,闸井井底标高为67.1 m,进水闸井水面标高为67.85m,超越管位于进水管顶1m 处,即超越管管底标高为69.1m。采用ZMQF 型明杆式铸铁方闸门:尺寸为

L×B=1.6×1.6m;重量=2992kg。

一、中格栅的工艺设计

格栅计算草图

1.中格栅设计参数

(1)栅前水深h=0.75m ;

(2)过栅流速v=0.9m/s ;

(3)格栅间隙b 中=0.019m ;

(4)栅条宽度 s=10mm ;

(5)格栅安装倾角0

75=α。

2.中格栅的设计计算

本设计选用两道中格栅,为了减少格栅磨损,格栅全部使用。

总变化系数k=1.4

s m d m Q 3

3max 6481.04.140000=?=

1)栅条间隙数:

bhv Q n α

sin max =

式中:n 中——中格栅间隙数;

Q max ——最大设计流量,

s m 36481.0; b 中——栅条间隙,0.019m ;

h ——栅前水深,取0.75m ;

v ——过栅流速,取0.9m/s ;

α——格栅倾角,取0

75;

m ——设计使用的格栅数量,本设计中格栅取使用2 道。

8.2429.075.0019.075sin 6481.00

=????=中n 取25

2)栅槽宽度B :

栅槽宽度一般比格栅宽0.2-0.3m ,取0.2m 。

B=s(n 1-1)+bn+0.2

式中:B ——栅槽宽度,m ;

S ——格条宽度,取0.01m 。

B=0.01×(25-1)+0.019×25+0.2=0.92m

栅槽之间墙宽度为0.5m ,所以格栅总宽度=0.92×2+0.5=2.34m

3)中格栅栅前进水渠道渐宽部分长L1,若进水渠宽B1=0.7,其渐宽部分展开角020=α

进水渠道流速V1=0.7m/s

m B B L 30.020tan 27.092.020tan 20011=-=-= 4)中格栅与提升泵房连接处渐窄部分长度L2

m L L 15.0230.0212===

5)中格栅过栅水头损失

K 取3

42.2=β

m g v b s k h 12.075sin 6.199.0019.001.042.23sin 2)(0234234=???==)(中αβ

6)栅前槽总高度,取栅前渠道超高h2=5m

栅前槽总高度H1=h+h2=0.75+5=5.75m

7)栅后槽总高度

m h h h H 87.512.0575.02=++=++=中

8)栅槽总长度

m 49.375tan 75.50.15.015.03.0tan750.15.000121=++++=++++=H L L L

9)每日栅渣量:

33333301009

.0,1001.0-1.0w m m m m 中格栅取一般为

d m >d m Qw 3302.06.3100009.0400001000w =?== 故采用机械清渣

二、 细格栅的工艺设计

1.细格栅设计参数

(1)栅前水深h=0.75m ;

(2)过栅流速v=0.8m/s ;

(3)格栅间隙b 细=0.008m ;

(4)栅条宽度 s=0.01m ;

(5)格栅安装倾角0

75=α。

2.细格栅的设计计算

本设计选用三道细格栅,两用一备。

1)栅条间隙数: bhv Q n α

sin max =

式中:n 中——中格栅间隙数;

Q max ——最大设计流量,

s m 36481.0; b 中——栅条间隙,0.008m ;

h ——栅前水深,取0.75m ;

v ——过栅流速,取0.8m/s ;

α——格栅倾角,取0

75;

m ——设计使用的格栅数量,本设计中格栅取使用2 道。

67,3.6628.075.0008.075sin 6481.00

取细=???=n 2)栅槽宽度:

B=s(n 1-1)+bn

式中:B ——栅槽宽度,m ;

S ——格条宽度,取0.01m 。

B=0.01×(67-1)+0.008×67=1.216m ,取1.22m

栅槽之间墙宽度为0.5m ,所以格栅总宽度=1.22×3+0.5×2=4.66m

3)细格栅的栅前进水渠道渐宽部分长度L 1:

若进水渠宽 B 1=0.8m ,渐宽部分展开角α 1 =20。,则此进水渠道内的流速 v 1=0.7m/s ,则 m B B L 58.020tan 28.022.120tan 20011=-=-= 4)细格栅与旋流沉砂池连接处渐窄部分长度L 2:

m L L 29.0258.0212=== 5)细格栅的过栅水头损失:

K 取3

42.2=β

m g v b s k h 31.075sin 6.198.0008.001.042.23sin 2)(0234234=???==)(细αβ

6)栅前槽总高度:

取栅前渠道超高 h 2=0.5m

栅前槽高H 1=h+h 2=0.75+0.5=1.25m

7)栅后槽总高度:

m h h h H 56.131.05.075.02=++=++=细

8)栅槽总长度:

m 7.275tan 25.10.15.029.058.0tan750.15.000121=++++=++++=H L L L

9)每日栅渣量: 333333

01010.0,1001.0-1.0w m m m m 细格栅取一般为

d m >d m Qw 3302.00.41000

10.0400001000w =?==

故采用机械清渣

格栅除污机的选择

经计算本工程均采用机械清渣,格栅的相关数据如下表:

表 3-2 中,细格栅除污机的性能参数表

型号 格栅宽度 (mm ) 提升速度 (m/min ) 安装 角度 电动机功 率(kw ) 格栅间距 (mm )

重量(kg )

GH 型中格栅

1000 2.5 75o 0.75 15 4000 HF-1500 型细格栅

1500 3 75o 2.2 6 ---

中格栅的设计

中格栅的设计 1.设计参数 ①单号Q max=0.8m3/s,双号Q max=1.2m3/s,中格栅间隙10——40mm,; ②格栅为一台时,应设人工清除格栅备用; ③过栅流速一般采用0.6-0.8m/s; ④格栅前渠道内水流速度一般采用0.4-0.9 m/s; ⑤格栅倾角一般采用45°—75°;通过格栅的水头损失一般采用0.08-0.17 。 1 ①图纸(A3;21000*14850;1:50) (A4;14850*10500;1:50) ②单位:mm ③平面图+剖面图 ④版式A3,A4

① 栅前水深的确定 根据最优水力断面公式Q=212V B ? 所以B1=V Q 2=m 5.18.09.02=? 则:栅前水深h=B1/2=1.5/2=0.75m h —栅前水深,m; V —过栅流速,m/s ,取0.8—1.0 m/s ∴ n=264 8.00.802.0sin60371.00 =??? 设两道格栅,则每台格栅的间隙n=26个 B=s(n-1)+en=0.01?(26-1)+0.02?26=0.77m ,为了方便选设备,取0.8m 。

③ 进水渠道渐宽部分的长度 L 1= α tg B B ?-21 式中, L1——进水渠道渐宽部分的长度,m.; B 1——进水渠道宽度,取1.2m ; α——其渐宽部分展开角度,取20°; 所以: L 1= 2 .16.1-=0.55m H=h+h 1+h 2 式中:h ——栅前水深,m 。 h 2——栅前渠道超高,m 。取0.3m ∴ H=0.84+0.081+0.3=1.221 取1.2m 。 ⑦ 栅槽总长度L : L=L 1+L 2+0.5+1.0+H/tg α=0.55+0.27+0.5+1+1.221/tg60°=2.98m ⑧ 每日栅渣量

调节池设计及气搅拌设计说明书

调节池 一般工企业排出的废水,水质、水量、酸碱度或温度等水质指标随排水时间大幅度波动,中小型工厂的水质水量的波动更大。为了保证后续处理构筑物或设备的正常运行,絮对废水的水量和水质进行调解。一般来说,调节池具有下列作用: 1. 减少或防止冲击负荷对设备的不理影响; 2. 使酸性废水和碱性废水得到中和,使处理过程中pH 值保持稳定; 3. 调节水温; 4. 当处理设备发生故障时,可起到临时的事故贮水池的作用; 5. 集水作用,调节来水量和抽水量之间的不平衡,避免水泵启动过分频繁。 为了保证后续的构筑物有较为稳定的水质水量和适宜微生物的pH 值。 已知:设计流量Q= m 3/h ,停留时间T= h ,采用穿孔管空气搅拌,气水比为4:1 调节池有效容积 V=QT=?208.5 m 3调节池尺寸 调节池平面形状为矩形,其有效水深采用h 2=,调节池面积为: F=V/ h 2==83.4 m 2 池宽B 取 m ,则池长为 L=F/B==13.9 m 保护高h 1= 池总高H=+= m 空气管计算 在调节池内布置曝气管,气水比为4:1,空气量为Q=?= m 3/s 。利用气体的搅拌作用使来水均匀混合,同时达到预曝气的作用。 空气总管D 1取75mm ,管内流速V 1为 V 1=214D Q S π=2 075.014.3046.04??=10.4m/s V 1在10~15m/s 范围内,满足规范要求 空气支管D 2:共设4根支管,每根支管的空气流量q 为: q=s Q 41=046.04 1?=0.0115m 3/s 支管内空气流速V 2应在5~10m/s 范围内,选V 2=6m/s,则支管管径D 2为 D 2=2 4v q π=60115.04??π=0.0494m=49.4mm 取D 2=50mm,则V 2= 2 050.00115.04??π=s 穿孔径D 3:每根支管连接两根穿孔管,则每根穿孔管的空气流量为

格栅设计

格栅设计

一、课程设计的内容 (1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)确定污水处理厂平面和高程布置; (4)绘制主要构筑物图纸。 二、课程设计应完成的工作 (1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明; (2)确定主要处理构筑物格栅的尺寸,完成设计计算说明书; (3)绘制主要处理构筑物格栅的设计图纸。

目录 1总论 (2) 1.1污水处理的必要性 (2) 1.2设计任务和内容 (2) 1.3基本资料 (2) 1.3.1格栅的作用 (2) 1.3.2格栅的种类 (2) 1.3.3格栅的工艺参数 (2) 1.3.4待处理污水的各项指标及出水指标要求 (3) 2污水处理工艺流程 (4) 2.1污水处理方法 (4) 2.1.1基本原理及优点 (4) 2.1.2存在问题 (4) 2.2处理工艺流程 (4) 3 处理构筑物设计——格栅设计 (5) 3.1格栅种类选择 (5) 3.2格栅设计计算 (5) 结论 (8) 参考文献 (9)

1总论 1.1污水处理的必要性 随着工农业生产的迅速发展和人民生活水平的不断提高,用水紧张和污水排放的问题已越来越突出。污水未经处理直接排放,加重了对环境的污染。在国家可持续发展的新政策下,环境保护已受到各级政府和全国人民的重视,对污水进行彻底的治理以保护人类赖以生存的环境的重要性越来越大,高效节能的城市污水处理技术与工艺已能为国民经济的发展起到较大的推动作用。 1.2设计任务和内容 (1)确定污水处理厂的工艺流程,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)完成格栅三视图 1.3基本资料 1.3.1 格栅的作用 格栅是由一组平行的金属栅条或筛网、格栅柜和清渣耙三部分组成,安装在污水处理厂的端部。格栅主要作用是将污水中的大块污染物拦截出来,否则这些大块污染物将堵塞后续单元的机泵或工艺管线。格栅上的拦截物成为栅渣,其中包括十种杂物,大至腐尸,小至树杈、木料、塑料袋、破布条、碎砖石块、瓶盖、尼龙绳等均能在栅渣中发现。 1.3.2 格栅的种类 (1)按格栅条间距的大小分类:细格栅、中格栅和粗格栅3类,其栅条间距分别为4~10mm,15~25mm和大于40mm。 (2)按清渣方式不同分类:人工除渣格栅和机械除渣格栅两种。人工清渣主要是粗格栅。 (3)按栅耙的位置不同分类:前清渣式格栅和后清渣式格栅。前清渣式格栅要顺水流清渣,后清渣式格栅要逆水流清渣。 (4)按形状不同分类:平面格栅和曲面格栅。平面格栅在实际工程中使用较多。 (5)按构造特点不同分类:抓扒格栅、循环式格栅、弧形格栅、回转式格栅、转鼓式格栅和阶梯式格栅。 1.3.3格栅的工艺参数

格栅的设计计算

格栅的设计计算 (1)栅条的间隙数n Q max、sin X n ehv 式中Qmax --------- 最大设计流量,m3/s ――格栅倾角,度,取=60° h ----- 栅前水深,m,取h=0.4m e ----- 栅条间隙,m,取e=0.02m n――栅条间隙数,个 v ----- 过栅流速,m/s,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核 则:n如五O'2* '歸 23个 ehv 0.02*0.4*1.0 (2)栅槽宽度B 栅槽宽度一般比格栅宽0.2-0.3米,取0.2米 设栅条宽度S=10mm 则栅槽宽度B S(n 1) bn 0.01*(23 1) 0.02*23 0.68n (3)通过格栅的水头损失h g %k

2 0.36 2 0.18m L L 1 L 2 1.0 0.5 H 1 ta n V sin 2g h i ――过栅水头损失, h 0 计算水头损失,m g ----- 重力加速度,9.8 m/ s 2 k ――系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用 k=3 ――阻力系数,与栅条断面形状有关, (-)4,当为矩形断面时, e =2.42。 2 h 1 h o k (-) |—s in k 『2g 0.01 4 1.0 0 2.42*( 冶 si n60°*3 0.02 3 2*9.8 0.13m (4)栅后槽总高度H 设栅前渠道超高 ① 0.3m H h 0 d 0.4 0.13 0.3 0.83m (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度 a =200,进水渠道内的流速为0.77m/s 。 1 B B 1 1 2ta n 1 °68 °45 0.36m 2ta n20° 栅槽与出水渠道连接处的渐窄部分长度 L 2 h o 式中 L 2

格栅设计与选型

格栅设计与选型

环科0801 陈得者200806660101 格栅设计与选型 格栅的工艺参数: 过栅流速:v=0.6~1.0m/s 栅前水深:h=0.4m 安装角度:a=45~75° 格栅间隙b:一般15~30mm,最大为40 mm 栅条宽度bs:细格栅3~10mm 中格栅10~40mm 粗格栅50~100mm 进水渠宽:B1=0.65m 渐宽部分展开角度a1=20° 栅前渠道超高h2=0.3m 由于流量非常大,为防止垃圾堵塞格栅,达到去除粗大物质、保护处理厂的机械设备的目的,故选用一粗一细两个格栅。 主要设计参数: 粗格栅

1.栅条的间隙数n 取栅前水深h=0.4m 过栅流速v=0.7m/s 间隙宽度b=0.04m 安装角度a=60°Q=50000m3/d= 0.579 m3/s=579L/s 总变化系数根据流量Q=579L/s,查下表内插得K z=1.38 Q max=1.38Q=1.38×0.579m3/s=0.799 m3/s n=Q max×sina b×h×v = 0.799×sin60° 0.04×0.4×0.7 =66.4 取n=67 2.栅槽宽度B 取栅条宽b s=0.02m B=b s(n-1)+b×n=0.02×(67-1)+0.04×67=4m 3.进水渠道至栅槽渐宽部分长l1 进水渠宽B1=0.65m 渐宽部分展开角度a1=20° l1=B-B1 2tga1= 4-0.65 2tg20° =4.60m 4.栅槽至出水渠道间渐缩部分长l2 l2=l1 2=2.30m 5.通过格栅的水头损失h1

选用锐边矩形栅条断面 由上表可知公式为ζ=β(b s b )4/3 β=2.42 水头增大系数k=3 h 1=kh 0=k ζv 22g sina=k β(b s b )4/3v 22g sina =3×2.42×(0.020.04 )4/3×0.72 2×9.8 ×sin60°=0.062m 6.栅后槽总高度H 取栅前渠道超高h 2=0.3m H=h+h1+h2=0.4+0.046+0.3=0.746m 7.栅槽总长度L L=l 1+l 2+0.5+1.0+H 1tga =4.60+2.30+0.5+1.0+0.4+0.3tg60° =8.81m 8.每日栅渣量W ①当栅条间距为16~25mm 时,栅渣截留量为0.10~0.05m 3/103m 3污水。 ②当栅条间距为40mm 左右时,栅渣截留量为0.03~0.01m 3/103m 3污水。 在栅间隙为0.04m 的条件下,取W 1=0.02m 3/103m 3污水 W=Q max W 1K z 1000 =50000×1.38×0.021.38×1000 =1m 3/d >0.2 m 3/d 由于污水流量和栅渣量都较大,宜采用RAG 型回转耙齿式机械格栅清渣,可以设置两台,一台工作,一台备用。 9.电动机功率P 根据B 和H 查下表可得 P=3kw

调节池设计(终版)

调节池设计 假定:在水一方餐厅每天用水量为15m3左右,用水高峰期分别为10:00am—14:00pm和17:00pm—21:00pm两个时间段。平均每个时间段进水量为7.5 m3。其他时间段没有进水。 则其24小时平均流速为0.625 m3/h。(所以最优的出水量是控制在0.62 m3/h。) 据此绘制污水流量变化曲线见下图,见红色线表示。蓝色线表示平均污水流量。 当进水量大于出水量时,余量在调节池中贮存,当进水量小于出水量时,需取用调节池中的存水。由此可见,调节池所需容积等于上图中面积A、B或C中最大者,即调节池的理论调节容积为0.62*13=8.1 m3。 设计中采用的调节池容积,一般宜考虑增加理论调节池容积的10%-20%,故本例中调节池容积按V=8.1*1.2=9.7 m3,约等于10 m3

来计算。 调节池池子高度取2m ,其中有效水深1.7m ,超高0.3m 。则池面积为 A=V/h=10/1.7=5.9m 。 将调节池长设为3m, 宽设为2m ,所以调节池的实际尺寸为L*B*H=3*2*1.7=10.2 m 3。 水力学的计算公式 流量与流速的关系: 式中:Q ——流量,m3/s ; A ——过水断面面积,m2; v ——流速,m/s ; 谢才公式计算流速: R ——水力半径(过水断面积与湿周的比值),m ; v A Q ?=I R C v ??=

I ——水力坡度(即水面坡度,等于管底坡度); C ——流速系数,或谢才系数。 C 值一般按曼宁公式计算,即 n ——管壁粗糙系数 由上可推导出: 充满度 水流断面及水力半径计算见下图 61 1R n C ?=

格栅的设计计算

格栅的设计计算 (1)栅条的间隙数n max Q n ehv = 式中 Qmax ——最大设计流量,m 3/s α——格栅倾角,度,取α=600 h ——栅前水深,m ,取h=0.4m e ——栅条间隙,m ,取e=0.02m n ——栅条间隙数,个 v ——过栅流速,m/s ,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核。 则 :max 230.02*0.4*1.0 Q n ehv ==≈个 (2)栅槽宽度B 栅槽宽度一般比格栅宽0.2-0.3米,取0.2米。 设栅条宽度S=10mm 则栅槽宽度(1)B S n bn =-+ 0.01*(231)0.02*23 0.68m =-+≈ (3)通过格栅的水头损失h 10h h k = 2 0sin 2v h g ξα= 43()s b ξβ= 式中 1h ——过栅水头损失,m+ 0h ——计算水头损失,m g ——重力加速度,9.82/m s

k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3 ξ——阻力系数,与栅条断面形状有关,43 ()s e ξβ=,当为矩形断面时,β=2.42。 S=栅条的宽度 b=栅条的间隙 2410()sin 2s v h h k k b g βα== 20430.01 1.02.42*()sin 60*30.022*9.8 = 0.13m = (4)栅后槽总高度H 设栅前渠道超高20.3h m = 120.40.130.30.83H h h h m =++=++= (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度α1=200,进水渠道内的流速为0.77m/s 。 11010.680.450.362tan 2tan 20 B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L 120.360.1822 L L m ==≈ 112 1.00.5tan H L L L α =++++ 式中 1H 为栅前渠道深,12H h h =+ 00.40.30.360.180.5 1.0tan60L +=++++ 2.44m =

机械格栅说明书(细格栅)

回转式细格栅除污机操作规程 宜兴市华电环保设备有限公司

目录 1、工作原理 2、一般性能描述 3、性能和结构 4、主要技术参数: 5、主要材质: 6、现场控制箱 7、设计、制造及质量控制 8、检验与试验要求 9、设备的安装、运行、维修手册 10、注意事项及维护

1、工作原理 回转式机械细格栅是一种用于水源口拦除固体垃圾的专用设备,它可以连续自动地清除污水中的各种形状的漂浮物。当格栅链在减速机驱动机构的驱动下,安工作方向做循环运动,此时水槽中的水流经齿耙栅隙,耙齿格栅对水中的固体杂物进行拦截,并由运动中的耙齿将其捞起,随耙齿链一起向上运行到达顶部后,通过链轮和弯轨的导向,使每组耙齿之间产生相对运动,达到自清目的,致使大部分固态杂物因自身重力而落下,另一些粘附在栅缝中的杂物在反转清洗刷的作用下把耙齿的杂物洗刷干净,并均匀地落入螺旋输送机中。由于耙齿格栅链是一个封闭式循环机构,所以它可以自动连续地工作,对水中漂浮杂物不断地进行清除。 2、一般性能描述 循环耙式清污机适用于原生污水的漂浮物的清除,其主要部件是通常称为“耙齿”或“耙爪”的过滤元件。整个格栅部件直接安装在渠道上,固体物由滤带捕获,通过耙齿送至格栅驱动装置后部的较高位置后排出。格栅支架的二侧均固定有混凝土渠道上,并且拆卸方便,格栅在安装过程中保证渠道内的所有污水能全部流经格栅,并且格栅在除污过程中在格栅两侧无死坑。格栅除污机构在运行中断后一旦恢复运行时,格栅除污机构能在完全阻塞的格栅上去除积聚的栅渣。机械格栅架、支架及各运动构件均为户外型,所有构件的设计保证在最恶劣的环境中使用寿命最长。 3、性能和结构 回转式机械格栅主要由机架、驱动装置(电机减速机)、二侧牵引链、导向链轮、钩形栅片、清扫用转刷及现场控制箱组成。 ◆齿耙 齿耙是由诸多小齿耙相互联接组成一个硕大的旋转面,捞渣彻底、干净、运转灵活可靠。齿耙具有足够的强度和刚度,不会造成连接轴的弯曲或影响耙栅平稳移动或脱链。卸料后的回程耙栅设置实用可靠的卸污吸嘴不会粘附污物。耙齿由采用尼龙材料制造。 ◆机架及机架护罩 格栅机的框架、机架护罩采用相当尺寸的不锈钢焊接而成,形成一个刚性支承结构。机架及护罩为连续焊接,以防止污水向外漏出。设备机架内侧设置牵引链循环运动轨导,机架

调节池、格栅设计计算

调节池 3.1功能描述 调节池主要起到收集污水,调节水量,均匀水质的作用。 3.2设计要点 调节池的水力停留时间(HRT )一般取 4-6h ;其有效高度一般取4-5m ,设计时,按水力停留时间计算池容并确定其规格。 3.3调节池设计计算: (1)有效容积V e HRT Q V e ?=max 式中:Q max ——设计进水流量 (m 3/h) HRT ——水力停留时间(h ); (2)有效面积A e e e e h V A = 式中:h e ——调节池有效高度 (3)调节池实际尺寸 )5.0(+??e h B L 式中:0.5 ——超高 (4)配套设备

潜水搅拌器,按体积校核,1m 3体积对应8W 功率的潜水搅拌器。 4.格栅 4.1功能描述 格栅由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎石、毛发、木屑、果皮、蔬菜、塑制品等,以便减轻后续处理构筑物的处理负荷,并使之正常运行。按照栅栅条的净间隙,可分为粗格栅(50~100mm )、中格栅(10~40mm )、细格栅(3~10mm )。 4.2设计要点 设置格栅的目的是拦截废水中粗大的悬浮物,首先废水的水质选择栅条净间隙,然后废水的水量和栅条净间隙来计算格栅的一些参数 (B 、L ),得到的这些参数就可以选择格栅的型号。工业废水一般采用e=5mm,如造纸废水、制糖废水、制药废水等。采用格栅的型号一般有固定格栅、回转式机械格栅。 4.3格栅的设计 (1)栅槽宽度 n e n S B ?+-=)1( ehv Q n αsin max =

污水处理厂平面型格栅设计-20141104

工业污水处理厂平面型格栅设计 摘要:工业污水未经处理直接排放,其中可能含有一些大粒度的悬浮物。为了清除污水和雨水泵站以及污水处理厂进水中含有的较大悬浮物,保护后续处理设施的正常运行,以及降低其他处理设施的负荷,需要在污水处理厂的一级处理中设定一个筛滤设备—格栅。格栅是由一组平行的金属栅条或筛网、格栅柜和清渣耙三部分组成,安装在污水处理厂的端部。格栅主要作用是将污水中的大块污染物拦截出来,否则这些大块污染物将堵塞后续单元的机泵或工艺管线。 关键字:平面格栅;机械除渣;工业污水

目录 1 前言 (1) 2 污水处理构筑物设计—格栅设计 (4) 2.1 待处理污水的各项指标及出水指标要求 (4) 2.2 处理工艺流程 (4) 2.3格栅的基本资料 (4) 2.3.1 格栅的分类 (4) 2.3.2 格栅的工艺参数 (5) 2.4格栅设计要点 (6) 2.5 格栅设备的选用 (7) 2.5.1回转式格栅清污机的结构特点 (7) 2.5.2 XHG-I型回转式格栅清污机参数 (7) 2.6 格栅设计计算 (8) 2.6.1 已知条件 (8) 2.6.2 设计计算 (8) 3 结论 (12) 参考文献...................................................................................... 错误!未定义书签。

1 前言 1.1 污水处理设备研究背景 我国污水处理行业突飞猛进,整体发展处于快速成长期,主要表现在污水处理能力迅速扩张、污水处理率稳步提高、污水处理量快速增长等方面。2010年城市污水处理厂日处理能力达10262万立方米,比2009年末增长13.4%,城市污水处理率达到76.9%。截至2011年9月底,全国设市城市、县累计建成城镇污水处理厂3077座,处理能力达到1.36亿立方米/日。城镇污水垃圾处理设施建设推动了环保产业发展,到2020年城市污水处理率将不低于90%,我国污水处理业务市场空间广阔。此外,国家鼓励利用再生水的政策,也将对污水深度处理业务提供广阔的市场空间。我国污水处理建设的严峻形势,县城和建制镇污水处理率较低的现状,为污水处理市场的建设、运营投资均带来巨大投资空间。 在污水处理设备方面,尽管国产一级处理机械设备从无到有引进、消化吸收国外先进技术,有少数产品已接近国际先进水平,但是国产设备普遍地存在材质差,加工精度低,能耗高,产品品种少,设备不配套,可靠性差,以及自动化水平低的问题。在制造工艺水平和规模化生产等方面与国外相比,其差距更大。因此,加速发展污水处理厂一级处理机械设备制造工业,赶超世界先进水平,这对我国控制水体污染,减少投资,降低能耗,提高污水处理厂自动化水平。 在污水处理工艺中,要使排放的污水达到国家规定的排放标准,除了二级处理之外,以及处理的作用也是必不可少的。一级处理的主要方法是物理法,一级处理的常用方法有:筛滤法,沉淀法,上浮法,预曝气法。筛滤法是用来分离污水中呈悬浮状态污染物。常用设备是格栅和筛网。格栅主要用于截留污水中大于栅条间隙的漂浮物,一般布置在污水处理厂或泵站的进水口,以防止管道、机械设备及其他装置的堵塞。格栅的清渣,可采用人工或机械方法。有的是用磨碎机将栅渣磨碎后,再投入格栅下游,以解决栅渣的处置问题。 1.2污水处理格栅的工作原理介绍 污水处理格栅是一种可以连续自动拦截并清除流体中各种形状杂物的水处理专用设备,可广泛地应用于城市污水处理。自来水行业、电厂进水口,同时也

格栅的计算

第一章 工艺设计和计算 一. 格栅的计算 设计说明 格栅是一组(或多组)相互平行的金属栅条与框架组成,倾斜安装在进水渠 道,以控制水中粗大悬浮物及杂质,对下面的微滤机和水泵其保护作用,拟采用 细格姗,格栅间距取16mm. 设计流量:最大流量s m d m Q /092.0/800033max == 设计参数:栅条间距d=16.00mm,栅前水深h=0.3m,过栅流速v=0.6m/s ,安装 倾角α=600 1.栅条的间隙数n 2.栅槽的有效宽度b.取¢10圆钢为栅条,即s=0.01m,栅槽宽度一般要比格姗 宽0.2-0.3m,这里取0.2 m. 3.通过格栅的水头损失h 2,m 设栅条断面为锐边圆形断面,取阻力系数 β=1.83,k=3.36v-1.32=3.36*0.6-1.32=0.7,则 4.栅后槽总高度H ,m 设栅前渠道超高h 1=0.3m.,有H=h+h 1+h 2=0.3+0.3+0.02=0.62 m , 5.格姗的总建设长度L 1l ----进水渠道渐宽部分的长度(m), 设进水渠宽b 1=0.23 m ,其渐宽部分展开角 度α=200 )(306 .03.0016.060sin 092.0sin 0 max 个≈??==bhv Q n α) (97.02.030016.0)130(01.02.0)1(m dn n s b ≈+?+-=++-=)(02.060sin 7.08 .926.083.1sin 202 21m k g v h ≈????==αβα tg H l l L 1 215.00.1++++=)(5.020 223.097.02011m tg tg b b l ≈-=-=α

格栅计算

3.细格栅设计计算 (1)栅条间隙数(n ): bhv Q n αsin max = 式中Q max ------最大设计流量,0.327m 3/s ;28252.8m 3/d α------格栅倾角,(o ),取α=60; b ------栅条隙间,m ,取b=0.03 m ; n-------栅条间隙数,个; h-------栅前水深,m ,取h=0.4m ; v-------过栅流速,m/s,取v=0.9 m/s ; 隔栅设两组,按两组同时工作设计,一格停用,一格工作校核30个 (2)栅条宽度(B): 设栅条宽度 S=0.01m 栅槽宽度一般比格栅宽0.2~0.3 m,取0.2 m ; 则栅槽宽度 B= S(n-1)+bn+0.2 =0.01×(28-1)+0.02×28+0.2 =1.32 (m) (3)进水渠道渐宽部分的长度L 1,设进水渠道B 1=0.85m ,其渐宽部分展开 角度α1=20°,进水渠道内的流速为0.77 m/s. m B B ≈?-=?-=α (4)格栅与出水总渠道连接处的渐窄部分长度L 2 . )(37.02 74.02L 12m L === (5)通过格栅的水头损失 h 1,m h 1=h 0?k 0h 34 2)(,2sin b S g v βεα ε== 式中 h 1 -------设计水头损失,m ;

h 0 -------计算水头损失,m ; g -------重力加速度,m/s 2 k ------系数,格栅受污物堵塞时水头损失增大倍数,一般采用 3; ξ ------阻力系数,与栅条断面形状有关;设栅条断面为锐边矩形 断面,β=2.42. g k v b S k h h 2sin )(234 01αβ== 6.19360sin 9.0)02.001.0(42.20234??= =0.1 (m)(符合0.08~0.15m 范围). (6)栅槽总长度L ,m α tan 0.15.0121H L L L ++++= 式中,H 1为栅前渠道深,21h h H += m. 360 tan 3.04.00.15.037.074.00≈+++++=L m (7)栅前槽总高度H 1,m H 1=h+h 2=0.425+0.3=0.725m (8)栅后槽总高度H ,m 设栅前渠道超高h 2=0.3m H=h+h 1+h 2=0.425+0.1+0.3=0.825(m) (9)每日栅渣量W ,m 3/d 100086400 2max ??=Z K W Q W 式中,W 1为栅渣量,m 3/103m 3污水,格栅间隙16~25mm 时,W 1=0.10~0.05m 3/103m 3污水;格栅间隙30~50mm 时,W 1=0.03~0.1m 3/103m 3污水;本工程格 栅间隙为20mm ,取W 1=0.08污水 332.0/m 6.11000 4.18640008.0327.0m d W >=???=采用机械清渣.

污水处理厂格栅间的设计

污水处理厂格栅间的设计 1 格栅间形式选择 格栅间主要由进水井、过水渠组成。主要设备包括格栅除污机、栅渣压实机、栅渣输送机及吊运设备。根据格栅底与地面高差、格栅的安装位置,格栅间分为地面式和半地下式(见图1、2)。因为地面式格栅间可将栅渣压实机、栅渣输送机安装在地面上,运行和维护方便,减少工程投资和降低施工难度,所以在满足格栅除污机机械强度、刚度及除污能力的条件下,应优先考虑采用。 2 格栅迎水面设检修平台 通常的设计在格栅的背水面设有清除栅渣的工作台。实际运行中发现,迎水面无检修平台给格栅除污机的维修带来很大的困难,为解决这个问题,在格栅间迎水面增加检修平台(见图1、2),平台宜高出正常水位0.5 m,采用钢筋混凝土材料。 3 过水渠增设排风设施 格栅间过水渠道是有毒有害气体产生和聚集的主要场所,极易发生中毒事故。为消除事故隐患,在格栅间内应增设机械排风系统,取风口设在过水渠道内。在检修前先打开排风机,排除有毒有害气体。 4 屋顶设天窗降低格栅间高度 格栅间内安装起吊设备,用于栅渣起吊外运和格栅起吊检修。由于格栅较高,所需起吊高度较大,增加了格栅间的高度,土建造价高。设计时考虑厂房高度可仅满足栅渣外运的要求,对于格栅检修,可在屋顶设置天窗,天窗的尺寸满足格栅长、宽要求,适当地降低格栅间高度。 5 进水渠格栅预留槽与格栅尺寸相吻合 目前国内一些厂家生产的格栅尺寸小于进水渠的格栅预留尺寸,污水中的部分栅渣会从缝隙之间绕过,影响了除渣效果。设计时将二者间隙控制在2cm以内,保证除渣效果。

6 减少栅渣压实设备 根据国内的污水水质,栅条间隙>25 mm粗格栅清除的栅渣,多数为塑料薄膜等大块杂质,不经压实可收集外运,在格栅间内不需要安装栅渣压实机,但应在栅渣收集箱周围做排水坑和冲洗设施。 7 备用格栅的选用 格栅间设置格栅不宜少于2台。如果格栅底与地面高差小于2.5 m,应选人工清除格栅备用;格栅底与地面高差较大时,人工清除栅渣非常困难,备用格栅也应选用机械格栅。格栅之间应保持1.0~1.5 m的净距,保证格栅除污机安装和维修。 8 细格栅推荐采用阶梯式格栅 阶梯式格栅除污机是从国外引进的一种新型格栅除污设备,其运作特点是没有耙斗,使用成排的阶梯式栅条,靠隔排栅条固定,隔排栅条可移动,运行时栅条向上旋转,将截留的栅渣输送至上一个阶梯,一级一级到达顶部的卸料口。阶梯式格栅是一种自清式棒式细格栅,具有去除污物效率高、耐磨损、体积小、结构灵巧和可提升出水面维修等优点。常见的其他类型细格栅清污机安装就位后,地面以上部分一般有2 m高度,而阶梯式细格栅只需约0.6 m,所需净空较低,可降低厂房高度。 9 工程实例 ①青岛市李村河污水处理厂设计规模17×104m3/d,格栅底距地面8.0m。粗格栅间采用半地下形式,内设机械粗格栅3台,栅条间隙25mm,格栅宽度1.36m,经格栅截留的栅渣由皮带运输机收集、螺旋输送机提升后进入地面的栅渣箱,而且在格栅近水面设置宽度1.0 m的检修平台。4台通风机设在半地下式房间内,取风口设在渠道和房间内,通风机风量8000 m3/h。流经粗格栅的污水由提升泵房提升后进入细格栅间,细格栅间设计3台阶梯式机械格栅,栅条间隙6 mm,格栅宽度1.28 m,细小的栅渣经螺旋压实机脱水后外运。 ②呼和浩特市辛辛板污水处理厂设计规模10×104m3/d,格栅底距地面5.4m。粗格栅间采用地面式,设置机械格栅2台,栅条间隙25mm,格栅宽度2.0m,高度8.4m,设计时在屋顶设2.5m×1.5m的天窗,使格栅间高度由11.5m降低至6.2m。排风机的取风口设在过水渠道内维修人员经常出现的地方,共设2台排风机,通风量8 250m3/h。 陈小燕 (中国市政工程华北设计研究院) 作者通讯处:300074 天津市河西区气象台南路中国市政工程华北设计研究院电话:(022)23342167×2170(收稿日期 1999-05-20)

调节池的设计计算

3.1.2 调节池的设计计算 1.调节池的作用 从工业企业和居民排出的废水,其水量和水质都是随时间而变化的,工业废水的变化幅度一般比城市污水大。为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节。调节水量和水质的构筑物称为调节池。 2.调节池的设计简图如下: 图5 3.调节池尺寸的计算 调节水量一般为处理规模的10%-15%可满足要求。 调节池设置一用一备,便于检修清泥。 4.调节池所需空气量 调节池作为平底,为防止沉淀,用压缩空气搅拌废水。空气用量为1.5-3.0h m m 23/,取2.0h m m 23/ 则所需空气量为min /2.104/6250/505.622333m h m h m ==?? 调节池计算:

3.5.2设计参数 水力停留时间T = 6h ; 设计流量Q = 15000m 3/d = 625m 3/h =0.174m 3/s ; 3.5.3 设计计算 3.5.3.1 调节池有效容积 V = QT = 625×6 = 3750 m 3 3.5.3.2 调节池水面面积 取池子总高度H=5.5m,其中超高0.5m,有效水深h=5m ,则池面积为 A = V/h = 3750/5 = 800 m 2 3.5.3.3 调节池的尺寸 池长取L = 28m ,池宽取B = 28 m ,则池子总尺寸为 L ×B ×H = 28m ×28m ×5.5m=4312 m 3。 3.5.3.4 调节池的搅拌器 使废水混合均匀,调节池下设两台LFJ-350反应搅拌机。 3.5.3.8调节池的提升泵 设计流量Q = 93L/s,静扬程为36.00-27.00=9.00m 。 总出水管Q=174L/s ,选用管径DN500,查表的v=0.94m/s,1000i=2.2,设管总长为50m ,局部损失占沿程的30%,则总损失为: ()m 14.03.01501000 2 .2=+?? 管线水头损失假设为1.5m ,考虑自由水头为1.0m,则水泵总扬程为: H=9+0.14+1.5+1.0=11.64m 取12m 。 选择200QW360-15-30型污水泵三台,两用一备,其性能见表3.7: 表3.7 200QW360-15-30 型污水泵性能 流量 360m 3 /h 电动机功率 30KW 扬程 15m 电动机电压 380V

污水处理厂设计计算书 (2)

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max Q n bhv = 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

格栅计算书

1、粗格栅 栅前流速取0.6m/s,栅前水深根据最优水力断面公B 1=2h= v Q 2=6 .023 .0*2=0.88m ,则h=0.44m,过栅流速取v=0.7m/s ,栅条间隙e=20mm ,格栅的安装倾角为60°,则栅条的间隙数为: n=Q max *sin а 0.5 /ehv =0.23*(sin60°)0.5/(0.02*0.44*0.7) =34.7 n 取38 栅槽宽度:取栅条宽度为S=0.01 m ,取进水栅槽宽0.8m ,一般栅槽比格栅宽0.2-0.3m ,取0.2m , B 2=S*(n-1)+e*n+0.2 =0.01*(38-1)+0.02*38+0.2=1.33m ,即槽宽为1.33m ,取1.3m 则 栅槽总长度: L=L 1+L 2+1.0+0.5+ α tg H 1 , L 1= 1 1 2αtg B B -=(1.33-0.8)/(2*tg20°)=0.73m L 2= L 1/2=0.37m H 1=h+h 2=0.4+0.3=0.7m 则, L=L 1+L 2+1.0+0.5+ α tg H 1 =0.73+0.37+1.0+0.5+0.7/tg60°=3.0m 每日栅渣量:(单位栅渣量取W 1=0.05 m 3栅渣/103 m 3污水) W=Q max * W 1*86400/(K 总*1000) =0.23*0.05*86400/1*1000

=1.0m 3/d >0.2 m 3/d 宜采用机械清渣方式 栅槽高度: H=h+h 1+h 2=0.4+0.1+0.3=0.8m 2、细格栅设计: 设栅前水深h=0.4m ,进水渠宽度B 1=2h=0.8。过栅流速取v=0.8m/s ,栅条间隙e=10mm ,格栅的安装倾角为60°,则 栅条的间隙数为: n=Q max ·sin а 0.5 /ehv =0.23*(sin60°)0.5/(0.01*0.4*0.8) =66.84 n 取67 栅槽宽度:取栅条宽度为S=0.01 m B 2=S*(n-1)+e*n+0.2 =0.01*(67-1)+0.01*67+0.2 = 1.53m 取1.50m 进水渠道渐宽部分长度: L 1= (B 2- B 1)/2tg 1α=(1.53-0.8)/2tg20°=1.0m 1α—进水渠展开角,B 2=B —栅槽总宽,B 1—进水渠宽度。 栅槽与出水渠连接渠的渐宽长度: L 2= L 1/2=1.0/2=0.5m 过栅水头损失: 设栅条为矩形断面,h 1=k*ξ*v 22 *sin α /2g k —系数,格栅受污物堵塞后,水头损失增大的倍数,取k=3;

中格栅和细格栅的设计

一、进水闸井的设计 1、污水厂进水管 1.设计依据: (1)进水流速在0.9—1.1m/s; (2)进水管管材为钢筋混凝土管; (3)进水管按非满流设计,n=0.014。 2.设计计算 (1)取进水管径为D=800mm,流速v=1.00 m/s,设计坡度I=0.5%。 (2)已知最大日污水量Q max=0.6481m3/s; (3)初定充满度h/D=0.75,则有效水深h=1000×0.75=750mm; (4)已知管内底标高为67.1m,则水面标高为:67.1+0.75=67.85m; (5)管顶标高为:67.1 +1.0=68.1m; (6)进水管水面距地面距离72.4-67.85=4.55m。 2、进水闸井工艺设计 进水闸井的作用是汇集各种来水以改变进水方向,保证进水稳定性。进水闸 井前设跨越管,跨越管的作用是当污水厂发生故障或维修时,可使污水直接排入水体,跨越管的管径比进水管略大,取为1200mm。 其设计要求如下: 设在进水闸、格栅、集水池前; 形式为圆形、矩形或梯形; 尺寸可根据来水管渠的断面和数量确定,但直径不得小于1.0m 或 1.2×1.0m; 井底高程不得高于最低来水管管底,水面不得淹没来水官管顶。 考虑施工方便以及水力条件,进水闸井尺寸取3×6m,井深5.3m,井内水深0.75m,闸井井底标高为67.1 m,进水闸井水面标高为67.85m,超越管位于进水管顶1m 处,即超越管管底标高为69.1m。采用ZMQF 型明杆式铸铁方闸门:尺寸为 L×B=1.6×1.6m;重量=2992kg。 一、中格栅的工艺设计

格栅计算草图 1.中格栅设计参数 (1)栅前水深h=0.75m ; (2)过栅流速v=0.9m/s ; (3)格栅间隙b 中=0.019m ; (4)栅条宽度 s=10mm ; (5)格栅安装倾角075=α。 2.中格栅的设计计算 本设计选用两道中格栅,为了减少格栅磨损,格栅全部使用。 总变化系数k=1.4 1)栅条间隙数: 式中:n 中——中格栅间隙数; Q max ——最大设计流量, s m 36481.0; b 中——栅条间隙,0.019m ; h ——栅前水深,取0.75m ; v ——过栅流速,取0.9m/s ; α——格栅倾角,取0 75; m ——设计使用的格栅数量,本设计中格栅取使用2 道。 8.2429.075.0019.075sin 6481.00 =????=中n 取25 2)栅槽宽度B : 栅槽宽度一般比格栅宽0.2-0.3m ,取0.2m 。 B=s(n 1-1)+bn+0.2 式中:B ——栅槽宽度,m ;

污水调节池计算书

污水调节池计算书-CAL-FENGHAI.-(YICAI)-Company One1

污水调节池计算书 工业企业由于生产工艺的原因,在不同工段、不同时间所排放的污水差别很大,尤其是操作不正常或设备产生泄漏时,污水的水质就会急剧恶化,水量也大大增加,往往会超出污水处理设备的正常处理能力;城市污水,尤其是学校、居民小区等人员集中的地方,由于用水量和排入污水中杂质的不均匀性,也会使得其污水流量或浓度在一昼夜内有较大的变化。 这些问题都会给处理操作带来很大的麻烦,使污水处理设施难以维持正常操作。因此,对于特征上波动比较大的污水,有必要在污水进入处理主体之前,先将污水导入调节池进行均和调节处理,使其水量和水质都比较稳定,这样就可为后续的水处理系统提供一个稳定和优化的操作条件。 具体说来,调节的作用主要体现在以下几个方面: 1.提供对污水处理负荷的缓冲能力,防止处理系统负荷的急剧变化; 2.减少进入处理系统污水流量的波动,使处理污水时所用化学品的加料速率稳定,适合加料设备的能力; 3.在控制污水的pH值、稳定水质方面,可利用不同污水自身的中和能力,减少中和作用中化学品的消耗量。 4.防止高浓度的有毒物质直接进入生物化学处理系统; 5.当工厂或生活污水系统暂时停止排放污水时,仍能对处理系统继续输入污水,保证系统的正常运行。 一、调节池 1、按连续进水设计。调节容积按日处理量的35%~50%计算。 污水厂处理规模为300t/d。 2、设计进水量 Q=100t/d=100/24=4.17m3/h 3、停留时间t: 取t=9h 4、有效容积V: V=Qt==37.5m3 5、有效水深h:3m 6、池子的面积F; F=V/h=3=12.3m2 7、池子的平面尺寸:LxB=5x3m 8、池总高度H: 设超高0.5m,H=3+=3.5m 9、池子尺寸:LxBxH=3.5m 2

相关文档
最新文档