气缸的类型及简图
气缸工作原理介绍_图文
气缸的工作原理
图10 普通型冲击气缸的工作原理 1— 蓄气缸;2—中盖;3—排气孔;4—喷气口;5—活塞
气缸的工作原理
• 第四阶段:弹跳段。在冲击段之后,从能量观点来说,蓄气缸腔内压力
能转化成活塞动能,而活塞的部分动能又转化成有杆腔的压力能,结果造成有 杆腔压力比蓄气-无杆腔压力还高,即形成“气垫”,使活塞产生反向运动,结果 又会使蓄气-无杆腔压力增加,且又大于有杆腔压力。如此便出现活塞在缸体内 来回往复运动—即弹跳。直至活塞两侧压力差克服不了活塞阻力不能再发生弹 跳为止。待有杆腔气体由A排空后,活塞便下行至终点。
杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。
气缸的工作原理
式中 d——中盖喷气口直径(m); p30——活塞开始移动瞬时蓄气缸腔内压力(绝对压力)(Pa); p20——活塞开始移动瞬时有杆腔内压力(绝对压力)(Pa); G——运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N); D——活塞直径(m); d1——活塞杆直径(m); Fƒ0——活塞开始移动瞬时的密封摩擦力(N)。
图5并联型气-液阻尼缸 1—液压缸;2—气缸
气缸的工作原理
• 按调速特性可分为:
1)慢进慢退式; 2)慢进快退式; 3)快进慢进快退式。 其调速特性及应用见表1。 就气-液阻尼缸的结构而言,尚可分为多种形式:节流阀、单向阀单独设置或 装于缸盖上;单向阀装在活塞上(如挡板式单向阀);缸壁上开孔、开沟槽、 缸内滑柱式、机械浮动联结式、行程阀控制快速趋近式等。活塞上有挡板式单 向阀的气-液阻尼缸见图6。活塞上带有挡板式单向阀,活塞向右运动时,挡板离 开活塞,单向阀打开,液压缸右腔的油通过活塞上的孔(即挡板单向阀孔)流 至左腔,实现快退,用活塞上孔的多少和大小来控制快退时的速度。活塞向左 运动时,挡板挡住活塞上的孔,单向阀关闭,液压缸左腔的油经节流阀流至右 腔(经缸外管路)。调节节流阀的开度即可调节活塞慢进的速度。其结构较为
机车气缸知识点总结图解
机车气缸知识点总结图解一、气缸的作用1. 机车气缸是发动机的重要部件之一,是发动机内燃过程的关键组成部分。
2. 气缸内是发动机的“动力之源”,它是气缸内气体爆炸压力转化为机械能,并通过活塞、连杆及曲轴传递到发动机的其它部分。
二、气缸的分类1. 按照换热方式可分为空冷和水冷气缸;2. 按气缸布置形式可分为直列式、V型、W型、H型等;3. 按材料可分为铸铁气缸、铝合金气缸等;4. 按进气方式可分为自然吸气气缸和涡轮增压气缸。
三、气缸的结构1. 气缸头:气缸头上开有供气体进出的进气道和排气道,气门通过它安装在气缸上。
2. 气缸壁:用于容纳活塞和气缸套。
3. 活塞:在气缸内作往复运动的零件,是气缸内气体爆炸压力的接受和传递者。
4. 活塞环:分为活塞环、油环和火箭环,主要作用是减少活塞和气缸之间的摩擦,防止气体泄漏和机油进入燃烧室。
5. 油底封圈:用于防止机油外泄。
6. 气门:分为进气门和排气门,是气缸内气体进出的通道。
7. 曲轴锥销:用于连接曲轴和活塞环。
8. 气缸套:用于安装活塞,在气缸内做往复运动。
四、气缸的工作原理1. 进气冲程:活塞从上死点运动到下死点,同时进气门打开被空气阀导入。
2. 压缩冲程:进气阀关闭,活塞向上运动,将进气气体压缩。
3. 燃烧冲程:点火塞点火,燃气爆炸推动活塞向下运动,驱动曲轴转动,输出动力。
4. 排气冲程:排气阀打开,活塞向上运动,将燃烧完的废气排出。
五、气缸的维护和保养1. 定期更换活塞环和气门密封垫。
2. 注意机油的及时更换,保持气缸内的润滑。
3. 避免长时间高速运转,以免造成气缸过热等问题。
4. 定期检查进气道和排气道,保证气体畅通。
六、气缸的故障及处理1. 气缸内磨损:可能导致活塞卡死、内漏严重等问题,需要更换气缸套。
2. 活塞环损坏:可能导致机油消耗增加、爆燃等问题,需要更换活塞环。
3. 气门密封不良:可能导致排汽压力下降、油耗增加等问题,需要更换气门密封垫。
4. 活塞磨损:可能导致活塞与气缸之间的间隙过大,需要更换活塞。
发动机气缸排列形式
水平对置式工作示意图 •
在前面介绍气缸V型排列发动机的时候已经提过,V型布局形成的夹角通常为60°(左右两列气缸中 心线的夹角γ<180°)而水平对置发动机只是其气缸夹角为180度。相比传统布局要符合运动机械原理的 汽车发动机组合形式,其制造成本和工艺难度相当高,目前世界上只有保时捷和斯巴鲁两个厂商在使用。
V形工作示意图 •
兼顾小体积与充沛动力的大众“VR6”发动机
•
众所周知,对于V型6缸发动机而言,60度夹角是最优化的设计,这是经过无数科学实验论证过的结 果。因而绝大多数的V6发动机都是采用这种布局形式的。但为了能在更小的空间内放下V6发动机,大众 集团在1994年另辟蹊径的研发出了夹角为15度、体积更小的VR6发动机。而从动力参数来看,它并不逊 色与普通的V6发动机,但在研发之初就暴露了明显的抖动问题。通过一系列的平衡稳定手段虽使问题得以 明显改善。但这依然无法超越改变其本身结构上的特性,就像普通直列发动机的震动通常都会大于V型发 动机一样,夹角更小的VR6从结构本身就决定了它的震动会大于V6。诸如大众旗下的高尔夫R32、EOS 等车型都曾装配过这款发动机。而出于环保以及成本的考虑,这款3.2升VR6发动机已经逐渐淡出了历史 的舞台。但增加了燃油分层喷射技术(FSI)的3.6升VR6发动机目前仍然广泛装配在奥迪Q7、大众途锐 、R36等诸多车型上。
•
特点
采用水平对置布局的气缸可以降低车身重心,但对润滑要求也要更高: 1、水平对置发动机的最大优点是重心低。由于它的汽缸为“平放”,不仅降低了汽车的重心,还 能让车头设计得又扁又低,这些因素都能增强汽• 车的行驶稳定性。 同时,水平对置的汽缸布局是一 种对称稳定结构,这使得发动机的运转平顺性比V型发动机更好,运行时的功率损耗也是最小。当 然更低的重心和均衡的分配也为车辆带了更好的操控性,那为什么其它厂家没有研发水平对置引擎 呢? 2、除了因为水平对置结构较为复杂外,还有如机油润滑等问题很难解决。横置的气缸因为重力 的原因,会使机油流到底部,使一边气缸得不到充分的润滑。显然保时捷和斯巴鲁都很好的解决了 众多技术难题,但高精度的制造要求也带来了更高的养护成本,并且由于机体较宽,因而并不利于 布局。
SMC气缸型号以及附件连接形式
※导线长度表示记号0.5m ……………无记号 (例)M9NW 1m …………… M (例)M9NWM 3m …………… L (例)M9NWL 5m …………… Z (例)M9NWZ 无…………… N (例)H7CN ※带"O"的无触点磁性开关按订货生产。
※除本表型号外,还可能安装的磁性开关参见P.16。
※导线前置插头的磁性开关参见《Best Pneumatics 》第二册P.1328、1392。
※D-A9□(V ), M9□(V ), M9□W (V ),M9□A (V )型磁性开关一同包装出厂(未组装)。
(但磁性开关安装件组装出厂。
)※※※防水性强型磁性开关,可以安装在上述产品上,但是不能由此保证上述产品的防水性。
在防水坏境下,推荐使用具有防水性的产品。
其中,关于ø20、ø25的防水性产品,请联系本公司型号表示方法N N 带磁性开关气缸行程(※※安装件和气缸一同包装出厂。
※安装件F, G, L, D 对应的气缸为Z :基本型(无耳轴安装用螺孔)。
※杆端螺纹形状为内螺纹时,无连接件。
※杆端连接件和气缸一同包装出厂。
※单肘节接头中不包含销轴。
RoHS1气缸/标准型 :单杆双作用ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100CG1 系列乐清市顺力气动有限公司http://www.slqd.cn乐※对于ø80, ø100,没有基本型(无耳轴安装用螺孔)、杆侧耳轴型、无杆侧耳轴型。
对于ø20~ø63的脚座型、法兰型、耳环型,没有耳轴安装用内螺纹。
使用时,请不要超过允许动能。
详细情况请参考P.4。
缸径(mm )动作方式给油使用流体耐压试验压力最高使用压力最低使用压力环境温度及使用流体温度使用活塞速度行程长度允差缓冲安装形式※单杆双作用不要(不给油)空气1.5MPa1.0MPa 0.05MPa 无磁性开关:−10℃~70℃(未冻结时)带磁性开关:−10℃~60℃~200st mm (ø20)~300st mm (ø25~ø100)垫缓冲0.28J 0.11J0.41J 0.18J0.66J 0.29J1.20J 0.52J2.00J 0.91J3.40J 1.54J5.90J 2.71J9.90J 4.54J +1.40+1.40基本型、基本型(无耳轴安装用螺孔)、轴向脚座型、杆侧法兰型、无杆侧法兰型、杆侧耳轴型、无杆侧耳轴型、耳环型(通口位置作90°变更时使用)※ø80, ø100没有杆侧耳轴型和无杆侧耳轴型。
气缸的工作原理课件
02
03
行程
活塞在缸筒内往复运动的距离 。
压力
气缸输出的力或扭矩与气缸的 面积成正比。
流量
单位时间内通过气缸的空气量 。
04
速度
活塞的运动速度。
气缸的安装与调试
01
02
03
安装位置
根据实际应用选择合适的 位置,确保气源和电源的 接入方便。
固定方式
根据气缸的型号和规格选 择合适的固定方式,如螺 丝固定、法兰固定等。
回收再利用
03
实现气缸的回收再利用,降低资源消耗和环境污染。
THANKS
感谢观看
气缸的应用场景
1
气缸在自动化生产线中广泛应用,如装配、搬运、 包装、检测等环节,能够实现快速、稳定、精确 的定位和动作。
2
在汽车制造领域,气缸用于发动机的进排气门控 制、刹车系统等,提高汽车的性能和安全性。
3
在航空航天领域,气缸用于控制飞行器的起落架、 襟翼等机构,保证飞行器的安全和稳定性。
02
自动化集成
远程监控与故障诊断
通过远程监控和故障诊断技术,实时 监测气缸的工作状态,提高其可维护 性。
将气缸与机器人、自动化设备等集成, 实现自动化生产线和智能制造。
节能环保的需求
节能设计
01
优化气缸的结构和控制系统,降低能耗,提高能源利用效率。
环保材料
02
采用环保材料和无油润滑技术,减少对环境的污染。
轻量化材料
采用高强度合金、复合材 料等轻量化材料,降低气 缸的重量,提高其运动性 能。
高温材料
开发耐高温材料,使气缸 能在更高温度环境下工作, 提高其热稳定性和可靠性。
耐磨材料
采用高硬度、高耐磨性材 料,提高气缸的寿命和可 靠性,减少维护成本。
气缸的种类及选型、计算【干货】
气缸的种类及选型、计算内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.01—气缸型号分类(1)从动作上分为单作用和双作用,结构示意图如图所示,前者又分弹簧压回和压出两种,一般用于行程短、对输出力和运动速度要求不高的场合(价格低、耗能少),双作用气缸则更广泛应用。
(注:不要把单双作用气缸跟带还是不带磁环气缸等同了)(2)从功能上来分(比较贴合设计情况),类型较多,如标准气缸、复合型气缸、特殊气缸、摆动气缸、气爪等,其中比较常用的为自由安装型气缸、薄型气缸、笔形气缸、双杆气缸、滑台气缸、无杆气缸、旋转气缸、夹爪气缸等,如图所示,大家只要了解各种气缸大致特性和对应型号,要用时调(标准件图纸)出来即可!基于对气缸在动力特性或空间布局方面的应用特长,我们在实际选用气缸时,首先是确定一个合适的类别从三面考虑:功能要求、空间要求,精度要求。
02-气缸型号、气缸种类、气缸规格、最全面的气缸大全选型介绍与分析节省空间指气缸的轴向或径向尺寸比标准气缸的较大或较小的气缸,具有结构紧凑、重量轻、占用空间小等优点,比如薄型气缸(如SDA系列,缸径=Φ12mm~Φ100mm,行程≤100mm)和自由安装型气缸(如CU系列,缸径=Φ6mm~Φ32mm,行程≤100mm),如图所示:广泛应用的气缸具有节省空间特长的还有无杆气缸,形象地说,有杆气缸的安装空间约2.2倍行程的话,无杆气缸可以缩减到约1。
2倍行程,一般需要和导引机构配套,定位精度也比较高.磁偶式无杆气缸:活塞两侧受压面积相等,具有同样的推力,有利于提高定位精度,适合长行程,重量轻、结构简单、占用空间小,如图所示机械式无杆气缸:“有较大的承载能力和抗力矩能力,适用缸径Φ10mm~Φ80mm,如图所示此外,同样希望节省空间兼顾导向精度要求时,往往会用到双杆气缸(相当于两个单杆气缸并联成一体),如图所示。
气缸的类型及原理结构
5、1、2气缸得工作原理1 普通气缸(1) 单作用气缸如图5-1所示为弹簧复位式单作用气缸,这种气缸在夹紧装置中应用较多。
这种汽缸一个方向得运动由气压驱动,另一方向得运动由其她机械力驱动。
Ao1后缸盖2活塞3弹簧4活塞杆5密封件6前缸盖图5-1弹簧复位式单作用气缸(2) 双作用气缸单活塞杆双作用气缸得结构原理如图5-2所示。
所谓双作用就是指活塞得往复运动均由压缩空气来推动。
在单伸出活塞杆得动力缸中,因活塞右边面积比较大,当空气压力作用在右边时,提供一慢速得与作用力大得工作行程;返回行程时,由于活塞左边得面积较小,所以速度较快而作用力变小。
此类气缸得使用最为广泛,一般应用于包装机械、食品机械、加工机械等设备上。
1、后缸盖2•密封圈3•缓冲密封圈4•活塞密封圈5•活塞6缓冲柱塞7•活塞杆8•缸筒9•缓冲节流阀10.导向套11•前缸盖12.防尘密封圈13.磁铁14.导向环图5-2普通型单活塞杆双作用气缸2•特殊气缸(1)气液阻尼缸气液阻尼气缸就是由气缸与液压缸组合而成,它以压缩空气为能源,利用油液得不可压缩性与控制流量来获得活塞得平稳运动,调节活塞得运动速度。
图5-3所示得工作原理。
它得液压缸与气缸共用同一缸体,两活塞固定在同一活塞杆上。
1气缸2液压缸3单向阀4油箱5节流阀图5-3 气液阻尼缸气液阻尼缸运动平稳,停位精确,噪声小,与液压缸相比,它不需要液压源,经济性好。
同时具有气缸与液压缸得优点。
(2)薄膜式气缸如图5-4所示为薄膜式气缸,它就是一种利用膜片在压缩空气作用下产生变形来推动活塞杆做直线运动得气缸。
它有单作用式(图5-4a)所示与双作用式(图5-4b)所示两种。
薄膜式气缸中得膜片有平膜片与盘形膜片两种,因受膜片变形量限制,活塞位移较小,一般都不超过50mm。
Ta) b)图5-4薄膜式气缸1缸体2膜片3膜盘4活塞杆(3) 无活塞杆气缸无杆气缸没有普通气缸得刚性活塞杆,它利用活塞直接或间接实现直线运动,如图5-5所示,无杆气缸由缸筒2,防尘与抗压密封件7、4,无杆活塞3,左右端盖1,传动舌片5,导架6等组成。
气缸分类及工作原理图
如今目前大量使用的气缸有以下5种:一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。
其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。
单作用气缸的特点是:1)仅一端进(排)气,结构简单,耗气量小。
2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输力。
3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。
4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。
由于以上特点,单作用活塞气缸多用于短行程。
其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。
单作用柱塞缸则不然,可用在长行程、高载荷的场合。
二、双作用气缸工作原理图双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。
其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。
此类气缸使用最为广泛。
1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。
缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。
安装所占空间大,一般用于小型设备上。
活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s 的2倍。
适用于中、大型设备。
三、缓冲气缸图缓冲气缸1—活塞杆;2—活塞;3—缓冲柱塞;4—柱塞孔;5—单向密封圈;6—节流阀;7—端盖;8—气孔缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。
为了使活塞在行程末端运动平稳,不产生冲击现象。
在气缸两端加设缓冲装置,一般称为缓冲气缸。
缓冲气缸见上图,主要由活塞杆1、活塞2、缓冲柱塞3、单向密封圈5、节流阀6、端盖7等组成。
高清彩图、视频动画,带你看清气缸的构造
高清彩图、视频动画,带你看清气缸的构造
1. 气缸体
气缸体是发动机的主体,是安装活塞、曲轴及其他零件和附件的支撑骨架。
气缸体内部活塞做往复运动的圆柱形空腔称为气缸。
气缸体内部有冷却水套,用以冷却气缸。
▼
2. 气缸排列形式
气缸排列形式是指多缸发动机各个气缸的排列形式。
目前主流的有直列式、V 型、VR 型、W 型和水平对置式。
01 直列式
所有气缸呈直线排列并与曲轴垂直,特点是机体的宽度小而高度
高、长度大,一般适用于6 缸及以下的发动机。
直列式6 缸发动机的平衡性好,发动机工作时产生的振动小▼
02 V 型
两列气缸排列成V形的称为V型气缸排列。
采用这种气缸排列形
式的发动机称为V型发动机,目前主要有V6、V8、V10、V12等。
V型发动机机体宽大,而长度和高度小,形状比较复杂。
但机体的刚度大,质量和外观尺寸较小。
03 VR型
为满足在中低档车辆上横向安装大功率发动机的需要,VR型发动机诞生。
6 个气缸互成15°角偏置布置▼
04 W型
W型发动机气缸排列形式可以看作糅合了两个“VR气缸组”。
单个气缸组内气缸之间的夹角为15°,两个VR气缸组支架的夹角为72°▼
05 水平对置式
两列气缸水平相对排列,优点是重心低,而且水平对置式发动机的平衡性更好。
机体由左右两个气缸体用螺栓紧固在一起。
▼。
液压与气压传动课件第10章3-4节
置的改变而进入不同的缸内,依次推动各个活塞运动,并由各活塞及连杆带动 曲轴连续运转,与此同时,与进气缸相对应的气缸则处于排气状态。
3.气动马达的特点及应用
(1)气动马达的特点 1)工作安全,具有防爆性能,适用于恶劣的环境,在易燃、燃、易爆、高温、 振动、潮湿、粉尘等条件下均能正常工作。 2) 有过载保护作用。过载时马达只是降低转速或停止,当过载解除后, 立即可重新正常运转,并不产生故障。 3)可以无级调速。只要控制进气流量,就能调节马达的功率和转速。 4)比同功率的电动机轻1/3~1/10,输出功率惯性比较小。 5)可长期满载工作,而温升较小。
的行程仅为膜片直径的0.1倍,碟 形膜片行程可达0.25倍,而滚动膜 片气缸的行程可以很长。
3.冲击气缸 冲击气缸是把压缩空气的能量转化为活塞高速运动能量的一种气缸,活 塞的最大速度可达每秒十几米,能完成下料、冲孔、镦粗、打印、弯曲成形、 铆接、破碎、模锻等多种作业。具有结构简单、体积小、加工容易、成本低、 使用可靠、冲裁质量好等优点。
2.顺序阀 顺序阀是依靠气路中压力的大小来控制气动回路中各执行元件动作的先 后顺序的压力控制阀,其作用和工作原理与液压顺序阀基本相同,顺序阀常 与单向阀组合成单向顺序阀。图10-19所示为单向顺序阀的工作原理图。当 压缩空气由P口输入时,单向阀4在压差力及弹簧力的作用下处于关闭状态, 作用在活塞3上的输入侧P的空气压力如超过压缩弹簧2上的预紧力时,活塞 被顶起,顺序阀打开,压缩空气由A输出;当压缩空气反向流动时,输入侧 排气变成排气口,输出侧压力将顶开单向阀,由O口排气。调节手柄1就可改 变单向顺序阀的开启压力。
图10-14
当压缩空气刚进入蓄能腔时,其压力只能通过喷嘴口的小面积作用在活 塞上,还不能克服活塞杆腔的排气压力所产生的向上推力以及活塞和缸之间 的摩擦阻力,喷嘴口处于关闭状态。随着空气的不断进入,蓄能腔的压力逐 渐升高,当作用在喷嘴口面积上的总推力足以克服活塞受到的阻力时,活塞 开始向下运动,喷嘴口打开。此时蓄 能腔的压力很高,活塞腔的压力为大 气压力,所以蓄能腔内的气体通过喷 嘴口以声速流向活塞腔作用于活塞全 面积上。高速气流进入活塞腔进一步 膨胀并产生冲击波,波的阵面压力可 达气源压力的几倍到几十倍,而此时 活塞杆腔的压力很低,所以活塞在很 大压差的作用下迅速加速,加速度可 达1000m/s以上,活塞在很短的时间 (约为0.25~1.25s)内,以极高的速 度(平均速度可达8m/s)冲下,从而 获得巨大的动能。
气缸内部结构图
我们首先讲解下普通气缸的基本组成和原理:气缸的组成:缸体,活塞,密封圈,磁环(有传感器的气缸);原理:压力空气使活塞移动,通过改变进气方向,改变活塞杆的移动方向;失效形式:活塞卡死,不动作;气缸无力,密封圈磨损,漏气。
典型气缸的结构和工作原理以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如下图所示。
它由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成。
双作用气缸内部被活塞分成两个腔。
有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。
当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形成的力克服阻力负载推动活塞运动,使活塞杆伸出;当有杆腔进气,无杆腔排气时,使活塞杆缩回。
若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动。
普通双作用气缸1、3-缓冲柱塞,2-活塞,4-缸筒,5-导向套,6-防尘圈,7-前端盖,8-气口,9-传感器,10-活塞杆,11-耐磨环,12-密封圈,13-后端盖,14-缓冲节流阀机械接触式无杆气缸的结构和工作原理机械接触式无杆气缸,其结构如下图3所示。
在气缸缸管轴向开有一条槽,活塞与滑块在槽上部移动。
为了防止泄漏及防尘需要,在开口部采用聚氨脂密封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽,把活塞与滑块连成一体。
活塞与滑块连接在一起,带动固定在滑块上的执行机构实现往复运动。
这种气缸的特点是:1) 与普通气缸相比,在同样行程下可缩小1/2安装位置;2) 不需设置防转机构;3) 适用于缸径10~80mm,最大行程在缸径≥40mm时可达7m;4) 速度高,标准型可达0.1~0.5m/s;高速型可达到0.3~3.0m/s。
其缺点是:1) 密封性能差,容易产生外泄漏。
在使用三位阀时必须选用中压式;2) 受负载力小,为了增加负载能力,必须增加导向机构。
机械接触式无杆气缸l-节流阀,2-缓冲柱塞,3-密封带,4-防尘不锈钢带,5-活塞,6-滑块,7-活塞架磁性无杆气缸的结构和工作原理活塞通过磁力带动缸体外部的移动体做同步移动,其结构如图4所示。
气缸图纸
神威气动 文档标题:气缸图纸气缸图纸的介绍:引导活塞在缸内进行直线往复运动的圆筒形金属机件。
空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。
涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。
气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
二、气缸种类:①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以做功。
⑤无杆气缸:没有活塞杆的气缸的总称。
有磁性气缸,缆索气缸两大类。
做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
三、气缸结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:2:端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。
导向套通常使用烧结含油合金、前倾铜铸件。
端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3:活塞活塞是气缸中的受压力零件。
为防止活塞左右两腔相互窜气,设有活塞密封圈。
活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。
耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。
活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。
滑动部分太短,易引起早期磨损和卡死。
汽车发动机机体组之详细图解
机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。
因此,机体必须要有足够的强度和刚度。
机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。
一. 气缸体(图2-1)水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。
气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。
在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。
气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。
(图2-2)(1) 一般式气缸体其特点是油底壳安装平面和曲轴旋转中心在同一高度。
这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差(2) 龙门式气缸体其特点是油底壳安装平面低于曲轴的旋转中心。
它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。
(3) 隧道式气缸体这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。
其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。
为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。
冷却方法有两种,一种是水冷,另一种是风冷(图2-3)。
水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。
现代汽车上基本都采用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到汽车的总体布置。
按照气缸的排列方式不同,气缸体还可以分成单列式,V型和对置式三种(图2-4)。
(1) 直列式发动机的各个气缸排成一列,一般是垂直布置的。
气 缸
气缸
Page ▪ 3
图 双活塞杆双作用气缸工作原理 1.缸体;2.工作台;3.活塞;4.活塞杆;5.机架。
气缸
Page ▪ 4
图 双活塞杆双作用气缸工作原理 1.缸体;2.工作台;3.活塞;4.活塞杆;5.机架。
Page ▪ 5
气缸
(2)单作用气缸 单作用气缸只有一腔可输入压缩空气,实现一个方向运动。
图12.2 缓冲气缸
1.活塞杆; 2.活塞; 3.缓冲柱塞; 4.柱塞孔; 5.单向阀; 6.节流阀; 7.端盖; 8.气孔。
气缸
单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片张力等复位,压缩空气能量的一部分用于克服弹
簧力或膜片张力,因而减小了活塞杆的输出力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气
Page ▪ 12
Page ▪ 13
气缸
1,6.进(排)气口; 2.有杆腔; 3.活塞; 4.低压排气口; 5.蓄能腔; 7.后盖; 8.中盖; 9.密封垫片; 10.活塞杆; 11.前盖。
图12.7 普通型冲击气缸
气缸
4、薄膜式气缸 薄膜式气缸是一种利用压缩空气通过膜片推动活塞杆作往复直线运
动的气缸。 组成:缸体、膜片、膜盘和活塞杆等。 分类:单作用式和双作用式两种,如图12.8所示。 薄膜式气缸的膜片可以做成盘形膜片和平膜片两种形式。 薄膜式气缸和活塞式气缸相比较,具有结构简单、紧凑、制造容
缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小而变化,因而活塞杆的
输出力在行进过程中是变化的。 2、组合气缸
组合气缸指气缸与液压缸相组合形成的气-液阻尼缸、气-液增压缸等。 气缸特点:动作快,但速度不易控制,当载荷变化较大时,容易产生 “爬行”或“自走”现象; 液压缸特点:动作不如气缸快,但速度易于控制,当载荷变化较大时, 只要采取措施得当,一般不会产生“爬行”和“自走”现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气缸的类型及简图
浏览字体设置:- 11pt + 10pt 12pt 14pt 16pt
放入我的网络收藏夹
气缸
1 概述
1.1气缸的分类
普通气缸的结构组成见图42.2-1。
主要由前盖、后盖9、活塞6、活塞杆4、缸筒5其他一些零件组成。
气缸的种类很多。
一般按压缩空气作用在活塞面上的方向、结构特征和安装方式来分类。
气缸的类型及安装形式见表42.2-1、2。
图42.2-1普通气缸
1—组合防尘圈;—前端盖;3—轴用Y X密封圈;4—活塞杆;5—缸筒;
6—活塞;7—孔用Y X密封圈;8—缓冲调节阀;9—后端盖
表42.2-1气缸的类型
类别名称简图特点
单作用气缸柱塞式气缸
压缩空气只能使柱塞向一个
方向运动;借助外力或重力复位活塞式气缸
压缩空气只能使活塞向一个
方向运动;借助外力或重力复位
压缩空气只能使活塞向一个
方向运动;借助弹簧力复位;用
于行程较小场合
薄膜式气缸
以膜片代替活塞的气缸。
单向
作用;借助弹簧力复位;行程短;
结构简单,缸体内壁不须加工;
须按行程比例增大直径。
若无弹
簧,用压缩空气复位,即为双向
作用薄膜式气缸。
行程较长的薄
膜式气缸膜片受到滚压,常称滚
压(风箱)式气缸。
双作用气缸普通气缸
利用压缩空气使活塞向两个
方向运动,活塞行程可根据实际
需要选定,双向作用的力和速度
不同
双活塞杆气缸
压缩空气可使活塞向两个方
向运动,且其速度和行程都相等
不可调缓冲气
缸
设有缓冲装置以使活塞临近
行程终点时减速,防止冲击,缓
冲效果不可调整
可调缓冲气缸
缓冲装置的减速和缓冲效果
可根据需要调整
特殊气缸差动气缸
气缸活塞两端有效面积差较
大,利用压力差原理使活塞往复
运动,工作时活塞杆侧始终通以
压缩空气
双活塞气缸
两个活塞同时向相反方向运
动
多位气缸
活塞杆沿行程长度方向可在
多个位置停留,图示结构有四个
位置
串联气缸
在一根活塞杆上串联多个活
塞,可获得和各活塞有效面积总
和成正比的输出力
冲击气缸
利用突然大量供气和快速排
气相结合的方法得到活塞杆的快
速冲击运动,用于切断、冲孔、
打入工件等
数字气缸
将若干个活塞沿轴向依次装
在一起,每个活塞的行程由小到
大,按几何级数增加
回转气缸
进排气导管和导气头固定而
气缸本体可相对转动。
用于机床
夹具和线材卷曲装置上
伺服气缸
将输入的气压信号成比例地转换为活塞杆的机械位移。
用于自动调节系统中。
挠性气缸
缸筒由挠性材料制成,由夹住缸筒的滚子代替活塞。
用于输出力小,占地空间小,行程较长的场合,缸筒可适当弯曲
钢索式气缸
以钢丝绳代替刚性活塞杆的一种气缸,用于小直径,特长行程的场合
组合气缸增压气缸
活塞杆面积不相等,根据力平
衡原理,可由小活塞端输出高压
气体
气-液增压缸
液体是不可压缩的,根据力的
平衡原理,利用两两相连活塞面
积的不等,压缩空气驱动大活塞,
小活塞便可输出相应比例的高压
液体
气-液阻尼缸
利用液体不可压缩的性能及
液体流量易于控制的优点,获得
活塞杆的稳速运动。