第五章 时间序列的模型识别
5时间序列模型
方差函数: 自协方差函数:
? ? 2 t
?
D(Y) t
?
?
[ yE?
??
(Y) td]2 FYt ( y)
?? Cov(Yt ,Ys ) ??E ???Yt EYt ??Ys ??EYs ??? t,s ? (t, s)
自相关函数(ACF):
? ?ts, ? ?? ts, ?
?(ts,) ??tt, ????s,
模型
? 完善阶段 :
? 异方差场合
? Robert F.Engle,1982年,ARCH模型 ? Bollerslov,1986年GARCH模型
? 多变量场合
? C.A.Sims等,1980年,向量自回归模型 ? C.Granger ,1987年,提出了协整(co-integration)理论
模拟时间序列数据:
8
? 随机过程与时间序列的关系如下所示:
随机过程: {y1, y2, …, yT-1, yT,} 第1次观测:{y11, y21, …, yT-11, yT1} 第2次观测:{y12, y22, …, yT-12, yT2}
???? ? 第n次观测:{y1n, y2n, …, yT-1n, yTn}
一般的,对于任意 m ? N,,t,1 t2 L , tm ? T,Yt1 ,L ,Ytm 的联合分布函数为:
FYt1 ,Yt2 ,L ,Ytm ( y1 ,,y,)2 L ymP ?? (Yt1 y1Y,,L tm ? ym )
均值方程:
? ?t ? E(Yt ) ?
?
?? ydFYt ( y)
9
2、随机过程的分布及其数字特征
设{Yt}为一个随机过程,对任意一个 t ? T ,Yt的分布函数为:
《时间序列模型识别》课件
外汇汇率预测
外汇汇率预测是时间序列模型的又一重要应用。通过分析历史外汇汇率数据,时 间序列模型可以预测未来的汇率走势,帮助投资者制定外汇交易策略。
常用的时间序列模型同样适用于外汇汇率预测,如ARIMA、SARIMA、VAR、 VARMA等。这些模型能够捕捉外汇汇率的动态变化规律,为投资者提供有价值 的参考信息。
总结词
气候变化趋势分析是全球气候治理的重要基 础,利用时间序列模型可以对气候变化趋势 进行定量评估,为政策制定提供科学依据。
详细述
通过长时间尺度的历史气候数据,建立时间 序列模型,并利用该模型分析气候变化的趋 势。分析结果可以为应对气候变化、制定减 排政策等提供决策支持。
06
时间序列模型在生产领域 的应用
解释性
选择易于解释的模型,有助于 理解时间序列数据的内在规律 。
计算效率
考虑模型的计算效率和可扩展 性,以便在实际应用中快速处
理大量数据。
03
时间序列模型性能评估
预测精度评估
01
均方误差(MSE)
衡量预测值与实际值之间的平均 差异,值越小表示预测精度越高 。
02
平均绝对误差( MAE)
计算预测值与实际值之间的绝对 差值的平均值,值越小表示预测 精度越高。
03
均方根误差( RMSE)
将预测误差的平方和开方,反映 预测值的离散程度,值越小表示 预测精度越高。
模型稳定性评估
模型参数稳定性
评估模型参数在多次运行或不同数据集上的稳定性, 以确保模型的可靠性。
模型结构稳定性
时间序列模型的分析
时间序列模型的分析时间序列模型是一种用于分析时间序列数据的统计模型,在许多领域都有广泛的应用,如经济学、金融学、自然科学等。
时间序列模型通过建立数学模型,来描述随时间变化而产生的观测数据的模式和规律,从而可以预测未来的变化趋势。
时间序列模型的分析过程一般包括数据收集、数据预处理、模型选择和评估以及预测。
首先,收集数据是分析时间序列的第一步,可以通过各种途径获得观测数据。
然后,对数据进行预处理,包括去除趋势、季节性和异常值等,以保证模型分析的准确性。
接下来,选择适当的时间序列模型是至关重要的,常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归积分移动平均模型(SARIMA)等。
根据观测数据的特点和分析目的,选择合适的模型对数据进行拟合和预测。
最后,通过对模型进行评估,可以判断模型的拟合效果和预测准确性,如果模型不理想,需要对模型进行优化或者选择其他模型。
时间序列模型的选择和评估涉及到许多统计方法和技术。
首先,可以通过观察自相关图(ACF)和偏自相关图(PACF)来初步判断时间序列是否存在自相关性和季节性。
自相关图展示了观测值与某个滞后阶数的观测值之间的相关性,而偏自相关图则展示了在排除其他相关性的情况下,某个滞后阶数的观测值与当前观测值之间的相关性。
接着,可以使用信息准则(如赤池信息准则、贝叶斯信息准则)和残差分析等方法来选择合适的模型。
信息准则是一种模型选择标准,通过最小化信息准则的值来选择最优模型。
残差分析则用于检验模型的拟合效果,通常要求残差序列是白噪声序列,即残差之间不存在相关性。
在时间序列模型的预测过程中,常用的预测方法包括移动平均法、指数平滑法、ARMA模型预测法等。
其中,移动平均法用于捕捉序列的平稳性和周期性,指数平滑法适用于序列有趋势性和趋势变化的场景,而ARMA模型则可应对序列存在自相关性的情况。
根据实际情况,可以选择不同的方法进行预测。
【2019年整理】时间序列分析--第五章非平稳序列的随机分析
尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
4/8/2019
时间序列分析
差分后序列时序图
一阶差分
二阶差分
4/8/2019
时间序列分析
例5.3
差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
4/8/2019
时间序列分析
差分后序列时序图
4/8/2019
时间序列分析
差分方式的选择
序列蕴含着显著的线性趋势,一阶差分 就可以实现趋势平稳 序列蕴含着曲线趋势,通常低阶(二阶 或三阶)差分就可以提取出曲线趋势的 影响 对于蕴含着固定周期的序列进行步长为 周期长度的差分运算,通常可以较好地 提取周期信息
时间序列分析
4/8/2019
例5.1
时间序列分析
ARIMA模型建模步骤
获 得 观 察 值 序 列 平稳性 检验 N 差分 运算 Y 白噪声 检验 N 拟合 ARMA 模型
时间序列分析
Y
分 析 结 束
4/8/2019
例5.6
对1952年——1988年中国农业实际国民 收入指数序列建模
4/8/2019
时间序列分析
一阶差分序列时序图
第五章
非平稳序列的随机分析
4/8/2019
时间序列分析
本章结构
差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
4/8/2019
时间序列分析
5.1 差分运算
差分运算的实质 差分方式的选择 过差分
时间序列分析模型概述
时间序列分析模型概述时间序列分析是一种统计方法,用于研究时间序列数据中的模式、趋势和周期性。
它基于时间序列数据的特点,通过建立数学模型来预测未来的数值。
时间序列数据是按照时间顺序排列的一系列观测值,它们通常用于描述一种随时间变化的现象。
例如,股票价格、气温、销售数据等都是时间序列数据。
时间序列分析的目标是通过对已知的观测值进行分析,找出数据中的规律,并利用这些规律来预测未来的数值。
时间序列分析模型通常可以分为两类:基于统计方法的模型和基于机器学习的模型。
基于统计方法的时间序列模型包括AR(自回归模型)、MA (移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。
这些模型基于不同的假设和理论,通过寻找数据中的自相关和移动平均性质,来建立模型并进行预测。
它们常常需要对数据进行平稳性检验和参数估计。
基于机器学习的时间序列模型包括神经网络模型、支持向量机模型和深度学习模型等。
这些模型不同于统计方法,它们通过学习时间序列数据中的特征和模式来建立预测模型。
这些模型通常需要大量的数据进行训练,并且需要对模型进行调参。
除了上述模型,时间序列分析还可以包括季节性调整模型、外生变量模型等。
季节性调整模型是用于处理具有明显季节性的时间序列数据,它通过分解数据中的趋势和季节成分,来消除季节性的影响,从而提高预测的准确性。
外生变量模型是将其他影响因素(例如经济指标、政策变化等)引入时间序列模型中,以更全面地考虑影响因素对数据的影响。
时间序列分析模型在经济学、金融学、气象学等领域有着广泛的应用。
例如,在金融领域,时间序列分析模型可以用于预测股票价格和汇率等,帮助投资者做出更准确的投资决策。
在气象学领域,时间序列分析模型可以用于预测天气变化,从而为农业生产和灾害预防提供支持。
总之,时间序列分析是一种重要的数据分析方法,用于处理时间序列数据并进行预测。
它采用统计方法和机器学习方法来建立模型,并通过对数据的分析来找出数据中的规律和趋势。
时间序列分析中模式识别方法的应用-模式识别论文
时间序列分析中模式识别方法的应用摘要:时间序列通常是按时间顺序排列的一系列被观测数据,其观测值按固定的时间间隔采样。
时间序列分析(Time Series Analysis)是一种动态数据处理的统计方法,就是充分利用现有的方法对时间序列进行处理,挖掘出对解决和研究问题有用的信息量。
经典时间序列分析在建模、预测等方面已经有了相当多的成果,但是由于实际应用中时间序列具有不规则、混沌等非线性特征,使得预测系统未来的全部行为几乎不可能,对系统行为的准确预测效果也难以令人满意,很难对系统建立理想的随机模型。
神经网络、遗传算法和小波变换等模式识别技术使得人们能够对非平稳时间序列进行有效的分析处理,可以对一些非线性系统的行为作出预测,这在一定程度上弥补了随机时序分析技术的不足。
【1】本文主要是对时间序列分析几种常见方法的描述和分析,并重点介绍神经网络、遗传算法和小波变换等模式识别方法在时间序列分析中的典型应用。
关键字:时间序列分析模式识别应用1 概述1.1 本文主要研究目的和意义时间序列分析是概率论与数理统计学科的一个分支,它是以概率统计学作为理论基础来分析随机数据序列(或称动态数据序列),并对其建立数学模型,即对模型定阶、进行参数估计,以及进一步应用于预测、自适应控制、最佳滤波等诸多方面。
由于一元时间序列分析与预测在现代信号处理、经济、农业等领域占有重要的地位,因此,有关的新算法、新理论和新的研究方法层出不穷。
目前,结合各种人工智能方法的时序分析模型的研究也在不断的深入。
时间序列分析已是一个发展得相当成熟的学科,已有一整套分析理论和分析工具。
传统的时间序列分析技术着重研究具有随机性的动态数据,从中获取所蕴含的关于生成时间序列的系统演化规律。
研究方法着重于全局模型的构造,主要应用于对系统行为的预测与控制。
时间序列分析主要用于以下几个方面:a 系统描述:根据观测得到的时间序列数据,用曲线拟合的方法对系统进行客观的描述;b 系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;c 未来预测:一般用数学模型拟合时间序列,预测该时间序列未来值;d 决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到偏离目标时便可进行控制。
第五章 时间序列的模型识别
13
上海财经大学 统计与管理学院 14
上海财经大学 统计与管理学院 15
上海财经大学 统计与管理学院 16
上海财经大学 统计与管理学院 17
上海财经大学 统计与管理学院 18
上海财经大学 统计与管理学院 19
上海财经大学 统计与管理学院 20
上海财经大学 统计与管理学院 21
上海财经大学 统计与管理学院 22
上海财经大学 统计与管理学院 5
上海财经大学 统计与管理学院
6
上海财经大学 统计与管理学院
7
上海财经大学 统计与管理学院 8
上海财经大学 统计与管理学院 9
上海财经大学 统计与管理学院 10
上海财经大学 统计与管理学院 11
上海财经大学 统计与管理学院 12
上海财经大学 统计与管理学院
上海财经大学 统计与管理学院 27
上海财经大学 统计与管理学院 28
上海财经大学 统计与管理学院 29
上海财经大学 统计与管理学院 30
上海财经大学 统计与管பைடு நூலகம்学院 31
上海财经大学 统计与管理学院 32
上海财经大学 统计与管理学院
33
上海财经大学 统计与管理学院 34
上海财经大学 统计与管理学院
上海财经大学 统计与管理学院 23
X t 1 X t 1 2 X t 2 p X t p t 进行拟合。根据模型阶数节省原则(parsimony principle),采取由低阶逐步升高的“过拟合”办 法。先对观测数据拟合模型AR(p)(p=1,2,…), 用递推最小二乘估计其参数并分别计算对应模型 的残差平方和。根据适用的模型应具有较小的残 差平方和的特点,用F准则判定模型的阶数改变 后相应的残差平方和变化是否显著。
统计学原理第5章:时间序列分析
a a
n 118729 129034 132616 132410 124000 5
127357.8
②时点序列
若是连续时点序列: 计算方法与时期序列一样; 若是间断时点序列: 则必须先假设两个条件,分别是 假设上期期末水平等于本期期初水平; 假设现象在间隔期内数量变化是均匀的。 间隔期相等的时点序列 采用一般首尾折半法计算。 例如:数列 a i , i 0,1,2, n 有 n 1 个数据,计算 期内的平均水平 a n a n 1 a 0 a1 a1 a 2
(3)联系
环比发展速度的乘积等于相应的定基发展速度,
n n i 0 i 1 i 1
相邻两期的定基发展速度之商等于后期的环比发展速度
i i 1 i 0 0 i 1
(二)增减速度
1、定义:增长量与基期水平之比 2、反映内容:现象的增长程度 3、公式:增长速度
0.55
二、时间序列的速度分析指标
(一)发展速度 (二)增长速度 (三)平均发展水平
(四)平均增长速度
(一)发展速度
1、定义:现象两个不同发展水平的比值 2、反映内容:反映社会经济现象发展变化快慢相对程度 3、公式:v 报告期水平 100%
基期水平
(1)定基发展速度
是时间数列中报告期期发展水平与固定基期发展水平对比所 得到的相对数,说明某种社会经济现象在较长时期内总的发 展方向和速度,故亦称为总速度。 (2)环比发展速度 是时间数列中报告期发展水平与前期发展水平之比,说明某 种社会经济现象的逐期发展方向和速度。
c
a
b
均为时期或时点数列,一个时期数列一个时点数列,注意平均的时间长度 ,比如计算季度的月平均数,时点数据需要四个月的数据,而时期数据则 只需要三个月的数据。
《时间序列模型》课件
对异常值的敏感性
时间序列模型往往对异常值非常敏感,一个或几个异常值可能会对整个模型的预测结果产生重大影响 。
在处理异常值时,需要谨慎处理,有时可能需要剔除异常值或使用稳健的统计方法来减小它们对模型 的影响。
PART 06
指数平滑模型
总结词
利用指数函数对时间序列数据进行平滑处理,以消除随机波动。
详细描述
指数平滑模型是一种非参数的时间序列模型,它利用指数函数对时间序列数据进行平滑处理,以消除 随机波动的影响。该模型通常用于预测时间序列数据的未来值,特别是对于具有季节性和趋势性的数 据。
GARCH模型
要点一
总结词
用于描述和预测时间序列数据的波动性,特别适用于金融 市场数据的分析。
时间序列的构成要素
时间序列由时间点和对应的观测值组成,包括时间点和观测值两 个要素。
时间序列的表示方法
时间序列可以用表格、图形、函数等形式表示,其中函数表示法 最为常见。
时间序列的特点
动态性
时间序列数据随时间变化而变化,具有动态 性。
趋势性
时间序列数据往往呈现出一定的趋势,如递 增、递减或周期性变化等。
随机性
时间序列数据受到多种因素的影响,具有一 定的随机性。
周期性
一些时间序列数据呈现出明显的周期性特征 ,如季节性变化等。
时间序列的分类
根据数据性质分类
时间序列可分为定量数据和定性数据两类。定量数据包括 连续型和离散型,而定性数据则包括有序和无序类型。
根据时间序列趋势分类
时间序列可分为平稳和非平稳两类。平稳时间序列是指其统计特 性不随时间变化而变化,而非平稳时间序列则表现出明显的趋势
第五章 平稳时间序列模型的建立
2. 样本偏自相关函数截尾性的判断方法
可以证明:若序列xt为AR(p)序列,则
k>p后,序列的样本偏自相关函数ˆkk 服
从渐近正态分布,即近似的有:
ˆkk
~
N (0, 1 ) n
此处n表示样本容量。于是可得:
P( ˆkk
1 ) 31.7% n
P( ˆkk
2 ) 4.5% n
在实际进行检验时,可对每个k>0,分
将上式展开得:
xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个。
式中:
0 (1 1 2 p )
即有:
0
11 2 p
在实际估计模型时,可将θ0看作一个常数估计, 若θ0显著不为0,则μ≠0,此时θ0 、 μ 有如上关系。 若θ0显著为0,则可认为μ=0,在最终模型中将此常数 项去掉即可。
– 原假设:序列非平稳
H0:1 1
– 备择假设:序列平稳
检验统计量
H0:1 1
– –
时 1 1 时 1 1
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
ˆ1 1 S(ˆ1)
DF统计量
1 1 时
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
1 1 时
ˆ1 S (ˆ1
对ACF和PACF的截尾性作一判断。
1. 样本自相关函数截尾性的判断方法
理 则论k>上q后证,明序:列若的序样列本xt自为相MA关(q函)序数列ˆ k,渐
近服从正态分布,即:
ˆ k
~
N (0, 1 (1 2 q
n
时间序列的模型识别课件
时间序列的模型基础
1 自回归模型(AR)
利用过去时刻的观测值来预测未来时刻的值。
2 移动平均模型(MA)
根据过去时刻的预测误差来预测未来时刻的值。
3 自回归移动平均模型(ARMA)
结合自回归和移动平均模型的特点,适用于一般的时间序列。
时间序列的平稳性检验
1 平稳性的概念
时间序列的均值和方差在时间上保持恒定。
ARMA模型
自回归移动平均模型是自回归模型和移动平均模型的综合应用。它能够捕捉 时间序列的长期和短期动态特征。
ARIMA模型
自回归积分移动平均模型是自回归模型、差分和移动平均模型的组合应用。 它适用于具有趋势和季节性的时间序列。
季节性调整
对具有季节性的时间序列进行季节性调整可以消除季节性的影响,使时间序 列更具可预测性。
时间序列的模型识别ppt 课件
时间序列是按照时间顺序排列的数据集合,它具有趋势、季节性和周期性等 特征。本课程将介绍时间序列的基础概念和模型识别方法,帮助您更好地理 解和应用时间序列分析。
介绍时间序列
时间序列是按照时间顺序排列的数据集合,常见于经济、金融、气象等领域。了解时间序列的基 本概念和特征对于进行模型识别和预测至关重要。
2 单位根检验
用于判断时间序列是否具有单位根,进而确定是否为平稳序列。
3 差分
通过对时间序列进行差分,将非平稳序列转化为平稳序列。
AR模型
自回归模型是基于过去时刻的观测值进行预测的模型。它的特点是具有记忆性,各个时刻的值受 前面时刻的影响。
MA模型
移动平均模型是根据过去时刻的预测误差进行预测的模型。它的特点来自对预 测误差有很好的适应能力。
第五章-时间序列的模型识别
希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便 成了路。
生命赐给我们,我们必须奉献生命,才能获得生命。
中落入 ˆkk
1 T
或 ˆkk
2 的比例是否占总数 M 的 68.3%或 95.5%。 T
一般地,我们取 M T 。如果 p p0 之前ˆkk 都明显地不为零,而当 p p0 时,
出初步的模型识别。
表 5.3 某车站 1993-1997 年个月的列车运行数量数据(单位:千列·千米)
k
观测值 k
观测值 k
观测值 k
观测值 k
观测值 k
观测值
1 1196.8 11 1206.5 21 1238.9 31 1261.6 41 1183.0 51 1306.0 2 1181.3 12 1204.0 22 1267.5 32 1274.5 42 1228.0 52 1209.0 3 1222.6 13 1234.1 23 1200.9 33 1196.4 43 1274.0 53 1248.0 4 1229.3 14 1146.0 24 1245.5 34 1222.6 44 1218.0 54 1208.0 5 1221.5 15 1304.9 25 1249.9 35 1174.7 45 1263.0 55 1231.0 6 1148.4 16 1221.9 26 1220.1 36 1212.6 46 1205.0 56 1244.0 7 1250.2 17 1244.1 27 1267.4 37 1215.0 47 1210.0 57 1296.0 8 1174.4 18 1194.4 28 1182.3 38 1191.0 48 1243.0 58 1221.0 9 1234.5 19 1281.5 29 1221.7 39 1179.0 49 1266.0 59 1287.0 10 1209.7 20 1277.3 30 1178.1 40 1224.0 50 1200.0 60 1191.0 图 5.3,5.4 分别为原始数据和平稳化以后(第 8 章将给出具体平稳化方法)数据的散点图。 希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便 成了路。
经济时间序列分各种模型分析
经济时间序列分各种模型分析经济时间序列分析是经济学中非常重要的一个研究领域。
对于经济时间序列,我们可以使用多种模型进行分析,以揭示其中的规律和趋势。
本文将介绍几种常见的经济时间序列模型。
首先,最常用的模型是自回归移动平均模型(ARMA)。
ARMA模型结合了自回归(AR)和移动平均(MA)两个部分,用于描述时间序列数据中的自相关性和滞后平均性。
通过对历史数据进行分析,我们可以建立ARMA模型,并预测未来的经济变化。
其次,自回归条件异方差模型(ARCH)是一种考虑时间序列数据波动性变化的模型。
在经济领域,波动性是一个非常重要的指标,因为它涉及到风险和不确定性。
ARCH模型基于时间序列数据内在的波动性特征,可以更好地描述经济变动过程中的波动性变化。
另外,向量自回归模型(VAR)是一种多变量时间序列模型。
与单变量时间序列模型不同,VAR模型可以同时考虑多个经济变量之间的相互关系和影响。
通过建立VAR模型,我们可以分析各个经济变量之间的因果关系,并进行经济政策的预测。
此外,状态空间模型是一种广义的时间序列模型,可以包含各种经济数据。
状态空间模型可以用来描述许多复杂的现象,例如经济周期、金融市场波动等。
通过建立状态空间模型,我们可以更全面地分析经济系统的结构和运行机制。
最后,非线性时间序列模型是一类适用于非线性数据的经济时间序列模型。
在现实经济中,很多经济变量的关系不能简单地用线性模型来描述。
非线性时间序列模型可以更准确地捕捉经济系统中的非线性关系,从而提供更精确的预测结果。
总之,经济时间序列分析可以使用多种模型进行分析。
从基本的ARMA模型到更复杂的VAR模型、ARCH模型、状态空间模型和非线性时间序列模型,每种模型都有其适用的领域和优势。
经济学家通过对时间序列数据的建模和分析,可以更好地理解经济变动的规律和趋势,并对未来经济发展进行预测和决策。
经济时间序列分析作为经济学中的一个重要分支,对于理解和预测经济变动具有极大的意义。
时间序列常用模型
时间序列常用模型时间序列是指在时间轴上按照一定时间间隔采取的数据集合。
它广泛应用于金融、经济、气象、环境等领域。
在时间序列中,我们可以使用各种模型来描述和预测数据的未来走势,其中常用的模型有以下几种:1. 移动平均模型(MA)移动平均模型是一种简单的时间序列预测模型,它基于过去一段时间内的平均值来预测未来的走势。
移动平均模型可以分为简单移动平均模型(SMA)和加权移动平均模型(WMA)。
SMA是指在过去n个时间点的数据取平均值,而WMA则是在过去n个时间点的数据按照不同的权重取平均值。
2. 自回归模型(AR)自回归模型是一种基于过去一段时间内的自身值来预测未来走势的模型。
AR模型可以分为AR(p)模型和ARIMA(p,d,q)模型,其中p 表示自回归项的阶数,d表示差分的阶数,q表示移动平均项的阶数。
ARIMA模型在AR模型的基础上加入了差分项,可以处理非平稳时间序列。
3. 移动平均自回归模型(ARMA)移动平均自回归模型是自回归模型和移动平均模型的结合体,它可以同时考虑过去一段时间内的自身值和平均值来预测未来走势。
ARMA模型可以分为ARMA(p,q)模型,其中p表示自回归项的阶数,q表示移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是ARIMA模型在季节性数据上的扩展,它可以处理存在季节性变化的时间序列。
SARIMA模型可以分为SARIMA(p,d,q)(P,D,Q)s模型,其中p、d、q分别表示非季节性自回归项、差分项、移动平均项的阶数,P、D、Q分别表示季节性自回归项、差分项、移动平均项的阶数,s表示季节周期。
5. 随机游走模型(RW)随机游走模型是一种基于随机变量的模型,它假设未来的走势与当前的走势相同,因此未来的走势是随机变量的累加。
随机游走模型可以分为随机游走(RW)模型和随机游走带漂移(RWD)模型。
RW模型假设未来的走势与当前的走势相同,RWD模型假设未来的走势与当前的走势加上一个漂移量相同。
时间序列的模型识
• 时间序列的基本概念 • 时间序列的模型 • 时间序列的模型识别方法 • 时间序列的预测 • 时间序列的应用
01
时间序列的基本概念
时间序列的定义
总结词
时间序列是指按照时间顺序排列的一系列观测值。
详细描述
时间序列是按照时间顺序排列的一系列数据点,可以是数字、文本或其他类型 的数据。这些数据点通常表示在某个特定时间点上的测量值或观察结果。
详细描述
参数法通常需要预先设定一些数学模型,如AR模型、MA模型、ARMA模型等,然后通过最小二乘法 、最大似然估计等方法估计模型的参数。如果实际数据与某个模型的拟合度较高,则认为该模型适用 于该时间序列。
图形法
总结词
图形法是一种直观的方法,通过绘制时间序 列的图形和各种统计量来识别模型。
详细描述
图形法包括绘制时间序列的时序图、自相关 图、偏自相关图等,以及计算各种统计量如 峰度、偏度等。通过观察图形的特征和统计 量的值,可以初步判断时间序列的模型类型。
信息准则法
总结词
信息准则法是一种基于信息论的方法,通过比较不同模型的复杂度和拟合度来选择最优 模型。
详细描述
信息准则法包括AIC准则、BIC准则等,它们通过计算模型的复杂度和拟合度来选择最 优模型。复杂度越小、拟合度越高的模型被认为是更好的模型。信息准则法可以自动选
详细描述
差分自回归移动平均模型
ARIMA模型
总结词
详细描述
总结词
详细描述
自回归积分滑动平均模 型
ARIMA模型是一种结合 了自回归、积分和移动 平均三种模型的混合模 型。它通过同时考虑时 间序列中的过去值、过 去误差值和时间序列的 非平稳性来预测未来值 。
第5章 时间序列的模型识别PPT参考课件
原理(模型阶数简约原则 parsimony principle):
设Xt(1≤t≤N)是零均值平稳序列,用模型AR模型拟合
AR p : Xt 1Xt1 2 Xt2 L p Xt p t 残差平方和Q0
AR p 1 : Xt 1Xt1 2 Xt2 L p1Xt p1 t 残差平方和Q1
2020/2/15
25
结论:对于给定的显著性水平α
若F>Fα(s,N-r),则拒绝原假设,认为后面s个回归因子对 因变量的影响是显著的,表明M1合适;
若F<Fα(s,N-r),则接受原假设,认为这s个回归因子对因 变量的影响是不显著的,表明M2合适。
2020/2/15
14
AR(p)模型定阶的F准则
1967年,瑞典控制论专家K.J.Aström教授将F检验准则用于 对时间序列模型的定阶。
2020/2/15
23
BIC准则
AIC准则是样本容量N的线性函数,在N→∞时不收敛 于真实模型,它通常比真实模型所含的未知参数要多, 是过相容的。
为了弥补AIC准则的不足,Akaike于1976年提出BIC准 则,而Schwartz在1978年根据Bayes理论也得出同样的 判别标准,称为SBC准则。理论上已证明,SBC准则 是最优模型的真实阶数的相合估计。
Xt 1Xt1 L p Xt p t 1t1 L qtq , t : WN 0, 2 AIC T ln ˆ 2 2 p q 1
说明:
第一项:体现了模型拟合的好坏,它随着阶数的增大而减小; 第二项:体现了模型参数的多少,它随着阶数的增大而变大。
2020/2/15
21
AIC准则用于ARMA模型的定阶
时间序列分析简介与模型
第二篇 预测方法与模型预测是研究客观事物未来发展方向与趋势的一门科学。
统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。
根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。
预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。
20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。
预测包含定性预测法、因果关系预测法和时间序列预测法三类。
本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。
第五章 时间序列分析在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。
本章介绍其中的时间序列分析预测法。
此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。
时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。
第一节 时间序列简介所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。
时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。
它的时间单位可以是分钟、时、日、周、旬、月、季、年等。
一、时间序列预测法时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。
其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。
时间序列的分析——模型的识别与预测
模型的识别与预测一、实验内容依照某AR 模型生成一段数据(1000),同时用另一MA 模型生成一段数据(200),合成一段1200长度的数据1)依赖于这1200个数据的前800个数据,识别这段数据背后的AR 模型。
2)在1)的基础上对新数据进行预测,并通过后续的400个数据进行判别(数据模型是否匹配)或者模型的修正(修正只需要提供思路和方法)。
二、理论基础 1.时间序列模型介绍时间序列是随时间改变而随机地变化的序列。
时间序列分析的目的是找出它的变化规律,即线性模型,主要有三种:AR 模型(自回归模型)、MA 模型(滑动平均模型)和ARMA 模型(自回归滑动平均模型或混合模型)。
设{X t }为零均值的实平稳时间序列,阶数为p 的AR 模型定义为t p t p t t t a X X X X ++++=---ϕϕϕ (2211)其 ,0][ =t a E ⎩⎨⎧≠==,,0,,][2s t s t a a E a t s δt s X a E t s >=,0][其中{p k k ,...,2,1,=ϕ}成为自回归系数,白噪声序列{t a }成为新信息序列;阶数为q 的MA 模型定义为211...-----=t q t t t a a a X θθ其中{q k k ,...,2,1,=θ}称为滑动平均系数;P 阶自回归q 阶ARMA 模型定义为q t q t t p t p t t a a a X X X -------=---θθϕϕ (1111)记为ARMA (p ,q )。
2. 模型的识别根据教材对平稳时间序列的特性分析,对初步识别平稳时间序列的类型提供了依据,如表1所示:表1 各时间序列模型的特性3. 模型阶数的确定1)样本自相关函数和样本偏相关函数设有零均值平稳时间序列{t X }的一段样本观测值N x x x ,...,,21,样本协方差函数估计式为1,...,1,011^-==+-=∑N k xx Nki k N i i k γ同理样本自相关函数定义为1,...,1,0^^^-==N k k k γγρ2)MA 模型阶数的确定设{t X }是正态的零均值平稳MA (q )序列,而对于充分大的N ,可以认为^kρ的分布近似于正态分布))/1(,0(2N N ,从而,^k ρ的截尾性判断如下:首先计算^^2^1,...,,M ρρρ(取10/N M ≈),因为q 值未知,故令q 值从小到大,分别检验M q q q +++^2^1^,...,,ρρρ满足N k 1^≤ρ 或N k 2^≤ρ 的比例是否占总个数M 的68.3%或95.5%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章时间序列的模型识别前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。
从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下:图5.1 建立时间序列模型流程图在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。
需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。
在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。
对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。
所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。
我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。
如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。
同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。
如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最终选取使该函数达到最小值的阶数,常用的该类准则有AIC 、BIC 、FPE 等。
实际应用中,往往是几种方法交叉使用,然后选择最为合适的阶数(p,q )作为待建模型的阶数。
§5.1 自相关和偏自相关系数法在平稳时间序列分析中,最关键的过程就是利用数据去识别和建模,根据第三章讨论的内容,一个比较直观的方法,就是通过观察自相关系数(ACF )和偏自相关系数(PACF )可以对拟合模型有一个初步的识别,这是因为从理论上说,平稳AR 、MA 和ARMA 模型的ACF 和PACF 有如下特性:模型(序列) AR(p ) MA(q ) ARMA(p,q ) 自相关系数(ACF ) 拖尾 q 阶截尾 拖尾 偏自相关系数(PACF ) p 阶截尾 拖尾 拖尾 但是,在实际中ACF 和PACF 是未知的,对于给定的时间序列观测值12,,,T x x x ,我们需要使用样本的自相关系数{}ˆk ρ和偏自相关系数{}ˆkkφ对其进行估计。
然而由于{}ˆk ρ和{}ˆkkφ均是随机变量,对于相应的模型不可能具有严格的“截尾性”,只能呈现出在某步之后围绕零值上、下波动,因此,我们需要借助{}ˆk ρ和{}ˆkkφ的“截尾性”来判断{}k ρ和{}kkφ的截尾性,进而由此可以给出模型的初步识别。
首先,我们需要给出样本的自相关系数{}ˆk ρ和偏自相关系数{}ˆkkφ的定义。
设平稳时间序列{}t X 的一个样本1,,T x x 。
则样本自协方差系数定义为()()11ˆ,11ˆˆ,11T kk j j k j k k x x x x k T T k T γγγ-+=-=--≤≤-=≤≤-∑ (5.1)其中11Tj j x x T ==∑为样本均值,则样本自协方差系数{}ˆk γ是{}t X 的自协方差系数{}k γ的估计。
样本自相关系数定义为0ˆˆˆ,1k k k T ργ=≤- (5.2)是{}t X 的自相关系数{}k ρ的估计。
作为{}t X 的自协方差系数{}k γ的估计,根据数理统计知识,样本自协方差系数还可以写为()()11ˆ,11ˆˆ,11T kk j j k j k k x x x x k T T k k T γγγ-+=-=--≤≤--=≤≤-∑(5.3)在上述两种估计中,当样本容量T 很大,而k 的绝对值较小时,上述两种估计值相差不大,其中由(5.1)定义的第一种估计值的绝对值较小。
根据前面章节的讨论,因为AR(p ),MA(q )或者ARMA(,p q )模型的自协方差系数{}k γ都是以负指数阶收敛到零,所以在对平稳时间序列的数据拟合AR(p ),MA(q )或者ARMA(,p q )模型时,希望实际计算的样本自协方差系数{}ˆk γ能以很快的速度收敛。
因此,我们一般选择由(5.1)定义的第一种估计值作为{}k γ的点估计。
根据第三章偏自相关系数的计算,利用样本自相关系数{}ˆk ρ的值,定义样本偏自相关系数{}ˆkkφ如下: ˆˆ,1,2,,ˆk kk D k TDφ==(5.4)其中111112121212ˆˆˆˆ11ˆˆˆˆ11ˆˆ,ˆˆˆˆˆ1k k kk k k k k DD ρρρρρρρρρρρρρ------==关于样本的自相关系数{}ˆk ρ的统计性质,我们将在下一章给予讨论。
Quenouille 证明,{}ˆkkφ也满足Bartlett 公式,即当样本容量T 充分大时, ()ˆ~0,1kkN T φ (5.5)这样根据正态分布的性质,我们有ˆ68.3%kkP φ⎧≤=⎨⎩ (5.6) ˆ95.5%kkP φ⎧≤=⎨⎩(5.7) 这样,关于偏自相关系数{}kk φ的截尾性的判断,转化为利用上述性质(5.6)或者(5.7),可以判断{}ˆkkφ的截尾性。
具体方法为对于每一个p >0,考查1,1p p φ++,2,2p p φ++,…,,p M p M φ++中落入ˆkkφ≤ˆkkφ≤M 的68.3%或95.5%。
一般地,我们取M =0p p =之前ˆkk φ都明显地不为零,而当0p p >时,01,1p p φ++,002,2p p φ++,…,00,p M p M φ++中满足不等式ˆkkφ≤ˆkkφ≤的个数占总数M 的68.3%或95.5%,则可以认定{}kk φ在0p 处截尾,由此可以初步判定序列}{t X 为AR(0p )模型。
对于样本的自相关系数{}ˆk ρ,由第二章的Bartlett 公式,对于0>q ,{}ˆk ρ满足 ~ˆk ρ211ˆ0,12q j j N T =⎛⎫⎡⎤+ρ ⎪⎢⎥ ⎪⎣⎦⎝⎭∑ (5.8)进一步地,当样本容量T 充分大时,{}ˆk ρ也满足 ()ˆ~0,1k N T ρ(5.9)类似于(5.6)或者(5.7)式,对于每一个0>q ,检查1ˆq ρ+,2ˆq ρ+,…,ˆq M ρ+中落入ˆk ρ≤或者ˆk ρ≤中的比例是否占总数M 的68.3%或95.5%左右。
如果在0q 之前,ˆk ρ都明显不为零,而当0q q =时,01ˆq ρ+,02ˆq ρ+,…,0ˆq M ρ+中满足上述不等式的个数达到比例,则判断{}k ρ在0q 处截尾。
初步认为序列}{t X 为MA(0q )模型。
至此,我们可以利用样本的自相关系数{}ˆk ρ和偏自相关系数{}ˆkkφ,得到ARMA 模型阶数的初步判定方法。
具体做法如下:(1) 如果样本自相关系数{}ˆk ρ在最初的q 阶明显的大于2倍标准差范围,即(2,而后几乎95%的样本自相关系数ˆk ρ都落在2倍标准差范围之内,并且由非零样本自相关系数衰减为在零附近小值波动的过程非常突然,这时通常视为自相关系数{}k ρ截尾,既可以初步判定相应的时间序列为MA(q )模型(2) 同样,样本偏自相关系数{}ˆkkφ如果满足上述性质,则可以初步判定相应的时间序列为AR(p )模型。
(3) 对于样本自相关系数{}ˆk ρ和样本偏自相关系数{}ˆkkφ,如果均有超过5%的值落入2倍标准差范围之外,或者由非零样本自相关系数和样本偏自相关系数衰减为在零附近小值波动的过程非常缓慢,这时都视为不戴尾的,我们将初步判定时间序列为ARMA 模型,那么这样的判断往往会失效,因为这时ARMA(p,q )模型的阶数p 和q 很难确定。
总之,基于样本自相关和偏自相关系数的定阶法只是一种初步定阶方法,可在建模开始时加以粗略地估计。
例5.1绿头苍蝇数据的时间序列。
具有均衡性别比例数目固定的成年绿头苍蝇保存在一个盒子中,每天给一定数量的食物,每天对绿头苍蝇的总体计数,共得到T=82个观测值。
经过平稳性处理后计算其基于样本自相关和偏自相关系数,见表5.1表5.1 绿头苍蝇的样本ACF 和PACF图5.2绿头苍蝇的样本ACF 和PACF由表5.1和图5.2知,样本自相关函数}ˆ{k ρ呈拖尾状,而从10个偏自相关系数的绝对值来看,除11ˆφ显著地异于零之外,其余90.11==的有8个,80.8968.3%9≈>,故该时间序列初步判定为AR(1)模型。
例5.2某时间序列数据(T=273)的样本自相关系数和偏自相关系数计算数据如下:表5.2 某时间序列数据的样本自/偏自相关系数由上表知,样本自相关函数}ˆ{k ρ呈拖尾状,而从15个偏自相关系数的绝对值来看,除11ˆφ,22ˆφ显著地异于零之外,其余13个中绝对值不大于0.0605==的有9个,%3.68692.0139≈=,故该时间序列初步判定为AR(2)模型。
例5.3 某车站1993-1997年个月的列车运行数量数据共60个,见表5.3,试对该序列给出初步的模型识别。
表5.3 某车站1993-1997年个月的列车运行数量数据(单位:千列·千米)图5.3,5.4分别为原始数据和平稳化以后(第8章将给出具体平稳化方法)数据的散点图。
图5.3 列车运行数量数据 图5.4 平稳化列车运行数量数据经过计算,其前20个样本自相关系数和偏自相关系数如下 表5.4 平稳化列车运行数量数据样本自/偏自相关系数样本自相关系数样本偏自相关系数kˆk ρkˆk ρkˆkkφ kˆkkφ 1 2 3 4 5 6 7 8 9 10-0.685 0.341 -0.193 0.042 -0.068 0.199 -0.221 0.185 -0.130 0.03711 12 13 14 15 16 17 18 19 20-0.036 0.156 -0.165 0.038 0.001 -0.027 0.143 -0.130 0.004 0.0211 2 3 4 5 6 7 8 9 10-0.685 -0.243 -0.139 -0.208 -0.313 0.046 -0.030 -0.037 -0.002 -0.04211 12 13 14 15 16 17 18 19 20-0.130 0.139 0.136 -0.184 -0.120 -0.012 0.196 0.025 -0.143 -0.073由上表知,样本自相关函数{}ˆkkφ呈拖尾状,而从20个自相关系数的绝对值来看,样本自相关系数{}ˆk ρ在最初的2阶明显的大于2倍标准差范围,即(-0.26, 0.26),而后95%以上的样本自相关系数ˆk ρ都落在(-0.26, 0.26)内,并且由非零样本自相关系数衰减为在零附近小值波动的过程非常突然,这时通常视为自相关系数{}k ρ截尾,故该时间序列初步判定为MA(2)或MA(3)模型。