初二数学等腰三角形习题

合集下载

初二数学三角形试题答案及解析

初二数学三角形试题答案及解析

初二数学三角形试题答案及解析1.如图,有两棵树,一棵树高10米,另一棵树高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行()A.8米B.10米C.12米D.14米【答案】B.【解析】如图:设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=10(m),故小鸟至少飞行10m.故选B.【考点】勾股定理的应用.2.已知:如图:架在消防车上的云梯AB的坡比为,云梯AB的长为m,云梯底部离地面1.5m(即BC=1.5m).求云梯顶端离地面的距离AE.【答案】5.5m.【解析】根据坡度的意义和勾股定理求出AD的长即可求得云梯顶端离地面的距离AE.如图,∵架在消防车上的云梯AB的坡比为,即AD:DB=,∴设DB=x,则AD=.∵AB=,∴由勾股定理,得,解得(舍去负值).∴AD=(m).∵DE=BC=1.5m,∴AE=5.5m.【考点】1.解直角三角形的应用-坡度问题;2.勾股定理.3.对“等角对等边”这句话的理解,正确的是 ( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的【答案】C.【解析】“等角对等边”是等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等的简写形式,意思是:在一个三角形中,如果有两个角相等,那么它们所对的边也相等.故C正确;A、B可以举反例说明,如图:DE∥BC,∠ADE=∠B,但AE≠AC.故A、B都错误;故D也错误.故选C.考点: 等腰三角形的判定.4.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x 轴负半轴于点C,则点C的坐标为()A.(-1,0)B.(2-,0)C.(1,0)D.(3,0)【答案】D.【解析】∵A(3,0)、B(0,2),∴OA=3,OB=2,∴在直角△AOB中,由勾股定理得 AB=.又∵以点A为圆心,AB为半径的弧交x轴负半轴于点C,∴AC=AB,∴OC=AC-OA=.又∵点C在x轴的负半轴上,∴C(,0).故选D.考点: 1.勾股定理;2.坐标与图形性质.5.如图,△ABC中,AB=AC,BD是角平分线,BE=BD,∠A=72°,则∠DEC=" _______."【答案】103.5°【解析】因为AB=AC,∠A=72°,所以∠ABC=∠C=54°.因为BD是角平分线,所以∠DBC=∠ABC= 27°.又BE=BD,所以∠BDE=∠BED=76.5°,所以∠DEC=180°76.5°=103.5°.6.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?【答案】旗杆在离底部6 m处断裂【解析】旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为 m,则折断部分的长为m,根据勾股定理,得,解得: m,即旗杆在离底部6 m处断裂.7.如图,△ABD、△CBD都是等边三角形,DE、BF分别是△ABD的两条高,DE、BF交于点G.(1)求∠BGD的度数(2)连接CG①求证:BG+DG=CG②求的值【答案】(1)1200 (2)①见解析②【解析】(1)由△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°;(2)①∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG= CG,故可得出BG+DG=CG; 结合前面求得结论,设出未知数,根据勾股定理和等腰三角形的性质即可求出比例性质.试题解析:解:(1)因为△ABD是等边三角形,E是AB中点所以∠ADE=∠BDE=300 所以∠CDG=900 ,同理∠CBG=900,∠BGD=1200 ,(2)①CD=CB,CG=CG,由勾股定理可得BG=DG,易证△CBG与△CDG全等,得∠DCG=∠BCG=300所以在Rt△CGB和Rt△CGD中可得BG="DG=1/2CG" .所以BG+DG=CG(6分)②设BG=x,由(2)得CG=2x,在Rt△CGB中,BC2=CG2-BG2=4x2-x2=3x2,又因AB=BC所以AB2=BC2=3x2,所以=.【考点】1.等边三角形的判定与性质2.全等三角形的判定与性质;3.菱形的性质;4.勾股定理.8. 在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD +PE +PF 等于( )A .B .2C .4D .无法确定【答案】A.【解析】此题考查了等边三角形的性质.易利用三角形的面积求解.如图,连接AP 、BP 、CP ,则、、;设等边三角形的高为h ,由勾股定理可得:,.而,根据等边三角形三边相等,可得:,即:由此等量关系可得到三角形的三边距离之和.故选A.【考点】等边三角形的性质.9. )△ABC 中,AB=AC=2,BC 边上有100个不同的点p 1,p 2,…p 100;记,求的值.【答案】400.【解析】作AD ⊥BC 于D ,则BC="2BD=2CD," 根据勾股定理可得结论. 试题解析:作AD ⊥BC 于D ,则BC=2BD=2CD .根据勾股定理,得:AP i 2=AD 2+DP i 2=AD 2+(BD-BP i )2=AD 2+BD 2-2BD•BP i +BP i 2, 又P i B•P i C=P i B•(BC-P i B )=2BD•BP i -BP i 2,∴M i =AD 2+BD 2=AB 2=4,∴M 1+M 2+…+M 10+M 100=4×100=400.【考点】①勾股定理;②规律型.10. 如图,△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC 交AC 于点D ,则图中的等腰三角形共有( )个.【答案】3【解析】根据等腰三角形两底角相等求出∠ABC 的度数,再根据角平分线的定义求出∠ABD 的度数,然后得到∠A=∠ABD,再根据等角对等边的性质解答即可.因为AB=AC,∠A=36°,所以∠ABC=∠C=720.因为BD平分∠ABC,所以∠ABD=∠CBD=360.由∠A=∠ABD,得AD=BD.∠C=720,∠CBD=360,得∠CDB=720.所以CB=DB.所以图中的等腰三角形共有3个,即△ABC、△ADB、△CBD.故填3.【考点】等腰三角形的判定与性质.11.如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE求证:AH=2BD【答案】详见解析【解析】由等腰三角形的底边上的垂线与中线重合的性质求得BC=2BD,根据直角三角形的两个锐角互余的特性求知∠1+∠C=90°;又由已知条件AE⊥AC知∠2+∠C=90°,所以根据等量代换求得∠1=∠2;然后由三角形全等的判定定理SAS证明△AEH≌△BEC,再根据全等三角形的对应边相等及等量代换求得AH="2BD"试题解析:∵AD是高,BE是高∴∠EBC+∠C=∠CAD+∠C=90°∴∠EBC=∠CAD 2分又∵AE=BE∠AEH=∠BEC∴△AEH△BEC(ASA) 2分∴AH =BC∵AB=AC,AD是高∴BC=2BD∴AH =2BD 2分【考点】1 等腰三角形的性质;2 全等三角形的判定与性质12.在△ABC中,∠A是锐角,那么△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】D【解析】举个例子,∠A=30°,∠B=70°,∠C=80°,为锐角三角形,∠A=30°,∠B=90°,∠C=60°, 为直角三角形,∠A=30°,∠B=120°,∠C=30°,为钝角三角形,故不确定.由题,在三角形中有一个角是锐角,无法判断另外两个角的情况,有可能另外两个角都是锐角,也有可能是一个锐角一个直角, 或者一个锐角一个钝角.【考点】三角形的分类.13.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑()A.9分米B.15分米C.5分米D.8分米【答案】D【解析】先利用勾股定理计算出墙高,当梯子的顶端沿墙下滑4分米后,也形成一直角三角形,解此三角形可计算梯的底部距墙底端的距离,则可计算梯子的底部平滑的距离.解:墙高为:=24分米当梯子的顶端沿墙下滑4分米时:则梯子的顶部距离墙底端:24﹣4=20分米梯子的底部距离墙底端:=15分米,则梯的底部将平滑:15﹣7=8分米.故选D.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.14.由于台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前(不包括树根)长度是________.【答案】16【解析】先根据勾股定理求得斜边的长,再根据树的长度的特征求解即可.由题意得斜边的长所以这棵树在折断前(不包括树根)长度.【考点】勾股定理的应用点评:勾股定理的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.15.如图,两个三角形全等,根据图中所给条件,可得∠α=______ __。

初二数学等腰与等边复习题及解析

初二数学等腰与等边复习题及解析

初二数学等腰与等边复习题一.选择题(共10小题)1.(2015•内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°2.(2015•南宁)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°3.(2012•齐齐哈尔模拟)如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE 相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()A.2种B.3种C.4种D.6种4.(2015•宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或125.(2015秋•南开区期末)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③ B.①②④ C.①③D.①②③④6.(2015秋•沙河市期末)如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC 等于()A.7.5°B.10°C.15°D.18°7.(2009•呼和浩特)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或108.(2010•青岛模拟)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2 B.4 C.5 D.无数9.(2003•青海)若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A.75°B.15°C.75°或15°D.30°10.(2014秋•昆山市校级期末)已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定二.填空题(共5小题)11.(2016春•沈丘县期末)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.12.(2013秋•西城区期末)如图,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是2a+12.13.(2009秋•通州区期末)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=45度.14.(2014秋•吴中区校级期中)已知等腰三角形一腰上的中线将它周长分成18cm和9cm 两部分,则这个等腰三角形的底边长是3cm.15.已知a、b、c为△ABC的三条边,且满足a2+ab﹣ac﹣bc=0,b2+bc﹣ba﹣ca=0,则△ABC 是等边三角形.三.解答题(共2小题)16.(2015秋•蓬江区期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.17.(2013秋•孝感校级期末)图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.初二数学等腰与等边复习题参考答案与试题解析一.选择题(共10小题)1.(2015•内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.2.(2015•南宁)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.3.(2012•齐齐哈尔模拟)如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE 相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()A.2种B.3种C.4种D.6种【分析】①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:证△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:证△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:证△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.【解答】解:有①②,①③,②④,③④,共4种,①②,理由是:∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形;①③,理由是:∵在△EBO和△DCO中,∴△EBO≌△DCO,∴∠EBO=∠DCO,∵∠OBC=∠OCB(已证),∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;②④,理由是:∵在△EBO和△DCO中,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;③④,理由是:∵在△EBO和△DCO中,∴△EBO≌△DCO,∴∠EBO=∠DCO,OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;故选C.【点评】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,通过做此题培养了学生的推理能力和辨析能力,题目比较好,但是一道比较容易出错的题目.4.(2015•宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12【分析】题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.(2015秋•南开区期末)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③ B.①②④ C.①③D.①②③④【分析】根据等边三角形的判定判断.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.【点评】此题主要考查学生对等边三角形的判定的掌握情况.6.(2015秋•沙河市期末)如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC 等于()A.7.5°B.10°C.15°D.18°【分析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出即可.【解答】解:∵AC=AB,∴∠B=∠C,∵∠AEC=∠B+∠BAE=∠B+30°=∠AED+α,∴∠B=∠C=∠AED+α﹣30°,∵AE=AD,∴∠AED=∠ADE=∠C+α,即∠AED=∠AED+α﹣30°+α,∴2α=30°,∴α=15°,∠DEC=α=15°,故选C.【点评】本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.7.(2009•呼和浩特)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或10【分析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选C.【点评】本题考查等腰三角形的性质及相关计算.学生在解决本题时,有的同学会审题错误,以为15,12中包含着中线BD的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况;注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.8.(2010•青岛模拟)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2 B.4 C.5 D.无数【分析】因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.【解答】解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB∴∠QBH=75°,∠HQB=180﹣75°﹣75°=30°,故∠OQB=60°+30°=90°,不能再添加了.故选C.【点评】根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.9.(2003•青海)若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A.75°B.15°C.75°或15°D.30°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°,故选C.【点评】考查了等腰三角形的性质,以及含特殊角的直角三角形;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,应当注意需要分类讨论.10.(2014秋•昆山市校级期末)已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定【分析】此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180°,可求出顶角的度数.【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选C.【点评】当外角不确定是底角的外角还是顶角的外角时,需分两种情况考虑,再根据三角形内角和180°、三角形外角的性质求解.二.填空题(共5小题)11.(2016春•沈丘县期末)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.12.(2013秋•西城区期末)如图,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是2a+12.【分析】根据在△ABC中,AB=AC,∠A=60°,可得△ABC的形状,再根据△ABC的周长是24,可得AB=BC=AC=8,根据BE⊥AC于E,可得CE的长,∠EBC=30°,根据CD=CE,可得∠D=∠CED,根据∠ACB=60°,可得∠D,根据∠D与∠EBC,可得BE与DE的关系,可得答案.【解答】解:∵在△ABC中,AB=AC,∠A=60°,∴△ABC是等边三角形,∵△ABC的周长是24,∴AB=AC=BC=8,∵BE⊥AC于E,∴CE=AC=4,∠EBC=∠ABC=30°,∵CD=CE,∴∠D=∠CED,∵∠ACB是△CDE的一个外角,∴∠D+∠CED=∠ACB=60°∴∠D=30°,∴∠D=∠EBC,∴BE=DE=a,∴△BED周长是DE+BE+BD=a+a+(8+4)=2a+12,故答案为:2a+12.【点评】本题考查了等腰三角形的判定与性质,有一个角是60°的等腰三角形是等边三角形,等腰三角形的性质:等边对等角,等腰三角形的判定:等角对等边..13.(2009秋•通州区期末)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=45度.【分析】根据已知条件结合图形,列出相关角的关系,然后利用三角形的内角和求解.【解答】解:∵AB=AC,BC=BD,∴∠C=∠ABC=∠BDC,∵AD=DE=EB,∴∠EBD=∠EDB,∠A=∠AED,又∠EBD+∠EDB=∠AED,即2∠EDB=∠A,又∠A+∠AED=∠EDB+∠BDC,即2∠A=∠EDB+∠BDC,由⇒∠A=⇒∠A=∠C,又由三角形内角和定理得:∠A+∠ABC+∠C=180°,即4∠A=180°,∴∠A=45°.故答案为:45.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;此题需灵活运用等腰三角形的性质,通过寻找相关角之间的关系求解是正确解答本题的关键.14.(2014秋•吴中区校级期中)已知等腰三角形一腰上的中线将它周长分成18cm和9cm 两部分,则这个等腰三角形的底边长是3cm.【分析】设腰长为xcm,底为ycm,则可知2x+y=18+9,x+x=18或9,可求得y.【解答】解:设腰长为xcm,底为ycm,则由题意可知x+x=18或9,解得x=12或6,而三角形的周长为2x+y=18+9,当x=12时可解得y=3,此时三角形的三边为12cm,12cm,3cm,满足三角形的三边关系,此时底边长为3cm,当x=6时可解得y=15,此时三角形的三边为6cm,6cm,15cm,此时6+6<15,不满足三角形的三边关系,不合题意;综上可知底边长为3cm.故答案为:3.【点评】本题主要考查等腰三角形的性质,由条件分两种情况求得三角形的各边长再利用三角形的三边关系进行验证是解题的关键,注意方程思想的应用.15.已知a、b、c为△ABC的三条边,且满足a2+ab﹣ac﹣bc=0,b2+bc﹣ba﹣ca=0,则△ABC 是等边三角形.【分析】分析题目中的a2+ab﹣ac﹣bc=0,b2+bc﹣ba﹣ca=0,可知a=b=c,所以该三角形为正三角形.【解答】解:∵a2+ab﹣ac﹣bc=0∴a(a+b)﹣c(a+b)=0∴(a﹣c)(a+b)=0∵a+b>0∴a﹣c=0∴a=c∵b2+bc﹣ba﹣ca=0∴b(b+c)﹣a(b+c)=0∴(b﹣a)(b+c)=0∵b+c>0∴b﹣a=0∴b=a∴a=b=c∴△ABC是等边三角形【点评】该题主要考查等边三角形的判定和有理数的运算(即方程式的化简).三.解答题(共2小题)16.(2015秋•蓬江区期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE ≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°【点评】此题主要考查学生对等腰三角形的判定与性质的理解和掌握,此题主要应用了三角形内角和定理和平角是180°,因此有一定的难度,属于中档题.17.(2013秋•孝感校级期末)图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.【分析】(1)等边三角形的性质可以得出△ACN,△MCB两边及其夹角分别对应相等,两个三角形全等,得出线段AN与线段BM相等.(2)平角的定义得出∠MCN=60°,通过证明△ACE≌△MCF得出CE=CF,根据等边三角形的判定得出△CEF的形状.【解答】解:(1)∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠MCN=60°,∠ACN=∠MCB,在△ACN和△MCB中,∴△ACN≌△MCB(SAS).∴AN=BM.(2)∵△ACN≌△MCB,∴∠CAE=∠CMB.在△ACE和△MCF中∴△ACE≌△MCF(ASA).∴CE=CF.∴△CEF的形状是等边三角形.【点评】本题考查了SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等,ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等,同时考查了等边三角形的性质和判定.。

初二数学上册第二单元等腰三角形专项练习题

初二数学上册第二单元等腰三角形专项练习题

初二数学上册第二单元等腰三角形专项练习题篇一:初二数学上册第二单元等腰三角形专项练习题初二数学上册第二单元等腰三角形专项练习题一、选择题1已知一个等腰三角形的底边长为5,这个等腰三形的腰长为_,则_的取值范围是() A .0_lt;__lt;52B ._≥52C _>52D 0_lt;__lt;10 2.等腰三角形的底角为15°,腰长为a,则此三角形的面积为()A a2B1a22C 1 a2 D2 a2图543将一张长方形的纸片ABCD如图(4)那样折起,使顶点C落在F处.其中AB=4,若∠FED=30°,则折痕ED的长为( )A. 4 B 4C 8D 53 10.如图(5),在△ABC中,BC=8㎝,AB的垂直平分线交AB于点D,交AC于点E, △ABC的周长为18㎝,则AC的长等于( )A 6㎝B 8㎝C 10㎝D 12㎝4下列图形中,不是轴对称图形的是() A有两个内角相等的三角形 B 有一个内角是45°直角三角形 C. 有一个内角是30°的直角三角形 D. 有两个角分别是30°和120°的三角形 5、下列图形中,轴对称图形有()个A.1B.2C. 3D.4 6、等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是() A 15B15或7 C 7 D 11 7、在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=75°,则∠A的度数为()A、30°B、40°C、45 °D、60°8、下列图形中,不是轴对称图形的是() A 角 B 等边三角形 C 线段 D不等边三角形9、正△ABC的两条角平分线BD和CE交于点I,则∠BICAADFDBB为() A.60 B.90 C.120 D.150° 10、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;?④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A①②③ B①②④ C①③ D①②③④ 11、如图1,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF?的形状是()A形C.直角 D.不等边三角形 12Rt△ABC中,CD是斜边AB上的高,∠图5B=30°, AD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm 13如图2,E是等边△ABC中AC边上的点,∠1= 2,BE=CD,则对△ADE的形状判断准确的是() A.等腰三角形B.等边三角形 C.不等边三角形 D.不能确定形状图(1) 图(2)二、填空题1、△ABC中,AB=AC,∠A=∠C,则∠B=_______.2、已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.3、△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,?则CD?的长度是_______.4、如图(3),在ΔABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=________, 图中有_______个等腰三角形。

人教版初二数学上试卷等腰三角形练习题

人教版初二数学上试卷等腰三角形练习题

初中数学试卷等腰三角形练习题班级姓名学号一.填空题31. 等腰三角形的腰长是底边的3,底边等于12cm ,则三角形的周长为cm42. _________________________________________________________ 等腰三角形顶角为80 °,则一腰上的高与底边所夹的角的度数为____________ 度3. __________________________________ 等腰三角形的底角是65°,顶角为.4. _________________________________________________________ 等腰三角形的一个内角为100 °,则它的其余各角的度数分别为 ______________ .5. P 为等边△ABC 所在平面上一点,且△PAB,△PBC,△PCA 都是等腰三角形,这样的点P 有个.6. 等腰三角形的顶角等于一个底角的 4 倍时, 则顶角为 _______ 度_ .7. 已知如图,A、D、C在一条直线上AB=BD=CD, ∠C=40 °,则∠ABD =第10 题8. 在等腰△ABC中, AB=AC, AD ⊥BC于D, 且AB+AC+BC=50cm,而AB + BD +AD = 40cm, 则AD = ______ cm.9. 如图 , ∠P =25°, 又PA =AB =BC =CD, 则∠DCM = ____ 度.10. 如图已知∠ACB =90 °, BD =BC, AE =AC, 则∠DCE = ________ 度_ .二. 单选题1. 等腰三角形一底角为 30 °,底边上的高为 9cm,则腰长为 ___cm .[ ]A.3B.18C.9D.9 32. 不满足△ABC 是等腰三角形的条件是 [ ]A.∠A :∠B :∠C=2 :2:1 B.∠A :∠B :∠C=1 :2:5C.∠A:∠B :∠C=1 :1:2 D. ∠A :∠B :∠C=1 :2:23. 等腰三角形的一个角等于 20 °, 则它的另外两个角等于 :[ ]A.20 °、140 °B.20 °、140 °或80 °、80 °C.80 °、80 °D.20 °、80 °4. 下列命题正确的是 [ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何一角都是轴对称图形5. 等腰三角形一腰上的高与底所夹的角等于 [ ]11A.顶角B.顶角的 1C.顶角的 2 倍 D 底角的 1227. 如图 , 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[]8. 等腰三角形两边分别为 35厘米和 22厘米, 则它的第三边长为 [ ]A.∠A =∠BB.∠A =∠ACDC.∠A =∠DCBD.∠A =2∠BCD第7题A.35cmB.22cmC.35cm 或22cmD.15cm9. 等腰三角形中, AB长是BC长2 倍, 三角形的周长是40, 则AB的长为[ ]A.20B.16C.20 或16D.1810. 如图已知: AB=AC=BD, 那么∠1 与∠2之间的关系满足[ ]A.∠1 =2∠2B.2 ∠1 +∠2=180 °C.∠1+3∠2=180 °D.3 ∠1 -∠2 =180 °三.证明题1. 如图, 已知:点D,E在△ABC的边BC上,AB=AC,AD=AE. 求证:BD=CE2. 如图:△ABC中,AB=AC,PB=PC .求证:AD ⊥BC3. 已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.4. 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角形.5. 如图,△ABC中,D在BC延长线上,且AC=CD,CE 是△ACD 的中线,CF平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.6. 如图:Rt△ABC中,∠C=90°,∠A=22.5 °,DC=BC, DE⊥AB.求证:AE=BE.7. 已知:如图,△BDE是等边三角形,A在BE延长线上,C在BD的延长线上,等腰三角形练习题答案.填空题1. 302. 403.50 °6. 1207. 208. 15二.单选题1. B2. B3. B7. D 8. C 9. B三.证明题1. 证:作AM ⊥BC于M∵AD=AE,∴DM=EM∵AB=AC,∴BM=CM∴BM -DM=CM -EM∴BD=CE4. 40°40°5. 79. 100 10. 454. D5. B6. A10. D2. 证明:在△ABP和△ACP中∵AB=AC,BP=PC,AP=AP ∴△ABP ≌△ACP (SSS)∴∠BAP= ∠CAP ∴AD ⊥BC(等腰三角形顶角平分线又是底边的垂线)3. 证明:∵△ABC是等边三角形∴AB=AC, ∠BAC=60 °在△ABD 和△ACE中∵AB=AC, ∠1= ∠2,BD=CE ∴△ABD ≌△ACE (SAS) ∴AD=AE, ∠BAD= ∠CAE=60 ∴在△ADE中∵AD=AE,∠DAE=60 ∴△ADE为等边三角形.4. 证明:连结AC和AD在△ABC和△AED中AB=AE BC=ED ∠B= ∠E ∴△ABC ≌△AED (SAS)∴∠ACB= ∠ADE,AC=AD∴ △ACD 是等腰三角形∴∠ACD= ∠ADC; ∠BCA= ∠CDE∴∠C= ∠D5. 证明:∵BE、CF是△ABC 的高线.∴∠1= ∠2=90 ° ∴△BCF和△CBE都是Rt△.在Rt △BCF和Rt △CBE中∵CF=BE,BC=CB∴Rt△BCF≌Rt△CBE ∴∠3= ∠4 在△HBC 中∵∠3= ∠4∴HB=HC(同一三角形中,等角对等边)6. 证明:∵AE=AD, ∠1= ∠2,∠A公共角∴△AEF≌△ADC (AAS) ∴AB=AC,EB=DC∴∠ABC= ∠ACB ∴∠3= ∠4,BF=CF ∴DF=EF7. 证明:∵AB=AC∴∠B= ∠C∵ED⊥BC∴∠B+ ∠BFD= ∠B+ ∠EFA=90 °∠C+ ∠E=90∴∠E= ∠EFA ∴AE=AF8. 证明:(1) ∵AC=CD,CE 是△ACD的中线∴∠ACE= ∠DCE 又∵CF平分∠ACB ∴∠ACF= ∠BCF ∴∠AFC= ∠AEC=90 ° ∴CE⊥CF(2) ∵AC=CD,CE 是△ACD的中线∴CE⊥AD ∴CF∥AD四.证明题(本题包括4小题,共24 分。

初二数学等腰三角形试题答案及解析

初二数学等腰三角形试题答案及解析

初二数学等腰三角形试题答案及解析1.如图,已知在△ABC中,AB=AC=10cm,BC=12cm,点E、F都在中线AD上,连接EB、EC、FB、FC,则图中阴影部分的面积为.【答案】24cm2【解析】根据等腰三角形的性质求得△ABC底边上的高线AD的长度,然后求图中阴影部分,即三个等高三角形的面积和.解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD是中线,∴AD⊥BC,BD=CD=BC=6cm,∴AD=8cm(勾股定理),∴S阴影=S△ABE+S△EFC+S△BDE=BD•(AE+EF+FD)=BD•AD=×6cm×8cm=24cm2.故答案是:24cm2.点评:本题考查了等腰三角形的性质、三角形的面积.解答此题时,可以发现图中阴影部分的面积实际上是由三个等高不等底的三角形的和,而这三个三角形的底边的和恰好是等腰△ABC的高线AD的长度.2.如图,在△ABC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB= .【答案】80°【解析】首先利用等腰三角形的性质得到∠C=∠BDC,利用三角形的外角的性质得到∠A和∠ABD的度数,从而确定∠ADB的度数.解:∵BD=BC,∠C=25°,∴∠C=∠BDC=50°,∴∠ABD=∠C+∠BDC=50°,∵AD=BD,∴∠A=∠DBA=50°,∴∠ADB=180°﹣∠A﹣∠DBA=80°,答案为:80°.点评:本题考查了等腰三角形的性质,解答过程中两次运用“等边对等角”,难度不大.3.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是.【答案】20【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20;点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.4.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,D、E为垂足,BD与CE交于点O,则图中全等三角形共有对.【答案】3【解析】根据等腰三角形性质推出∠ABC=∠ACB,根据垂线定义证∠ADB=∠AEC,∠BEO=∠CDO,根据AAS证△BEC≌△BDC,根据AAS证△ADB≌△AEC,根据AAS证△BEO≌△CDO即可解:有3对:理由是∵AB=AC,∴∠ABC=∠ACB,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵BC=BC,∴△BEC≌△BDC,∵∠ADB=∠AEC,∠A=∠A,AB=AC,∴△ADB≌△AEC,∴AD=AE,∴BE=DC,∵∠EOB=∠DOC,∠BEC=∠BDC,∴△BEO≌△CDO,故答案为:3.点评:本题主要考查对全等三角形的性质和判定,等腰三角形性质,垂线定义等知识点的理解和掌握,能推出证三角形全等的三个条件是解此题的关键.5.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.【答案】11或13【解析】分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.点评:本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.6.已知等腰三角形的两条边长分别为3和7,那么它的周长等于.【答案】17【解析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.7.已知等腰三角形一腰上的中线将它周长分成18cm和12cm两部分,则这个等腰三角形的底边长是.【答案】6cm或8cm【解析】设等腰三角形的腰长、底边长分别为xcm,ycm,根据题意列二元一次方程组,注意没有指明具休是哪部分的长为18,故应该列两个方程组求解.解:∵等腰三角形的周长是18cm+12cm=30cm,设等腰三角形的腰长、底边长分别为xcm,ycm,由题意得或,解得或∴等腰三角形的底边长为6cm或8cm.(1分)故答案为:6cm或8cm.点评:此题主要考查等腰三角形的性质,解二元一次方程组和三角形三边关系的综合运用,此题的关键是分两种情况分析,求得解之后注意用三角形三边关系进行检验.8.等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是 cm.【答案】20【解析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:2、2、9;∵2+2<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+2=20.故答案为:20.点评:本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线,①若∠C=40°,则∠DAE= °;②若∠DAE=20°,则∠C= °.【答案】10°,35°【解析】利用∠C=40°,可先求∠BAC,再利用AE是∠BAC的角平分线,可求∠EAC,在Rt△ADC中,可求∠DAC,从而可求∠DAE.解:①∵直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线∠C=40°,∴BE=AE=CE,∴∠EAC=∠C=40°,∠DAC=50°,∴∠DAE=∠DAC﹣∠EAC=50°﹣40°=10°,②∵∠DAE=20°,∴∠AEC=70°∴∠C=∠EAC=35°,故答案为10°,35°.点评:本题利用了三角形内角和定理、角平分线定理.三角形的内角和等于180°.10.如图,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,则∠CDE= °.【答案】7.5°【解析】根据等腰三角形性质推出∠1=∠2,∠B=∠C,根据三角形的外角性质得到∠1+∠3=∠B+15°,∠2=∠C+∠3,推出2∠3=15°即可.解:∵AD=AE,AC=AB,∴∠1=∠2,∠B=∠C,∵∠1+∠3=∠B+∠BAD=∠B+15°,∠2=∠1=∠C+∠3,∴∠C+∠3+∠3=∠B+15°,2∠3=15°,∴∠3=7.5°,即∠CDE=7.5°,故答案为:7.5°.点评:本题主要考查对等腰三角形的性质,三角形的外角性质等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.11.如图,在△ABC中,已知BA=BC,∠B=120°,AB的垂直平分线DE交AC于点D.(1)求∠A的度数;(2)若AC=6cm,求AD的长度.【答案】(1)30°(2)2cm【解析】(1)根据等腰三角形的两个底角相等、三角形内角和定理来求∠A的度数;(2)连接BD.根据线段垂直平分线的性质知△ABD是等腰三角形;然后利用(1)中的∠A=∠C=30°和已知条件∠B=120°可以推知△CDB是直角三角形,利用30度角所对的直角边是斜边的一半即可求得BD与CD间的数量关系;最后利用等腰三角形ABD的两腰相等(AD=BD)通过等量代换即可求得AC=3AD,从而求得线段AD的长度.解:(1)∵在△ABC中,已知BA=BC,∴∠A=∠C(等边对等角);又∵∠B=120°,∴∠A=(180°﹣120°)=30°(三角形内角和定理);(2)连接BD.∵AB的垂直平分线DE交AC于点D,∴AD=BD,∠A=∠ABD=30°,∴∠CBD=90°;由(1)知∠A=∠C=30°,∴BD=CD(30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵AC=6cm,∴AD=2cm.点评:本题综合考查了等腰三角形的性质、含30度角的直角三角形以及三角形内角和定理.解答(2)题时,要充分利用等腰三角形的“三线合一”的性质.12.如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.【答案】21°【解析】求出∠ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ABD,即可求出答案.解:∵AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=67°﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ABC和∠ABD的度数,题目比较好.13.如图,△ABC中,AB=AC,BD平分∠ABC交AC于点D,若∠A=52°,则∠BDC等于()A.84°B.64°C.52°D.32°【答案】A【解析】根据角平分线的性质,依据∠A=52°,AB=AC,可求得△ABC中三个内角的度数,然后根据三角形的外角性质可求出∠BDC=∠A+∠ABD.解:∵△ABC中,AB=AC,∠A=52°,∴∠ABC=∠C=(180﹣∠A)÷2=64°;又∵BD平分∠ABC交AC于点D,∴∠ABD=32°,∴∠BDC=∠A+∠ABD=32°+52°=84°.故选A.点评:主要考查了等腰三角形的性质.解题时,需要熟知三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.14.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边【答案】D【解析】根据等腰三角形与直角三角形的性质作答.解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意.故选D.点评:本题主要考查了三角形的性质,等腰三角形与直角三角形的性质的区别.15.如图,在四边形ABCD中,△ABC与△ADC关于对角线AC对称,则以下结论正确的是()①AC平分∠BAD②CA平分∠BCD③BD⊥AC④BE=DE.A.①②③④B.①②③C.①②D.④【答案】A【解析】根据轴对称的性质推出△ABC≌△ADC,推出∠BAC=∠DAC,∠BCA=∠DCA,AD=AB,根据等腰三角形性质求出BE=DE,AE⊥BD,根据以上结论判断即可.解:∵△ABC与△ADC关于对角线AC对称,∴△ABC≌△ADC,∴∠BAC=∠DAC,∠BCA=∠DCA,∴①正确;②正确;AB=AD,∴BE=DE,AE⊥BD,∴④正确;即BD⊥AC,∴③正确.故选A.点评:本题主要考查对轴对称的性质,全等三角形的性质和判定,等腰三角形的性质等知识点的理解和掌握,能推出△ABC≌△ADC是解此题的关键.16.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48B.24C.12D.6【答案】C【解析】根据等腰三角形性质求出BD=DC ,AD ⊥BC ,推出△CEF 和△BEF 关于直线AD 对称,得出S △BEF =S △CEF ,根据图中阴影部分的面积是S △ABC 求出即可.解:∵AB=AC ,AD 是∠BAC 的平分线,∴BD=DC=8,AD ⊥BC , ∴△ABC 关于直线AD 对称, ∴B 、C 关于直线AD 对称, ∴△CEF 和△BEF 关于直线AD 对称, ∴S △BEF =S △CEF ,∵△ABC 的面积是×BC×AD=×8×6=24,∴图中阴影部分的面积是 S △ABC =12.故选C .点评:本题主要考查对等腰三角形性质,三角形的面积,轴对称性质等知识点的理解和掌握,能求出图中阴影部分的面积是S △ABC 是解此题的关键.17. 已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是( )A .20°、20°、140°B .40°、40°、100°C .70°、70°、40°D .40°、40°、100°或70°、70°、40°【答案】D【解析】由于140°的外角不明确等腰三角形顶角和底角的外角,故应分两种情况讨论.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个底角度数为40°,100°.故选D .点评:本题考查了等腰三角形的性质及三角形内角和定理;等腰三角形的角度计算,要注意区别顶角,底角的不同情况,不要漏解.18. 如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( )A .50°B .51°C .51.5°D .52.5°【答案】D【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项. 解:∵AC=CD=BD=BE ,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,∵∠B+∠DCB=∠CDA=50°, ∴∠B=25°, ∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA ﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D .点评:本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.19.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于D,M是BC的中点,若∠BAD=30°,则图中等于30°的角的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】本题先运用线段垂直平分线的性质得出∠BAD=∠ABD=∠C,又因为△ABC为等腰三角形可得AM⊥BC,然后证得△ADM∽△ACM,然后可求解.解:已知AB的垂直平分线交BC于D可得∠BAD=∠B=30°又因为△ABC为等腰三角形,所以∠BAD=∠ABD=∠CM为等腰三角形△ABC的中线,故AM⊥BC∴△ADM∽△ACM,∴∠DAM=∠C=30°.故选D.点评:本题先看清图中三角形的关系,再根据线段垂直平分线的性质以及等腰三角形中线的性质求解,难度一般.20.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【答案】B【解析】由已知条件可得到∠2=∠B,∠1=∠BCA,在△ABC中,由∠1+∠ACB+∠B=180°,可推出结论.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B.点评:本题考查了对等边对等角和三角形内角和定理的应用.。

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,△ABC中,∠B,∠C的平分线相交于O点,作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO的周长+△ENO的周长-△FHO的周长= .【答案】b+c-a【解析】由角平分线及平行线可得等腰三角形,进而得边长相等,再通过转化,即可得出结论.∵OB、OC分别平分∠ABC、∠ACB,MN∥BC,EF∥AB,GH∥AC,∴OM=BM,ON=NC,OG=AE,OE=AG,∴△GMO周长+△ENO的周长-△FHO的周长=OG+OM+GM+OE+ON+EN-OH-OF-FH=AE+EN+NC+BM+GM+AG-HC-FH-BF=b+c-a,故应填b+c-a.【考点】本题主要考查角平分线的性质,平行线的性质点评:解答本题的关键是掌握由角平分线及平行线可得等腰三角形,再通过转化求解。

2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。

∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.如图,Rt△ACB中,∠ACB=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE等于()A、45°B、60°C、50°D、65°【答案】A【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形内角和定理可分别表示出∠ACD,∠BCE,再根据角之间的关系,不难求得∠DCE的度数.∵AC=AD,BC=BE∴∠ACD=∠ADC,∠BCE=∠BEC∴∠ACD=(180°-∠A),∠BCE=(180°-∠B)∴∠DCE=∠ACD+∠BCE-∠ACB=90°-(∠A+∠B)∵∠A+∠B=90°∴∠DCE=45°故选A.【考点】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用点评:解答本题的关键是熟练掌握等腰三角形的性质及三角形内角和定理的综合运用。

初二数学等腰三角形试题

初二数学等腰三角形试题

初二数学等腰三角形试题1.已知:如下图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.【答案】120°【解析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【考点】此题主要考查了等边三角形的性质、等腰三角形的性质以及三角形的外角的性质点评:此题主要考查学生对等腰三角形的判定与性质和三角形外角的性质的理解和掌握,此题的关键是判定出△APQ为等边三角形,△ABP为等腰三角形,△AQC为等腰三角形,然后利用外角的性质即可求解.2.等腰三角形底边中点与一腰的距离为6,则腰上的高为______.【答案】12【解析】根据题意画出图形,由等腰三角形的性质即可求解.由图可知:O是△ABC底边的中点,OD⊥AC,BE是腰AC上的高,∴BE∥OD,又OD=6,可得BE=2OD=12.【考点】本题考查了等腰三角形的性质点评:正确画出图形是解答本题的关键。

3.如下图,D、E是线段BC垂直平分线上两点,连DB、DC、EB、EC,则∠DBC与∠DCB的关系是________,∠DBE与∠DCE的关系是________.【答案】相等,相等【解析】根据DE是线段BC的垂直平分线,可得BD=CD,BE=CE,根据等边对等角即可判断。

∵DE是线段BC的垂直平分线,∴BD=CD,BE=CE,∴∠DBC=∠DCB=,∠DBE=∠DCE.【考点】本题考查的是线段的垂直平分线的性质,等腰三角形的性质点评:解答本题的关键是掌握线段的垂直平分线的性质:线段的垂直平分线的点到线段两端点的距离相等。

4.等腰三角形底角的外角比顶角的外角大30°,则这个三角形各内角度数是____.【答案】80°,50°,50°【解析】根据题意画出图形,再根据三角形外角的性质及三角形内角和定理列出关系式,求出各角的度数即可.如图所示:AB=AC,∠1=∠2+30°.∵AB=AC,∴∠B=∠ACB,∵∠1、∠2分别是△ABC的外角,∴∠1=∠B+∠BAC,∠2=∠B+∠ACB,∵∠1=∠2+30°,∴∠1-∠2=∠B+∠BAC-∠B-∠ACB=∠BAC-∠ACB=30°…①,∵∠B=∠ACB,∴∠B+∠ACB+∠A=180°,∴2∠ACB+∠BAC=180°,∴∠BAC=180°-2∠ACB,代入①得,180°-2∠ACB-∠ACB=30°,解得,∠ACB=50°,∴∠B=50°,∠BAC=180°-∠B-∠ACB=180°-50°-50°=80°,∴这个三角形各个内角的度数分别是80°、50°、50°.故填80°、50°、50°.【考点】本题考查的是三角形内角和定理,等腰三角形的性质,三角形外角的性质点评:解答此题的关键是利用三角形外角的性质沟通内角与外角的关系.5.△ABC是等腰三角形,D为BC上一点,DE∥AB且交AC于E,请判断△EDC是什么三角形?并说明理由.【答案】等腰三角形【解析】由∠B=∠C,DE∥AB,利用平行线的性质,可得∠EDC=∠B,继而可得∠EDC=∠C,即可证得△EDC是等腰三角形.∵DE∥AB,∴∠EDC=∠B,∵∠B=∠C,∴∠EDC=∠C,∴△EDC是等腰三角形.【考点】本题考查的是等腰三角形的性质的判定,平行线的性质点评:解答本题的关键是掌握等边对等角与等角对等边定理的应用.6.等腰三角形的两边长为3和6,则这个三角形的周长为()A.9B.12C.15D.12或15【答案】C【解析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.(1)若3为腰长,6为底边长,由于3+3=6,则三角形不存在;(2)若6为腰长,则符合三角形的两边之和大于第三边,所以这个三角形的周长为6+6+3=15;故选C.【考点】本题考查了等腰三角形的性质和三角形的三边关系点评:题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.如下图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,∠PCB=∠PCA,且∠PBC=∠PBA,则∠BPC度数为()A.115°B.100°C.130°D.140°【答案】A【解析】由已知条件根据三角形的内角和定理和等边对等角的性质,求得∠ABC=∠ACB=65°,再根据∠PBC=∠PCA和三角形的内角和定理即可求解.∵AB=AC,∠A=50°,∴∠ABC=∠ACB=65°.∵∠PBC=∠PCA,∴∠BPC=180°-(∠PBC+∠PCB)=180°-(∠PCA+∠PCB)=180°-∠ACB=115°.故选A.【考点】此题综合考查了三角形的内角和定理,等腰三角形的性质点评:对相等的角进行等量代换转化为一个角是解答本题的关键.8.等边三角形两条角平分线所夹锐角的度数是()A.120°B.150°C.60°D.90°【答案】C【解析】根据已知条件和等边三角形的性质可知:∠1=∠2=∠ABC=30°,所以∠3=∠1+∠2=60°.如图,∵等边三角形ABC中,AD,BE分别是∠BAC,∠ABC的角的平分线,交于点F,∴∠1=∠2=∠ABC=30°(角平分线的定义和等边三角形的性质),∴∠3=∠1+∠2=60°(三角形的一个外角等于与它不相邻的两个内角的和).故选C.【考点】本题考查的是等边三角形的性质点评:解答本题的关键是掌握等边三角形的三角均为60°,三角形的一个外角等于与它不相邻的两个内角的和.9.等腰三角形的两条边长分别为15cm和7cm,则它的周长为()A.37cm B.29cm C.37cm或29cm D.无法确定【答案】A【解析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为15和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.(1)若7为腰长,15为底边长,由于,则三角形不存在;(2)若15为腰长,则符合三角形的两边之和大于第三边,所以这个三角形的周长为;故选A.【考点】本题考查了等腰三角形的性质和三角形的三边关系点评:题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.10.△ABC中,∠ACB=90°,DE是AB的垂直平分线,且∠BAD∶∠CAB=1∶3,则∠B等于_______度.【答案】22.5【解析】由∠BAD:∠BAC=1:3,即可设∠BAD=x°,则∠BAC=3x°,又由DE是AB的垂直平分线,根据线段垂直平分线的性质,即可求得∠B=∠BAD=x°,又由在Rt△ABC中,∠C=90°,根据直角三角形中两锐角互余,即可得方程,解方程即可求得答案.∵∠BAD:∠BAC=1:3,设∠BAD=x°,则∠BAC=3x°,∵DE是AB的垂直平分线,∴AD=BD,∴∠DAB=∠B=x°,∵∠C=90°,∴∠BAC+∠B=90°,∴3x+x=90,解得:x=22.5,∴∠B=22.5°.【考点】本题考查了线段垂直平分线的性质与直角三角形的性质点评:解答本题的关键是掌握好线段的垂直平分线的性质:线段的垂直平分线的点到线段两端点的距离相等,注意数形结合思想与方程思想的应用.。

初二数学 等腰等边三角形的性质

初二数学 等腰等边三角形的性质

等腰三角形 等腰三角形的性质一、学习目标1、了解等腰三角形的概念,掌握等腰三角形的性质;2、会运用等腰三角形的概念及性质解决相关问题。

二、温故知新1、下列图形不一定是轴对称图形的是( ) A 、圆 B 、长方形 C 、线段D 、三角形2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 两腰的夹角叫 ,腰和底边的夹角叫4、如图,在△ABC 中,AB=AC ,标出各部分名称三、自主探究 合作展示(一)操作、实践:取一等腰三角形纸片,照图折叠,找出其中重合的线段和角,填入下表:C B (C ) (1) (2) (3)【问题1】根据上表你能得出哪些结论?并将你的结论与同学交流。

【问题2】你能利用三角形全等的知识证明以上结论吗?(二)【新知应用】例1:填空:(1)如图(1)所示,根据等腰三角形性质定理在△ABC中,AB=AC时,①∵AD⊥BC,∴∠_____ = ∠_____,____= ____.②∵AD是中线,∴____⊥____ ,∠_____ =∠_____.③∵AD是角平分线,∴____ ⊥____ ,_____ =_____.(2)等腰三角形一个底角为70°,它的顶角为______.(3)等腰三角形一个角为70°,它的另外两个角为例2:如图(2)所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=______,∠ABC=______=______,•再由∠BDC=∠A+______,就可得到∠ABC=______=______=2______.再由三角形内角和为180°,•就可求出△ABC的三个内角.解:例题反思:四、双基检测1、在△ABC中,AB=AC,(1)如果∠A=70°,则∠C=_________,∠B=___________(2)如果∠A=90°,则∠B=_________,∠C=___________(3)如果有一个角等于120°,则其余两个角分别是多少度?(4)如果有一个角等于55°,则其余两个角分别是多少度?2、如图(3)所示,△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?3、如图(4),在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.DC BA图(1)图(2)D CABDAB图(3)图(4)五、学习反思请你对照学习目标,谈一下这节课的收获及困惑。

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析1.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是海里.【答案】10【解析】过P作PD⊥AB于D,则PD的长就是灯塔与船之间的最近距离,求出∠APB=∠PAB,推出PA=PB=20,根据含30度角的直角三角形性质求出PD=PB,代入求出即可.解:如图:过P作PD⊥AB于D,则PD的长就是灯塔与船之间的最近距离,∴∠PDB=90°,∵∠PBD=30°,∠PAB=15°,∴∠APB=∠PBD﹣∠PAB=15°=∠PAB,∴PB=AB=20,在Rt△PBD中,PB=20,∠PBD=30°,∴PD=PB=10,故答案为:10.点评:本题考查了含30度角的直角三角形,等腰三角形的性质和判定,三角形的外角性质等知识点的应用,关键是求出PB的长和得出PD=PB,题目比较典型,是一道比较好的题目,主要考查学生的理解能力和计算能力.2.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,有下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD;⑤BE=CH.其中你认为正确的有.(填序号就可以)【答案】①②③【解析】①由CD是斜边AB上的高,∠ACB=90°,得到∠ACD+∠BCD=90°,∠BCD+∠B=90°,即可得到答案;②由角平分线的性质得到CE=EF,根据三角形的外角性质能求出∠CHE=∠CEA,推出CH=CE即可得到答案;③根据直角三角形全等的判定定理HL即可;④⑤根据边得关系即可判断.解:①∵CD是斜边AB上的高,∠ACB=90°,∴∠CDB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴①正确;②∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠C=90°,EF⊥AB,∴CE=FE,∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B,∠ACD=∠B,∴∠CHE=∠CEA,∴CH=CE,即:CH=CE=EF,∴②正确;③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF,∴Rt△ACE≌Rt△AFE,∴AC=AF,∴③正确;④∵CH=EF,∴CH≠HD,∴④错误;⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误;故答案为:①②③.点评:本题主要考查了角平分线的性质,等腰三角形的性质和判定,全等三角形的性质和判定,三角形的外角性质等知识点,解此题的关键是综合运用性质进行证明.此题题型较好,综合性强.3.下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有(请写序号,错选少选均不得分)【答案】③④.【解析】不管过A(或过B或过C)作直线,都不能把三角形ABC分成两个等腰三角形,即可判断①;求出∠A=∠ABD=∠DBC=∠ACE=∠BCE=36°,根据三角形的内角和定理求出三角形其余角的度数,根据等腰三角形的判定定理推出边相等,即可判断②;求出∠ACD=30°,根据含30度角的直角三角形性质求出AD=AC,即可判断③;过C作CF∥BD交AB的延长线于F,连接DC,EF,求出EF=BC,证三角形全等推出DE=EF,DC=CF,推出CD=BC,推出∠CDB=∠CBD,根据三角形的内角和定理求出∠CDB=∠CAB即可.解:若△ABC中,AB=AC,∠A=45°,不论过A作直线(或过B作直线或过C作直线)都不能把三角形ABC化成两个等腰三角形,∴①错误;图②中,有等腰三角形7个:△ABD,△CBD,△ACE,△CDE,△BEF,△CDF,△FBC,∴②错误;∵等边△ABC,∴AB=AC,∠ACB=60°,∵AD∥BC,CD⊥AD,∴∠DCB=∠D=90°,∴∠ACD=30°,∴AD=AC=AB,∴③正确;过C作CF∥BD交AB的延长线于F,连接DC,EF,∴=,∵AE=AB,AD=AC,∴AF=AC=AD,∴CE=BF,即BE∥CF,CE=BF,∴四边形BECF是等腰梯形,∴EF=BC,在△DAC和△FAC中,∴△DAC≌△FAC,∴CD=CF,同理DE=EF,∵AD=AC,AE=AB,∴∠ADC=∠ACD,∠AEB=∠ABE,∵∠DAC=∠BAC,∠DAC+∠ACD+∠ADC=180°,∠CAB+∠AEB+∠ABE=180°,∴∠ACD=∠AEB,∵∠AEB=∠DEC,∴∠ACD=∠DEC,∴DE=CD,∴DC=CF=EF=ED,∵EF=CB,∴DC=BC,∴∠CBD=∠CDE,∵∠DCA=∠DEC=∠AEB=∠ABE,由三角形的内角和定理得:∠CDE=∠CAB=∠DAB,∴∠DBC=∠DAB,∴④正确.故答案为:③④.点评:本题考查了等边三角形性质,含30度角的直角三角形性质,等腰三角形的性质和判断,角平分线定义,全等三角形的性质和判定,三角形的内角和定理等知识点的综合运用,第④小题证明过程偏难,对学生提出较高的要求,熟练地运用性质进行推理是解此题的关键.4.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.【答案】4个【解析】当O为等腰三角形的两条腰的交点时,以O为圆心,OP为半径画弧,交直线a于两点;当P为等腰三角形的两条腰的交点时,以P为圆心,OP为半径画弧,交直线a于一点;当所求的第三点为等腰三角形的两条腰的交点时,可作OP的垂直平分线,与直线a交于一点,那么可作出等腰三角形共4个.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.点评:本题考查了等腰三角形的性质;等腰三角形有2条边相等,注意可选不同的顶点为等腰三角形的两条腰的交点.5.如图所示,在△ABC中,已知AB=AC,∠A=36°,BC=2,BD是△ABC的角平分线,则AD= .【答案】2【解析】根据等腰三角形的性质,先证∠B=∠C=72°,再由角平分线的定义可证∠ABD=∠CBD=36°,即可求∠BDC=72°,即证BD=BC=AD=2.解:∵AB=AC,∠A=36°,∴∠B=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=36°,∴∠BDC=180°﹣36°﹣72°=72°=∠C,∴BD=BC=AD=2.故填2.点评:本题考查了等腰三角形的判定与性质;由已知条件结合性质得到BD=BC=AD是正确解答本题的关键.6.如图,在△ABC中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,则图中的等腰三角形有个,分别为.【答案】4;△BOC,△AOD,△ABD,△ACD【解析】根据已知条件可以推知∠OBC=∠OCB,∠OAD=∠DOA,∠ABD=∠ADB,∠DAC=∠DCA,然后由等角对等边可以找出图中的等腰三角形.解:∵在△ABC中,∠ABC=2∠ACB,BD平分∠ABC,∴∠ABD=∠CBD=∠ACB,即∠CBD=∠ACB,∴OB=OC(等角对等边),∴△BOC是等腰三角形;又∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠CBD(两直线平行,内错角相等),∴∠OAD=∠DOA,∠ABD=∠ADB,∠DAC=∠DCA,∴OA=OD,AB=AD,AD=DC,∴△AOD,△ABD,△ACD是等腰三角形;故答案是:4;△BOC,△AOD,△ABD,△ACD.点评:本题考查了等腰三角形的判定.角的等量代换的运用是正确解答本题的关键.7.已知:如图,在△ABC中,∠C=90°,AC=BC=4,点M是边AC上一动点(与点A、C不重合),点N在边CB的延长线上,且AM=BN,连接MN交边AB于点P.(1)求证:MP=NP;(2)若设AM=x,BP=y,求y与x之间的函数关系式,并写出它的定义域;(3)当△BPN是等腰三角形时,求AM的长.【答案】(1)见解析(2)y与x之间的函数关系式为,它的定义域是0<x<4(3)【解析】(1)过点M作MD∥BC交AB于点D,求出DM=BN,证△MDP≌△NBP即可;(2)求出AB,根据△MDP≌△NBP推出DP=BP,推出方程即可;(3)求出BP=BN,所得方程的解即可.(1)证明:过点M作MD∥BC交AB于点D,∵MD∥BC,∴∠MDP=∠NBP,∵AC=BC,∠C=90°,∴∠A=∠ABC=45°,∵MD∥BC,∴∠ADM=∠ABC=45°,∴∠ADM=∠A,∴AM=DM.∵AM=BN,∴BN=DM,在△MDP和△NBP中,∴△MDP≌△NBP,∴MP=NP.(2)解:在Rt△ABC中,∵∠C=90°,AC=BC=4,∴.∵MD∥BC,∴∠AMD=∠C=90°.在Rt△ADM中,AM=DM=x,∴.∵△MDP≌△NBP,∴DP=BP=y,∵AD+DP+PB=AB,∴,∴所求的函数解析式为,定义域为0<x<4.答:y与x之间的函数关系式为,它的定义域是0<x<4.(3)解:∵△MDP≌△NBP,∴BN=MD=x.∵∠ABC+∠PBN=180°,∠ABC=45°,∴∠PBN=135°.∴当△BPN是等腰三角形时,只有BP=BN,即x=y.∴,解得,∴当△BPN是等腰三角形时,AM的长为.答:AM的长为.点评:本题主要考查对等腰三角形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.8.如图,在△ABC中,AB=AC,∠A=20゜,在AB、AC上分别取点E、D,使∠CBD=60°,∠BCE=50°,求∠AED的度数.【答案】50°【解析】作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG,证DF=DG,BC=BG,求出∠BEC,推出BE=BG,求出△EFG是等腰三角形,推出EF=EG,证△DFE≌△DGE,求出△EDB,根据三角形外角性质求出即可.解:∵AB=AC,∠A=20°,∴∠ABC=∠ACB=80°,∴∠ABD=20°,作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG.∴四边形DFBC为等腰梯形.∵∠DBC=∠FCB=60°,∴△BGC,△DGF都是正三角形,即BG=CG,∵∠BCE=50°,∠EBC=80°,∴∠BEC=50°,即BE=BC,知△BGE是等腰三角形.得:∠BGE=80°,∠FGE=40°.又因∠EFG=∠BDC=40°,∴△EFG是等腰三角形,EF=GE.∵DF=DG,∴△DFE≌△DGE.∴DE平分∠FDG,∴∠EDB=30°,∴∠AED=∠EDB+∠EBD=50°.答:∠AED的度数是50°.点评:本题主要考查对等腰三角形的性质和判定,等腰梯形的性质,全等三角形的性质和判定,三角形的外角性质,三角形的内角和定理等知识点的连接和掌握,能综合运用这些性质进行推理是解此题的关键.9.已知:如图,在△ABC中,CD⊥AB垂足为D,BE⊥AC垂足为E,连接DE,点G、F分别是BC、DE的中点.求证:GF⊥DE.【答案】见解析【解析】作辅助线(连接DG、EG)构建Rt△BCD和Rt△BCE斜边上的中线,然后根据斜边上的中线等于斜边的一半求得DG=EG=BC,从而判定△DEG是等腰三角形;最后根据等腰三角形的“三线合一”的性质推知GF⊥DE.证明:连接DG、EG.∵CD⊥AB,点G是BC的中点,∴在Rt△BCD中,DG=BC(直角三角形的斜边上的中线是斜边的一半).(2分)同理,EG=BC.(2分)∴DG=EG(等量代换).(1分)∵F是DE的中点,∴GF⊥DE.(2分)点评:本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质.熟练运用等腰直角三角形“三线合一”的性质、直角三角形斜边上的中线等于斜边的一半,是解题的关键.10.在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】假如∠A=100°,求出∠B=100°,不符合三角形的内角和定理,即可判断①;假如∠C=100°,能够求出∠A、∠B的度数;关键等腰三角形的判定推出AC=BC,即可判断③④.解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠b=(180°﹣∠c)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选B.点评:本题考查了等腰三角形的判定和三角形的内角和定理等知识点的应用,能根据定理进行说理是解此题的关键,分类讨论思想的运用.11.如图所示.△ABC中,∠B=∠C,D在BC上,∠BAD=50°,AE=AD,则∠EDC的度数为()A.15°B.25°C.30°D.50°【答案】B【解析】根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数.解:如图,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠BAD=50°,∴∠EDC=25°.故选B.点评:本题主要考查利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.12.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【答案】D【解析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.13.下列三角形中,是正三角形的为()①有一个角是60°的等腰三角形;②有两个角是60°的三角形;③底边与腰相等的等腰三角形;④三边相等的三角形.A.①④B.②③C.③④D.①②③④【答案】D【解析】等边三角形的判定定理有①三个都相等的三角形是等边三角形,②有一个角是60°的等腰三角形是等边三角形,③三边都相等的三角形是等边三角形,根据以上定理判断即可.解:∵AB=AC,∠A=60°,∴△ACB是等边三角形,∴①正确;∵∠A=∠B=60°,∴AC=BC,∴△ACB是等边三角形,∴②正确;∵AB=AC,AB=BC,∴AB=AC=BC∴△ACB是等边三角形,∴③正确;∵AB=AC=BC,∴△ACB是等边三角形,∴④正确.故选D.点评:本题考查了等腰三角形的判定和等边三角形的判定等的应用,主要检查学生是否掌握等边三角形的判定定理,题型较好,但是一道容易出错的题目.14.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【答案】D【解析】本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选D.点评:本题容易找出三条边上的高交于点O,是满足题中要求的点,其它点容易漏掉,这样的点不一定是等腰三角形的顶角所在的点,也可以是底角所在的点,明白这点后,就要做圆来找到所要求的点.15.如图,已知△ABC中,AC+BC=24,AO,BO分别是角平分线,且MN∥BA,分别交AC于N,BC于M,则△CMN的周长为()A.12B.24C.36D.不确定【答案】B【解析】由AO,BO分别是角平分线求得∠1=∠2,∠3=∠4,利用平行线性质求得,∠1=∠6,∠3=∠5,利用等量代换求得∠2=∠6,∠4=∠5,即可解题.解:由AO,BO分别是角平分线得∠1=∠2,∠3=∠4,又∵MN∥BA,∴∠1=∠6,∠3=∠5,∴∠2=∠6,∠4=∠5,∴AN=NO,BM=OM.∵AC+BC=24,∴AC+BC=AN+NC+BM+MC=24,即MN+MC+NC=24,也就是△CMN的周长是24.故选B.点评:此题考查学生对等腰三角形的判定与性质和平行线行至的理解和掌握,此题主要求得△ANO△BMO是等腰三角形,这是解答此题的关键.16.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点AB之间的距离是()A.13B.9C.18D.10【答案】C【解析】运用勾股定理可将三角形的直角边求出,将两个直角边进行相加即为两个固定点之间的距离.解:∵电线杆高为12m,铁丝长15m,∴固定点与电线杆的距离==9m,∵两个直角三角形全等,∴两个固定点之间的距离=9×2=18m.故选C.点评:本题考查正确运用勾股定理,关键是从实际问题中找到直角三角形,并利用勾股定理进行有关的运算.17.如图,在△ABC中,BD=DE=EC,△ADE为等边三角形,则图中等腰三角形的个数是()A.2B.3C.4D.5【答案】C【解析】根据已知的BD=DE=EC和△ADE为等边三角形,利用等腰三角形的判定进行判断即可.解:∵△ADE为等边三角形,∴AD=DE=AE,∵BD=DE=EC,∴AD=DE=AE=BD=EC,∴等腰三角形有△ABD、△ACE、△ADE、△ABC共四个.故选C.点评:本题考查了等腰三角形的判定及等边三角形的性质,属于基础题,应该重点掌握.18.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5B.6C.7D.8【答案】A【解析】根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+CE=5.故选A.点评:此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.19.推理:如图,∵∠A=∠ACD,∠B=∠BCD,(已知)∴AD=CD,CD=DB(等腰三角形的性质)∴AD=DB,依据是()A.旋转不改变图形的大小B.连接两点的所有线中线段最短C.等量代换D.整体大于部分【答案】C【解析】由∠A=∠ACD,得AD=CD,再由∠B=∠BCD得CD=DB,利用等量代换即可解题.解:∵∠A=∠ACD,∴AD=CD,∵∠B=∠BCD∴CD=DB,因AD和DB都等于同一个量CD,所以AD=DB,依据是等量代换.故选C.点评:此题考查学生对等腰三角形的判定与性质的理解和掌握,此题主要利用了等量代换求得两边相等.20.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.【答案】B【解析】A、D是黄金三角形,C、过A点作BC的垂线即可;只有B选项不能被一条直线分成两个小等腰三角形.解:A、中作∠B的角平分线即可;C、过A点作BC的垂线即可;D、中以A为顶点AB为一边在三角形内部作一个72度的角即可;只有B选项不能被一条直线分成两个小等腰三角形.故选B.点评:此题主要考查学生对等腰三角形的判定与性质的理解和掌握,此题的4个选项中只有D选项有点难度,所以此题属于中档题.。

初二数学等腰三角形练习题

初二数学等腰三角形练习题

等腰三角形练习卷一、填空题(30分) 1、已知等腰三角形的一边长为5cm ,另一边长为6cm ,则它的周长为 。

2、已知等腰三角形的一边长为4cm ,另一边长为9cm ,则它的周长为 。

3、等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm.则腰长为4、在等腰三角形中,设底角为0x ,顶角为0y ,用含x 的代数式表示y ,得y= ;用含y 的代数式表示x ,则x= 。

5、有一个角等于50°,另一个角等于__________的三角形是等腰三角形.6、如图,∠A=15°,AB=BC=CD=DE=EF ,则∠GEF=7、有一个内角为40°的等腰三角形的另外两个内角的度数为 .140°呢8、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为9、如果等腰三角形的三边均为整数且它的周长为10cm ,那么它的三边长为 10、如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60 ,且DE=1,则边BC 的长为 . 二、选择题(30分)11、判定两个等腰三角形全等的条件可以是…………………… ( )。

A 、有一腰和一角对应相等 B 、有两边对应相等C 、有顶角和一个底角对应相等D 、有两角对应相等 12、等腰三角形一腰上的高线与底边的夹角等于( )A 、顶角B 、底角C 、顶角的一半D 、底角的一半13、在等腰三角形ABC 中,∠A 与∠B 度数之比为5∶2,则∠A 的度数是( )A 、100°B 、75°C 、150°D 、75°或100°14、在△ABC 中,AB=AC ,下列推理中错误的是……………………( )。

A 、如果AD 是中线,那么AD ⊥BC ,∠BAD=∠DAC B 、如果BD 是高,那么BD 是角平分线 C 、如果AD 是高,那么∠BAD=∠DAC 、BD=DCD 、如果AD 是角平分线,那么AD 也是BC 边的垂直平分线15、如图,P 、Q 是△ABC 边BC 上的两点,且QC =AP =AQ =BP =PQ ,则∠BAC =…( )A 、1250B 、1300C 、900D 、120016、如图,△ABC 中,AB =AC ,BD 、CE 为中线,图中共有等腰三角形( )个。

初二数学三角形试题答案及解析

初二数学三角形试题答案及解析

初二数学三角形试题答案及解析1.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)证明见解析;(2)四边形ADCF是矩形,证明见解析.【解析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论.(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.试题解析:(1)∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,∵∠FAE=∠BDE,∠AFE=∠DBE,AE=DE,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC,即:D是BC的中点.(2)四边形ADCF是矩形,证明如下:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.【考点】1.矩形的判定;2.全等三角形的判定和性质;3.等腰三角形的性质;4.平行四边形的性质.2.若一等腰三角形的腰长为4cm,腰上的高为2cm,则等腰三角形的顶角为()A.30°B.150°C.30°或150°D.以上都不对【答案】C.【解析】由于题中只说明是等腰三角形没有指明是锐角三角形还是钝角三角形,所以应该分两情况进行分析:如图①,△ABC中,AB=AC=3cm,CD⊥AB且CD=3cm,∵△ABC中,CD⊥AB且CD=AB=3cm,AB=AC=6cm,∴CD=AC.∴∠A=30°.如图②,△ABC中,AB=AC=6cm,CD⊥BA的延长线于点D,且CD=3cm,∵∠CDA=90°,AB=AC=6cm,CD⊥BA的延长线于点D,且CD=3cm,∴CD=AC. ∴∠DAC=30°.∴∠A=150°.故选C.【考点】1.含30度角的直角三角形;2.等腰三角形的性质;3. 分类思想的应用.3.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F处.求证:EF=EC.【答案】证明见解析.【解析】根据折叠的性质得到DA=DF,AE=FE,∠ADE=∠FDE,根据等腰三角形性质得∠B=∠DFB,再根据三角形外角性质得到∠ADE+∠FDE=∠B+∠DFB,则∠ADE=∠B,所以DE∥BC,易得DE为△ABC的中位线,得到AE=EC,于是EF=EC.试题解析:∵△ABC沿DE折叠,使点A落在BC边上的点F处,∴DA=DF,AE=FE,∠ADE=∠FDE,∴∠B=∠DFB,∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,∴∠ADE=∠B,∴DE∥BC,而D为AB的中点,∴DE为△ABC的中位线,∴AE=EC,∴EF=EC.考点: 翻折变换(折叠问题)4.在平面直角坐标系xoy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上.(1)直接写出点C的坐标为;(2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由;(3)在(2)的条件下,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.【答案】(1)(0,3)或(0,-1);(2)理由见解析;(3).【解析】(1)先确定A的位置,再作出△AOB,就可以求出AB=2,OB=,在y轴上符合条件的有两点C1和C2,求出即可;(2)根据AP=AO=1,得出P的对称点是O点,求出OC,即可得出OP,解直角三角形求出PQ和OQ即可;(3)作出B关于y轴的对称点,连接PB′即可得出M点的位置,求出PB′长即可.试题解析:(1)符合条件的有两点,以A为圆心,以AB为半径画弧,交y轴于C1、C2点,∵A(0,1),∴OA=1,∵在Rt△AOB中,OA=1,∠ABO=30°,∴AB=2OA=2,OB=,即AC1=AC2=2,∴OC1=1+2=3,OC2=2-1=2,∴C的坐标是(0,3)或(0,-1),(2)P的坐标是(,),理由是:过P作PQ⊥x轴于Q,∵OA=1,AP=1,AO⊥x轴,∴x轴和以A为圆心,以1为半径的圆相切,∵AP=1,∴P在圆上,∵点P关于直线AB的对称点P′在x轴上,AP=1,∴P′点和O重合,如图:∵P和P′关于直线AB对称,∴PP′⊥AB,PC=P′C,由三角形面积公式得:S△AOB=AO×OB=AB×CO,∴×1=2OC,∴OC=,∴PP′=2OC=,∵∠ABO=30°,∠OCB=90°,∴∠POB=60°,∴PQ=OP×sin60°=,OQ=OP×cos60°=,即P的坐标是(,);(3)作B关于y轴的对称点B′,连接PB′交y轴于M,则M为所求,∵OB=,∴OB′=,即BB′=2,∵PQ=,∴由勾股定理得:PB′=,∴PM+BM=PM+B′M=PB′=.考点: 1.轴对称-最短路线问题;2.坐标与图形性质;3.等腰三角形的性质.5.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是 .【答案】15【解析】设第三个数是,①若为最长边,则,不是整数,不符合题意;②若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为:15.6.在△ABC中,AB=9,AC=12,BC=15,则△ABC的中线AD=【答案】7.5.【解析】∵AB=9,AC=12,BC=15,∴92+122=152,∴△ABC是直角三角形,∴△ABC的中线AD=BC=7.5,【考点】1.勾股定理的逆定理;2. 直角三角形斜边上的中线.7.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC= __________.【答案】70°【解析】先根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角的性质求出∠OBC=∠C,然后根据角平分线的定义解答即可.∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC-∠ADC=125°-90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵OB平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.【考点】1.垂直平分线的性质;2.等腰三角形的性质;3.角平分线的性质8.在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF等于()A.B.2C.4D.无法确定【答案】A.【解析】此题考查了等边三角形的性质.易利用三角形的面积求解.如图,连接AP、BP、CP,则、、;设等边三角形的高为h,由勾股定理可得:,.而,根据等边三角形三边相等,可得:,即:由此等量关系可得到三角形的三边距离之和.故选A.【考点】等边三角形的性质.9.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE= .【答案】390.【解析】连接BD、AE,∵DA⊥AB,FC⊥AB,∴∠DAB=∠BCF=90°,又∵DA=BC,FC=AB,∴△DAB≌△BCF(SAS),∴BD=BF,∴∠BDF=∠BFD,又∵AD∥CF,∴∠ADF=∠CFD,∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,同理可得,∠BAF=∠AFC+2∠CFE,又∵∠AFB=51°,∴∠ABF+∠BAF=129°,∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,∴∠DFE=39°.【考点】①全等三角形的性质与判定;②平行线的性质;③三角形内角和定理.10.如图,在中,, ,则点到直线的距是 .【答案】4【解析】如图,求点到的距离,故过点作交于点,由,,,可证,,即点到直线的距离是4.【考点】1、三角形全等的判定;2、三角形全等的性质;3、角平分线的性质.11.已知:多边形的每一个外角都等于40度,则这个多边形是边形,共有条对角线,其内角和为度。

八年级(初二)数学上册等腰三角形练习

八年级(初二)数学上册等腰三角形练习

八年级数学上册等腰三角形练习1.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为()A. 2B. 3C. 23D. 3(第1题图)2.已知等腰△ABC中,AD⊥BC于点D,且AD=12BC,则△ABC底角的度数为()A. 45°B. 75°C. 60°D. 45°或75°3.在平面直角坐标系中,点A(2,2),B(32,32),动点C在x轴上,若以A,B,C三点为顶点的三角形是等腰三角形,则点C的个数为()A. 2B. 3C. 4D. 54.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=度.(第4题图)5.如图,在四边形ABCD中,AD∥BC,∠ABC与∠DCB的平分线相交于点H,过H 作AD的平分线交AB于E,交CD于F.若BE=3,CF=2,则EF=__ __.(第5题图)6.如图,已知∠AOB=α,在射线OA,OB上分别取点OA=OB1,连结AB1,在B1A,B1B上分别取点A1,B2,使B1B2=B1A1,连结A1B2,…,按此规律下去,记∠A1B1B2=θ1,∠A2B2B3=θ2,…,∠A n B n B n+1=θn,则:(1)θ1=;(2) θn=.,(第6题图))7.在如图所示的钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__ __.,(第7题图))8.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以点A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以点A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__ _.,(第8题图))9.如图,已知点A(3,0),B(0,4),C为x轴上一点.(1)画出等腰三角形ABC.(2)求出C点的坐标.,(第9题图))10.如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,M为AB边的中点,连结ME,MD,ED.(1)求证:△MED为等腰三角形.(2)求证:∠EMD=2∠DAC.11.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC.(2)若点M在DE上,且DC=DM,求证:ME=BD.(第11题图)答案与解析1.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为(B)A. 2B. 3C. 23D. 3(第1题图)2.已知等腰△ABC中,AD⊥BC于点D,且AD=12BC,则△ABC底角的度数为(D)A. 45°B. 75°C. 60°D. 45°或75°3.在平面直角坐标系中,点A(2,2),B(32,32),动点C在x轴上,若以A,B,C三点为顶点的三角形是等腰三角形,则点C的个数为(B)A. 2B. 3C. 4D. 54.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=72度.(第4题图)(第5题图)5.如图,在四边形ABCD中,AD∥BC,∠ABC与∠DCB的平分线相交于点H,过H 作AD的平分线交AB于E,交CD于F.若BE=3,CF=2,则EF=__5__.6.如图,已知∠AOB=α,在射线OA,OB上分别取点OA=OB1,连结AB1,在B1A,B1B上分别取点A1,B2,使B1B2=B1A1,连结A1B2,…,按此规律下去,记∠A1B1B2=θ1,∠A2B2B3=θ2,…,∠A n B n B n+1=θn,则:(1)θ1=180°+α2;(2) θn=()2n-1·180°+α2n.,(第6题图))7.在如图所示的钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__12°__.,(第7题图))8.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以点A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以点A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =__9__.,(第8题图))9.如图,已知点A (3,0),B (0,4),C 为x 轴上一点. (1)画出等腰三角形ABC . (2)求出C 点的坐标.,(第9题图))解:(1)如解图.,(第9题图解))(2)①当A 是顶点时,C 1(-2,0),C 2(8,0), ②当B 是顶点时,C 3(-3,0) ③当C 是顶点时,C 4⎝ ⎛⎭⎪⎫-76,0.10.如图,在△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .(1)求证:△MED 为等腰三角形. (2)求证:∠EMD =2∠DAC .(第10题图)解:(1)证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴ME=12AB,MD=12AB,∴ME=MD,∴△MED为等腰三角形.(2)∵ME=12AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE.同理,MD=12AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC.11.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC.(2)若点M在DE上,且DC=DM,求证:ME=BD.(第11题图)解:(1)证明:∵△ABC为等腰Rt△,∴AC=BC,∠CAB=∠CBA=45°.∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴BD=AD.又∵CA=CB,∴△BDC≌△ADC(SAS).∴∠DCA=∠DCB.又∵∠ACB=90°,∴∠DCA=∠DCB=45°.∵∠BDE=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDM=∠EDC.∴DE平分∠BDC.(第11题图解)(2)如解图,连结MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,∴CM=CD.又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC=180°-∠MDC=180°-60°=120°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM=15°.∴△ADC≌△EMC(AAS).∴ME=AD=BD.。

(完整版)初二数学等腰三角形练习题

(完整版)初二数学等腰三角形练习题

GFEDCBA等腰三角形练习一、填空题1、已知等腰三角形的一边长为5cm,另一边长为6cm,则它的周长为。

2、已知等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为.3、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm。

则腰长为4、在等腰三角形中,设底角为0x,顶角为0y,用含x的代数式表示y,得y= ;用含y的代数式表示x,则x= .5、有一个角等于50°,另一个角等于__________的三角形是等腰三角形.6、如图,∠A=15°,AB=BC=CD=DE=EF,则∠GEF=7、有一个内角为40°的等腰三角形的另外两个内角的度数为。

140°呢8、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为9、如果等腰三角形的三边均为整数且它的周长为10cm,那么它的三边长为10、如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60,且DE=1,则边BC的长为.二、选择题11、判定两个等腰三角形全等的条件可以是……………………( )。

A、有一腰和一角对应相等B、有两边对应相等C、有顶角和一个底角对应相等D、有两角对应相等12、等腰三角形一腰上的高线与底边的夹角等于( )A、顶角B、底角C、顶角的一半D、底角的一半13、在等腰三角形ABC中,∠A与∠B度数之比为5∶2,则∠A的度数是( )A、100°B、75°C、150°D、75°或100°PCBA14、在△ABC 中,AB=AC ,下列推理中错误的是……………………( )。

A 、如果AD 是中线,那么AD ⊥BC ,∠BAD=∠DAC B 、如果BD 是高,那么BD 是角平分线 C 、如果AD 是高,那么∠BAD=∠DAC 、BD=DCD 、如果AD 是角平分线,那么AD 也是BC 边的垂直平分线15、如图,P 、Q 是△ABC 边BC 上的两点,且QC =AP =AQ =BP =PQ ,则∠BAC =…( )A 、1250B 、1300C 、900D 、120016、如图,△ABC 中,AB =AC ,BD 、CE 为中线,图中共有等腰三角形( )个。

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析1.如图,在△ABC中,OB、OC分别是∠B和∠C的角平分线,过点O作EF∥BC,交AB、AC于点E、F,如果AB=10,AC=8,那么△AEF的周长为.【答案】18【解析】利用已知给出的平行线及角平分线的性质可得到许多对角是相等的,根据等校对等边的性质可得线段相等,进行等量代换周长可得.解:∵EF∥BC,∴∠2=∠3.又BO是∠ABC的平分线,∴∠1=∠3.∴∠2=∠1.于是EO=EB.同理,FO=FC.△AEF的周长为:(AE+EO)+(AF+FO)=(AE+EB)+(AF+FC)=10+8=18.故答案为18.点评:本题考查了平行线的性质和角平分线的定义及等腰三角形的判定;根据等角对等边,可以将周长转化为三角形两边长,有效的对线段进行转移是正确解答本题的关键.2.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,有下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD;⑤BE=CH.其中你认为正确的有.(填序号就可以)【答案】①②③【解析】①由CD是斜边AB上的高,∠ACB=90°,得到∠ACD+∠BCD=90°,∠BCD+∠B=90°,即可得到答案;②由角平分线的性质得到CE=EF,根据三角形的外角性质能求出∠CHE=∠CEA,推出CH=CE即可得到答案;③根据直角三角形全等的判定定理HL即可;④⑤根据边得关系即可判断.解:①∵CD是斜边AB上的高,∠ACB=90°,∴∠CDB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴①正确;②∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠C=90°,EF⊥AB,∴CE=FE,∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B,∠ACD=∠B,∴∠CHE=∠CEA,∴CH=CE,即:CH=CE=EF,∴②正确;③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF,∴Rt△ACE≌Rt△AFE,∴AC=AF,∴③正确;④∵CH=EF,∴CH≠HD,∴④错误;⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误;故答案为:①②③.点评:本题主要考查了角平分线的性质,等腰三角形的性质和判定,全等三角形的性质和判定,三角形的外角性质等知识点,解此题的关键是综合运用性质进行证明.此题题型较好,综合性强.3.如果一个三角形三边长为a、b、c,且满足(a+b+c)(a﹣c)=0,则该三角形的形状是.【答案】等腰三角形【解析】根据(a+b+c)(a﹣c)=0得到a=c,从而可以判定该图形的形状.解:∵(a+b+c)(a﹣c)=0,∴a+b+c=0或a﹣c=0,∵a、b、c,为三角形三边,∴a+b+c=0(舍去),∴a=c∴该三角形为等腰三角形,故答案为:等腰三角形.点评:本题考查了等腰三角形的判定,两条边相等的三角形是等腰三角形.4.如图,是两个完全相同且有一个角为60°的直角三角形所拼而成,则图中等腰三角形有个.【答案】3【解析】等腰三角形的判定定理问题,图中两个60°的直角三角形,可得∠B=∠C=30°∠D=∠AMD=60°,∠F=∠ANF=60°,由此可确定等腰三角形.解:如图所示,∵∠B=∠C=30°,∴AB=AC,∴△ABC是等腰三角形,∵∠D=∠AMD=60°,∠F=∠ANF=60°,∴AD=AM,AF=AN,∴△ADM、△ANF是等腰三角形,△ADM,△AFN,△ABC均为等腰三角形,共有三个.故填3.点评:本题考查了等腰三角形的判定及三角形内角和定理;求得各角的度数是正确解答本题的关键.5.在△ABC中,∠A=40°,当∠B= 时,△ABC是等腰三角形.【答案】40°或70°或100°【解析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.解:(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°﹣∠A﹣∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°﹣∠A)=70°.故答案为:40°或70°或100°.点评:本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况时∠B的度数是解此题的关键.6.在△ABC中,AB=AC,∠A=36°,BD是∠ABC的平分线,则图中共有个等腰三角形.【答案】3【解析】AB=AC,∠A=36°,BD是∠ABC的平分线,求出∠ABC,∠C,∠BDC,∠ABD,∠DBC的度数,即可得到∠A=∠ABD,∠BDC=∠C,根据等角对等边即可得出答案.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=(180°﹣36°)=72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,AD=BD,∵AB=AC,∴等腰三角形有:△ABC,△ADB,△BDC3个.故答案为:3.点评:本题主要考查了三角形的内角和定理,等腰三角形的性质和判定,三角形的外角性质等知识点,解此题的关键是求出各个角的度数.7.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC、△PDC、△PAD均为等腰三角形,则满足条件的点P有个.【答案】5【解析】利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.解:如图,作AB或DC的垂直平分线交l于P,如图,在l上作点P,使PA=AB,同理,在l上作点P,使PC=DC,如图,在长方形外l上作点P,使AB=BP,同理,在长方形外l上作点P,使PD=DC,故答案为5.点评:此题主要考查学生对等腰三角形判定的理解和掌握,此题难度较大,需要利用分类讨论的思想分析解答.8.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为.【答案】A【解析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=8,BC=5,即可推出BD的长度.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.点评:本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.9.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为.【答案】24【解析】根据AO、BO分别是角平分线和MN∥BA,求证△AON和△BOM为等腰三角形,再根据AC+BC=24,利用等量代换即可求出△CMN的周长解:AO、BO分别是角平分线,∴∠OAN=∠BAO,∠ABO=∠OBM,∵MN∥BA,∴∠AON=∠BAO,∠MOB=∠ABO,∴AN=ON,BM=OM,即△AON和△BOM为等腰三角形,∵MN=MO+ON,AC+BC=24,∴△CMN的周长=MN+MC+NC=AC+BC=24.故答案为:24.点评:此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证△AON和△BOM为等腰三角形,难度不大,是一道基础题.10.如图:在△ACB中,点D是AB边上一点,且∠ACB=∠CDA,∠CAB的平分线分别交CD、BC于点E、F.(1)作出∠CAB的平分线AE;(2)试说明△CEF是什么三角形?并证明你的结论.【答案】见解析【解析】(1)根据角平分线定义画出图形即可;(2)根据角平分线定义推出∠CAE=∠DAE,根据三角形内角和定理得出∠ACB=∠CDA,求出∠CFA=∠AED,推出∠CFE=∠CEF,根据等角对等边推出CE=CF即可.解:(1)如图所示:;(2)△CEF是等腰三角形.证明:∵AE是∠CAB的平分线,∴∠CAE=∠DAE,∵∠CAE+∠ACB+∠CFE=180°∠DAE+∠CDA+∠AED=180°,∵∠ACB=∠CDA,∴∠CFA=∠AED,∵∠AED=∠CEF,∴∠CFE=∠CEF,∴CE=CF,即△CEF是等腰三角形.点评:本题考查了等腰三角形的判定,三角形的内角和定理,角平分线定义等知识点,注意:等角对等边.11.如图,在△ABC中,∠B=∠C=30°,D是BC的中点,连接AD,求∠BAD与∠ADC的度数.【答案】60°【解析】因为∠B=∠C=30°,所以△ABC是等腰三角形,又因为D是BC的中点,所以AD⊥BC (三线合一)即∠ADC=90°,所以△ADB,△ADC是直角三角形,利用三角形内角和是180°求∠BAD=60°.解:∵△ABC中,∠B=∠C=30°,∴AB=AC,∵D是BC的中点,∴AD⊥BC,∴∠ADC=90°∠ADB=90°,∴∠BAD=∠ADB﹣∠B,=90°﹣30°,=60°.点评:本题考查等腰三角形的判断方法:等角对等边和等腰三角形的一个重要性质:“三线合一”是一小型的综合题.12.如图,四边形ABCD中,∠ABC=∠ADC=90°,E是对角线AC的中点,连接BE、DE(1)若AC=10,BD=8,求△BDE的周长;(2)判断△BDE的形状,并说明理由.【答案】(1)△BDE的周长为18(2)见解析【解析】(1)根据直角三角形斜边上的中线的性质求出ED、BE的值,再代入BD+DE+BE求出即可;(2)根据直角三角形斜边的中线性质求出DE=BE=AC,根据等腰三角形的判定即可得出答案.解:(1)∵∠ABC=∠ADC=90°,E是对角线AC的中点,AC=10,∴DE=AC=5,BE=AC=5,∴△BDE的周长为BD+DE+BE=8+5+5=18,答:∴△BDE的周长为18.(2)△BDE是等腰三角形,理由是:∵∠ABC=∠ADC=90°,E是对角线AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴△BDE是等腰三角形.点评:本题考查了直角三角形斜边的中线和等腰三角形的判定的应用,直角三角形斜边的中线等于斜边的一半,有两边相等的三角形是等腰三角形.13.已知等腰三角形ABC,∠A是顶角,且∠A等于∠C的一半,BD是△ABC的角平分线,则该图中共有等腰三角形的个数是()A.4个B.3个C.2个D.1个【解析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.解:∵AB=AC,∴△ABC是等腰三角形,∵∠A是顶角,且∠A等于∠C的一半,∴∠A+∠C+∠ABC=∠A+2∠A+2∠A=180°,∴∠A=36°,∠C=∠ABC=72°,BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故选B.点评:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.14.在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】假如∠A=100°,求出∠B=100°,不符合三角形的内角和定理,即可判断①;假如∠C=100°,能够求出∠A、∠B的度数;关键等腰三角形的判定推出AC=BC,即可判断③④.解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠b=(180°﹣∠c)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选B.点评:本题考查了等腰三角形的判定和三角形的内角和定理等知识点的应用,能根据定理进行说理是解此题的关键,分类讨论思想的运用.15.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【解析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.16.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【答案】D【解析】本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选D.点评:本题容易找出三条边上的高交于点O,是满足题中要求的点,其它点容易漏掉,这样的点不一定是等腰三角形的顶角所在的点,也可以是底角所在的点,明白这点后,就要做圆来找到所要求的点.17.若△ABC的三边长分别为a,b,c,且满足(a﹣b)•(a2+b2﹣c2)=0,则△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】了解等腰三角形和直角三角形判定标准,是解题的关键.解:∵(a﹣b)•(a2+b2﹣c2)=0,∴(a﹣b)=0或(a2+b2﹣c2)=0,即a=b或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.点评:本题利用了等腰三角形的判定和勾股定理的逆定理求解.18.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°【答案】C【解析】由已知条件,根据线段垂直平分线的性质得到线段及角相等,再利用直角三角形两锐角互余得到∠B=(180°﹣∠ADB)÷2答案可得.解:∵DE垂直平分AB,∴AD=DB∴∠B=∠DAB∵∠C=90°,∠CAD=20°∴∠B=(180°﹣∠C﹣∠CAD)÷2=35°故选C点评:本题考查了线段垂直平分线的性质、等腰三角形的判定与性质及三角形内角和定理;解决本题的关键是利用线段的垂直平分线性质得到相应的角相等,然后根据三角形的内角和求解.19.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5B.6C.7D.8【答案】A【解析】根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+CE=5.故选A.点评:此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.20.已知a,b,c为△ABC的三边且(a﹣b)(b﹣c)=0,则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.无法确定【答案】A【解析】根据(a﹣b)(b﹣c)=0,得到a=b或b=c,从而判定三角形ABC的形状.解:∵(a﹣b)(b﹣c)=0,∴(a﹣b)=0或(b﹣c)=0,∴a=b或b=c∴△ABC为等腰三角形.故选A.点评:本题考查了等腰三角形的判定,解题的关键是根据题目提供的式子判定a=b或b=c.。

初二数学等腰三角形和等边三角形知识点与例题

初二数学等腰三角形和等边三角形知识点与例题

等腰三角形和等边三角形等腰三角形的定义:有两边相等的三角形是等腰三角形相等的两个边称为这个三角形的腰 等腰三角形的性质:1.等腰三角形的两个底角相等。

(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“等腰三角形的三线合一”)3.等腰三角形的两底角的平分线相等。

(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 等腰三角形的判定:1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义) 2.在同一三角形中,有两个角相等的三角形是等腰三角形(简称:在同一三角形中,等角对等边)等边三角形定义:三条边都相等的三角形叫做等边三角形等边三角形的性质:⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。

⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。

(四心合一)⑹等边三角形内任意一点到三边的距离之和为定值(等于其高) 等边三角形的判定:⑴三边相等的三角形是等边三角形(定义)⑵三个内角都相等(为60度)的三角形是等边三角形⑶有一个角是60度的等腰三角形是等边三角形(4) 两个内角为60度的三角形是等边三角形(5) 说明:可首先考虑判断三角形是等腰三角形。

(6) 等边三角形的性质与判定理解:(7) 首先,明确等边三角形定义。

三边相等的三角形叫做等边三角形,也称正三角形。

其次,明确等边三角形与等腰三角形的关系。

等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

练习-初二数学周末练习6(等腰三角形(二))

练习-初二数学周末练习6(等腰三角形(二))

初二周末练习6(等腰三角形(二))周末练习(一)选择题(每小题5分,共40分)1.下列图形中,不是轴对称图形的是().A.角B.等边三角形C.线段D.不等边三角形2.两个图形关于某直线对称,对称点一定在().A.这直线的两旁B.这直线的同旁C.这直线上D.这直线两旁或这直线上3.如图是奥运会会旗上的五球圆形,它有()条对称轴.A.1 B.2C.3D.4第3题图第4题图4.如图,在△AB C中,∠B、∠C的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论中:①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF;正确的有()A.1个B.2个C.3个D.4个5.下列说法中错误的是().A.两个轴对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个三角形对称D.轴对称指的是两个图形沿着某一直线对折后重合6.下列说法正确的是().A.圆的直径是对称轴B.角的平分线是对称轴C.角的平分线所在直线是对称轴D.长方形只有4条对称轴7.如图,BC=BD,AD=AE,DE=CE,∠A=36°,则∠B=().A.45°B.36°C.72°D.30°第7题图第8题图8.在平面镜里看到背后墙上,电子钟示数如图示,这时的时间应是().A.21:05 B.21:15 C.20:15 D.20:05(二)填空题(每小题5分,共30分)9.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__________.10.等腰三角形的一个角为100°,则它的两底角为__________.11.△ABC中,∠A=40°,∠B=70°,则△ABC为__________三角形.12.在△ABC中,AB=AC,若=30°则∠A=__________,∠B=__________.13.在等腰三角形中,一个内角为30°,则另外两个内角为__________.14.如图,△ABC中,BC边的垂直平分线DE交BC于D,交AC于E,BE=5厘米,△BCE的周长是18厘米,则BC的长为__________.(三)解答题(共30分,15题6分,16—18题每题8分)15.已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.尺规作图,保留作图痕迹,写出作法.作法:16.如图,,,,M为CD的中点.求证:.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,求该三角形顶角的度数.18.如图,△ABC中,∠C=90°,D是AB上一点,且AC=AD,请问∠A与∠DCB具有怎样的关系?并说明理由.参考答案(一)选择题1.D 2.D 3.A 4.C 5.C 6.C 7.B 8.A(二)填空题9.3;10.40°,40°;11.等腰12.80°,50°13.75°,75°或120°,30°14.8cm(三)解答题15.作法:作∠AOB的平分线OC作MN的垂直平分线DEDE与OC相交于点P点P即为所求作的。

初二数学第8讲:等腰三角形(学生版)-

初二数学第8讲:等腰三角形(学生版)-

第八讲等腰三角形(一)等腰三角形的性质1、有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角相等,且每一个角都等于60°.等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2、定理及推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线相互垂直的重要依据。

(二)等腰三角形的判定1、有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边相等推论1、三个角都相等的三角形是等边三角形。

推论2、有一个角等于60°的等腰三角形是等边三角形。

推论3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2、定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据。

3、等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线相互重合,添加辅助线时,有时作哪条线都可以,有时需要作ABC 第2题图 5 顶角的平分线,有时则需要作高或中线,视具体情况而定。

1.等腰三角形的性质特点。

2.等腰三角形中边角关系及其应用。

3.等腰三角形的判定,以及常用辅助线的做法。

1.如图,在△ABC 中,以BC 为圆的直径分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是A.BD ⊥ACB.AC 2=2AB ·AEC.△ADE 是等腰三角形D. BC =2AD.【答案】D【解析】∵BC 为圆的直径,∴∠BDC=90°,即BD ⊥AC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.如图,沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,∠DAM=30°,则AN=_________cm,∠NAM=_________.
.
15.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.
16.在数学活动课上,小明提出这样一个问题:∠B=∠C=90 ,E是BC的中点,DE平分∠ADC,∠CED=35 ,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.
二、解答题(共68分)
17.(5分)如图,已知AB与CD相交于O,∠A=∠D,CO=BO,
求证: △AOC≌△DOB.
12.如图,已知在 中, 平分 , 于 ,若 ,则 的周长为cm.
13.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.
初二数学等腰三角形习题
————————————————————————————————作者:
————————————————————————————————日期:
人教新课标八年级数学(上)自主学习达标检测(一)
班级学号姓名得分
一、填空题(每题2分,共32分)
1.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)
9.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF的边中必有一条边等于______.
10.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.
11.如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则 的面积为______.
已知:
求证:
证明:
23.(5分)如图,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BAC.
24.(5分)如图,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB= ,求BE的长.
25.(6分)阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
6.如图,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.
7.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.
8.如图4,对相等的角______.
2.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.
3.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=____.
4.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是__________.
5.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.
八年级数学(上)自主学习达标检测(一)
一、填空题
1.一定,一定不2.50度3.40度4.AD=BC5.HL6.∠A=∠C7.48.∠A=∠D,∠B=∠C9.9.5或410.511.8 12.1513.正确14.5,30度15.1.5cm 16.35度
二、解答题
17.略18.略19.略20.在同一直线上21.略
28.(8分)如图1,以 的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结 ,
(1)试判断 与 面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是 平方米,内圈的所有三角形的面积之和是 平方米,这条小路一共占地多少平方米?
27.(7分)如图16,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)写出图中一对全等的三角形,并写出它们的所有对应角;
(2)设 的度数为x,∠ 的度数为 ,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
18.(5分)如图,∠C=∠D,CE=DE.求证:∠BAD=∠ABC.
19.(5分)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,
求证:AD=CF.
20.(5分)如图,公园有一条“ ”字形道路 ,其中 ∥ ,在 处各有一个小石凳,且 , 为 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
证明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC……第一步
∴∠BAE=∠CAE……第二步
问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.
26.(6分)如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.
21.(5分)已知:如图11,在Rt△ABC中,∠C=90°,∠BAD= ∠BAC,过点D作DE⊥AB,DE恰好是∠ADB的平分线,求证:CD= DB.
22.(6分)如图,给出五个等量关系:① ② ③ ④ ⑤ .请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
22.情况一:已知:
求证: (或 或 )
情况二:已知:
求证: (或 或 )
23略24.BF=ﻩ1 25.上面证明过程不正确;错在第一步。正确过程如下:在△BEC中,∵BE=CE,∴∠EBC=∠ECB, 又∵∠ABE=∠ACE,∴∠ABC=∠ACB, ∴AB=AC。在△AEB和△AEC中,AE=AE。BE=CE,AB=AC,∴△AEB≌△AEC,∠BAE=∠CAE。26.略27.(1)△ADE≌△A′DE,∠ADE=∠A′DE,∠AED=∠A′ED,∠A=∠A′;(2) ;(3)2∠A=∠1+∠228.(1) 与 面积相等(证等底等高);(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,所以这条小路的面积为 平方米.
相关文档
最新文档