一元二次方程分式方程应用题

合集下载

17.5一元二次方程的应用----分式方程

17.5一元二次方程的应用----分式方程

某车间要加工170个零件,在加 工完90个以后改进了操作方法,每 天多加工10个,一共用5天完成了任 务,求改进操作方法后每天加工的 零件个数.
例2: 某品牌瓶装饮料每箱价格26元, 某商店对该瓶装饮料进行“买一送一”促 销活动,若整箱购买,则买一箱送三瓶, 这相当于每瓶比原价便宜了0.6元,问该 品牌饮料一箱有多少瓶? 解:设该品牌饮料一箱有y瓶
例1: 一组学生组织春游,预计共需费 用120元,后来又有2人参加进来,费用不 变,这样每人可少分摊 3元,问原来这组 学生的人数是多少? 解:设原来这组学生的人数为x人
总费用/元 人数/人 每人费用/元
原来
现在
120 120
x x+2
120
x
120
x+2
= 3 x x+2 2 x 整理,得: -26x +25 = 0 x1=-10 ,x2=8 解这个方程,得: 经检验,x1=-10 ,x2=8都是原方程的根, 但x1=-10不合题意,应舍去,所以x =8
答:原来这组学生为8人
例1: 一组学生组织春游,预计共需费 用120元,后来又有2人参加进来,费用不 变,这样每人可少分摊 3元,问原来这组 学生的人数是多少? 解:设原来这组学生的人数为x人 120 120
例1: 一组学生组织春游,预计共需费 用120元,后来又有2人参加进来,费用不 变,这样每人可少分摊 3元,问原来这组 学生的人数是多少? 解:设原来每人分摊的费用为y元
总费用/元 瓶数/瓶 每瓶费用/元
原来 现在
26 26
y y+ 3
26
y
y+ 3
26
总费用/元 人数/人 每人费用/元
原来
120

专题7一元二次方程及应用-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

专题7一元二次方程及应用-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

2021年中考数学真题分项汇编【全国通用】(第02期)专题7一元二次方程及应用姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·海南中考真题)用配方法解方程2650x x -+=,配方后所得的方程是( )A .2(3)4x +=-B .2(3)4x -=-C .2(3)4x +=D .2(3)4x -=【答案】D【分析】直接利用配方法进行配方即可.【详解】解:2650x x -+= 22223353x x -⨯+=-+()234x -=故选:D .【点睛】本题考查了配方法,解决本题的关键是牢记配方法的步骤,本题较基础,考查了学生对基础知识的掌握与基本功等.2.(2021·河南中考真题)若方程2x 2x m 0-+=没有实数根,则m 的值可以是( )A .1-B .0C .1 D【答案】D【分析】直接利用根的判别式进行判断,求出m 的取值范围即可.【详解】解:由题可知:“△<0”,∴()2240m --<,∴1m >,故选:D .【点睛】本题考查了一元二次方程根的判别式,解决本题的关键是掌握当“△<0”时,该方程无实数根,本题较基础,考查了学生对基础知识的理解与掌握.3.(2021·广西玉林市·中考真题)已知关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,则( )A .120x x +<B .120x x <C .121x x >-D .121x x < 【答案】D【分析】根据题意及一元二次方程根的判别式可得440m ->,然后再根据一元二次方程根与系数的关系可进行求解.【详解】解:∵关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,∴440m ->,解得:1m <, ∴由韦达定理可得:121220,1b c x x x x m a a+=-=>==<, ∴只有D 选项正确;故选D .【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.4.(2021·山东聊城市·中考真题)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( ) A .2或4B .0或4C .﹣2或0D .﹣2或2 【答案】B【分析】把x =-2代入方程即可求得k 的值;【详解】解:将x =-2代入原方程得到:22-8+4=4k k ,解关于k 的一元二次方程得:k =0或4,故选:B .【点睛】此题主要考查了解一元二次方程相关知识点,代入解求值是关键.5.(2021·湖南怀化市·中考真题)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根B .两根之和是3C .两根之积是2-D .有两个不相等的实数根 【答案】A【分析】先找出2,3,4a b c ==-=,再利用根的判别式判断根的情况即可.【详解】解:22340x x -+=∵2,3,4a b c ==-=∴2=4932230b ac ∆-=-=-<∴这个一元二次方程没有实数根,故A 正确、D 错误. ∵122c x x a==,故C 错误. 123+-2b x x a ==,故B 错误. 故选:A .【点睛】本题考查一元二次方程根的情况、根的判别式、根与系数的关系、熟练掌握∆<0,一元二次方程没有实数根是关键.6.(2021·湖北荆州市·中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k ≤C .54k ≤且0k ≠D .54k ≥ 【答案】C【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x ]※[5−2k ,k ]=0,∴()()21520k x k x ++-=. 整理得,()2520kx k x k +-+=. ∵方程有两个实数根,∴判别式0≥且0k ≠.由0≥得,()225240k k --≥, 解得,54k ≤. ∴k 的取值范围是54k ≤且0k ≠. 故选:C【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.7.(2021·山东济宁市·中考真题)已知m ,n 是一元二次方程220210x x +-=的两个实数根,则代数式22m m n ++的值等于( )A .2019B .2020C .2021D .2022 【答案】B【分析】根据一元二次方程根的定义得到22021m m +=,则22=2021+m m n m n +++,再利用根与系数的关系得到1m n +=-,然后利用整体代入的方法计算.【详解】解:∵m 是一元二次方程220210x x +-=的实数根,∴220210m m +-=,∴22021m m +=,∴2222021m m n m m m n m n ++=+++=++,∵m 、n 是一元二次方程220210x x +-=的两个实数根,∴1m n +=-,∴22202112020m m n ++=-=,故选:B .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程20(a 0)++=≠ax bx c 的两根时,12b x x a+=-,12c x x a=.也考查了一元二次方程的解. 8.(2021·黑龙江鹤岗市·中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )A .14B .11C .10D .9【答案】B【分析】设每轮传染中平均一个人传染了x 个人,由题意可得()11144x x x +++=,然后求解即可.【详解】解:设每轮传染中平均一个人传染了x 个人,由题意可得: ()11144x x x +++=,解得:1211,13x x ==-(舍去),故选B .【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.9.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++=【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:507507x +=507(1)x +亿件,2020年我国快递业务量为:507(1)x ++2507(1)=507(1)x x x ++,根据题意,得:()25071833.6x +=故选C .【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.10.(2021·内蒙古通辽市·中考真题)关于x 的一元二次方程()2310x k x k ---+=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】A【分析】先计算判别式,再根据一元二次方程根与判别式的关系即可得答案.【详解】△=[-(k -3)]2-4(-k +1)=k 2-6k +9+4k -4=(k -1)2+4,∵(k -1)2≥0,∴(k -1)2+4≥4,∴方程有两个不相等的实数根,故选:A .【点睛】本题考查的是根的判别式,对于一元二次方程ax 2+bx +c =0(a ≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.(2021·湖南张家界市·中考真题)对于实数,a b 定义运算“☆”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【答案】D【分析】本题根据题目所给新定义将方程12x =☆变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意由方程12x =☆得: 22x x -=整理得:220x x --=根据根的判别式2141(2)90∆=-⨯⨯-=>可知该方程有两个不相等实数根.故选D .【点睛】本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根. 12.(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .()0.6310.68x +=B .()20.6310.68x += C .()0.63120.68x +=D .()20.63120.68x += 【答案】B【分析】设年平均增长率为x ,根据2020年底森林覆盖率=2018年底森林覆盖率乘()21x +,据此即可列方程求解.【详解】解:设年平均增长率为x ,由题意得:()20.6310.68x +=,故选:B .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可. 13.(2021·吉林长春市·中考真题)关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是( )A .8B .9C .10D .11 【答案】A【分析】先根据判别式>0,求出m 的范围,进而即可得到答案.【详解】解:∵关于x 的一元二次方程260x x m -+=有两个不相等的实数根,∴()26410m ∆=--⨯⨯>,解得:m <9,m 的值可能是:8.故选:A.【点睛】本题主要考查一元二次方程根的判别式与根的情况的关系,掌握一元二次方程有两个不等的实数解,则240b ac ∆=->,是解题的关键.14.(2021·四川宜宾市·中考真题)若m 、n 是一元二次方程x 2+3x ﹣9=0的两个根,则24m m n ++的值是( )A .4B .5C .6D .12【答案】C【分析】由于m 、n 是一元二次方程x 2+3x −9=0的两个根,根据根与系数的关系可得m +n =−3,mn =−9,而m 是方程的一个根,可得m 2+3m −9=0,即m 2+3m =9,那么m 2+4m +n =m 2+3m +m +n ,再把m 2+3m 、m +n 的值整体代入计算即可.【详解】解:∵m 、n 是一元二次方程x 2+3x −9=0的两个根,∴m +n =−3,mn =−9,∵m 是x 2+3x −9=0的一个根,∴m 2+3m −9=0,∴m 2+3m =9,∴m 2+4m +n =m 2+3m +m +n =9+(m +n )=9−3=6.故选:C .【点睛】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax 2+bx +c =0(a ≠0)两根x 1、x 2之间的关系:x 1+x 2=−b a -,x 1•x 2=c a. 15.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( )A .()2500014050x +=B .()2405015000x += C .()2500014050x -=D .()2405015000x -= 【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得: ()25000-x =40501故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∴()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.二、填空题17.(2021·江苏南京市·中考真题)设12,x x 是关于x 的方程230x x k -+=的两个根,且122x x =,则k =_______.【答案】2【分析】先利用根与系数的关系中两根之和等于3,求出该方程的两个根,再利用两根之积得到k 的值即可.【详解】 解:由根与系数的关系可得:123x x +=,12·x x k =, ∵122x x =,∴233x =,∴21x =,∴12x =,∴122k =⨯=; 故答案为:2. 【点睛】本题考查了一元二次方程根与系数之间的关系,解决本题的关键是牢记公式,即对于一元二次方程()200ax bx c a ++=≠,其两根之和为 b a -,两根之积为ca.18.(2021·湖北十堰市·中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.【答案】1-或2 【分析】根据新定义的运算得到()()()221113x x x x x x ⊗-=+---=,整理并求解一元二次方程即可. 【详解】解:根据新定义内容可得:()()()221113x x x x x x ⊗-=+---=, 整理可得220x x --=, 解得11x =-,22x =,故答案为:1-或2. 【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.19.(2021·青海中考真题)已知m 是一元二次方程260x x +-=的一个根,则代数式2m m +的值等于______. 【答案】6 【分析】利用一元二次方程的解的定义得到m 2+m =6即可. 【详解】解:∵m 为一元二次方程260x x +-=的一个根. ∴m 2+m -6=0, ∴m 2+m =6, 故答案为6.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 20.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 【答案】23- 【分析】根据非负性求得a 、b 的值,再根据一元二次方程根与系数关系求得1x +2x 、1x 2x ,代入12121211=x x x x x x ++求解即可. 【详解】解:∵实数a 、b30b +=, ∴a ﹣2=0,b +3=0, 解得:a =2,b =﹣3, ∴2230x x --=,∵一元二次方程2230x x --=的两个实数根分别为1x 、2x , ∴1x +2x =2,1x 2x =﹣3,∴12121211=x x x x x x ++=23-,故答案为:23-. 【点睛】本题考查代数式求值、二次根式被开方数的非负性、绝对值的非负性、一元二次方程根与系数,熟练掌握非负性和一元二次方程根与系数关系是解答的关键.21.(2021·黑龙江绥化市·中考真题)已知,m n 是一元二次方程2320x x --=的两个根,则11m n+=__________. 【答案】32-运用一元二次方程根与系数的关系求解即可. 【详解】解: ∵,m n 是一元二次方程2320x x --=的两个根, 根据根与系数的关系得:3b m n a +=-=,2cmn a==-, ∴211=3m n m n mn +-+=, 故答案为:32-.【点睛】本题主要考查一元二次方程根与系数的关系,熟知1212a x cx a x x b +=-=,是解题关键.22.(2021·湖南娄底市·中考真题)已知2310t t -+=,则1t t+=________.【答案】3. 【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可. 【详解】解:22111t t t t t t t++=+=,又∵2310t t -+=, ∴213t t +=,则2113=3t tt t t t++==,故答案为:3. 【点睛】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算. 23.(2021·湖北中考真题)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______. 【答案】3先根据一元二次方程的根与系数的关系可得22,m m m αβαβ+==-,再根据111αβ+=可得一个关于m的方程,解方程即可得m 的值. 【详解】解:由题意得:22,m m m αβαβ+==-,111αβαβαβ++==, 221mm m∴=-,化成整式方程为230m m -=, 解得0m =或3m =,经检验,0m =是所列分式方程的增根,3m =是所列分式方程的根, 故答案为:3. 【点睛】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.24.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x += 【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程. 【详解】解:设平均每年增产的百分率为x ; 第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2; 依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363. 【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .25.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】()26521960x += 【分析】根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值,按照数量关系列方程即可得解. 【详解】解:根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值列方程得:()26521960x +=, 故答案为:()26521960x +=. 【点睛】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.26.(2021·山东枣庄市·中考真题)若等腰三角形的一边长是4,另两边的长是关于x 的方程260x x n -+=的两个根,则n 的值为______. 【答案】8或9 【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得. 【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x 的方程260x x n -+=的一个根, 因此有24640-⨯+=n ,解得8n =,则方程为2680x x -+=,解得另一个根为2x =,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x 的方程260x x n -+=有两个相等的实数根, 因此,根的判别式3640n ∆=-=, 解得9n =,则方程为2690x x -+=,解得方程的根为123x x ==,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理; 综上,n 的值为8或9, 故答案为:8或9. 【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.27.(2021·辽宁本溪市·中考真题)若关于x 的一元二次方程2320x x k --=有两个相等的实数根,则k 的值为________. 【答案】13-. 【分析】根据关于x 的一元二次方程2320x x k --=有两个相等的实数根,得出关于k 的方程,求解即可. 【详解】∵关于x 的一元二次方程2320x x k --=有两个相等的实数根, ∴△=()()2243k --⨯⨯-=4+12k =0, 解得k =13-. 故答案为:13-. 【点睛】本题考查了运用一元二次方程根的判别式,当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△< 0时,一元二次方程没有实数根.28.(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________. 【答案】2m ≤ 【分析】利用一元二次方程根的判别式即可求解. 【详解】解:∵一元二次方程2210x x m +-+=有两个实数根, ∴()4410m ∆=--+≥,解得2m ≤, 故答案为:2m ≤. 【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.29.(2021·江苏宿迁市·中考真题)若关于x 的一元二次方程x 2 +ax -6=0的一个根是3,则a = 【答案】-1 【分析】把x =3代入一元二次方程即可求出a . 【详解】解:∵关于x 的一元二次方程x 2 +ax -6=0的一个根是3, ∴9+3a -6=0, 解得a =-1. 故答案为:-1 【点睛】本题考查了一元二次方程的根的意义,一元二次方程方程的解又叫一元二次方程的根,熟知一元二次方程根的意义是解题的关键.三、解答题30.(2021·湖北荆州市·中考真题)已知:a 是不等式()()528617a a -+<-+的最小整数解,请用配方法解关于x 的方程2210x ax a +++=.【答案】1x =2x =【分析】先解不等式,结合已知得出a 的值,然后利用配方法解方程即可 【详解】解:∵()()528617a a -+<-+; ∴5108667a a -+<-+; ∴3a -<; ∴-3a >;∵a 是不等式()()528617a a -+<-+的最小整数解, ∴=-2a ;∴关于x 的方程2-4-10x x =; ∴2-4+45x x =; ∴()2-25x =;∴-2=x∴1x =2x = 【点睛】本题考查了解不等式以及解一元二次方程,熟练掌握相关的运算方法是解题的关键.31.(2021·湖南永州市·中考真题)若12,x x 是关于x 的一元二次方程20ax bx c ++=的两个根,则1212,b cx x x x a a+=-⋅=.现已知一元二次方程220px x q ++=的两根分别为m ,n .(1)若2,4m n ==-,求,p q 的值;(2)若3,1p q ==-,求m mn n ++的值. 【答案】(1)1,8p q ==-;(2)-1. 【分析】根据一元二次方程根与系数的关系得到2,qmn p m n p+=-=. (1)把2,4m n ==-,代入2,qmn p m n p+=-=,即可求出,p q 的值;(2)把3,1p q ==-,代入2,q mn p m n p +=-=,得到,2133m n mn +=-=-.利用整体代入即可求解. 【详解】解:∵已知一元二次方程220px x q ++=的两根分别为m ,n , ∴2,qmn p m n p+=-=. (1)当2,4m n ==-时,2,28qp p-=-=-, 解得1,8p q ==-,经检验,1,8p q ==-是方程的根, ∴1,8p q ==-; (2)当3,1p q ==-时,,2133m n mn +=-=-.∴21133m mn n m n mn ++=++=--=-. 【点睛】本题考查了一元二次方程根与系数的关系,根据题意得到2,qmn p m n p+=-=是解题关键. 32.(2021·北京)已知关于x 的一元二次方程22430x mx m -+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m = 【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x -=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==-=,∴22224164134b ac m m m ∆=-=-⨯⨯=, ∵20m ≥, ∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=, ∵122x x -=,∴()()2222121212416124x x x x x x m m -=+-=-=, 解得:1m =±, ∵0m >, ∴1m =. 【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.33.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人. (1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少? 【答案】(1)10%;(2)13.31万 【分析】(1)设这两个月参观人数的月平均增长率为x ,根据题意列出等式解出x 即可; (2)直接利用(1)中求出的月平均增长率计算即可. 【详解】(1)解:设这两个月参观人数的月平均增长率为x , 由题意得:210(1)12.1x +=, 解得:110%x =,22110x =-(不合题意,舍去),答:这两个月参观人数的月平均增长率为10%.(2)12.1(110%)13.31⨯+=(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.34.(2021·山东东营市·中考真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【答案】(1)20%;(2)能【分析】(1)设亩产量的平均增长率为x ,依题意列出关于x 的一元二次方程,求解即可;(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.【详解】解:(1)设亩产量的平均增长率为x ,根据题意得:()270011008x +=,解得:10.220%x ==,2 2.2x =-(舍去),答:亩产量的平均增长率为20%.(2)第四阶段的亩产量为()1008120%1209.6⨯+=(公斤),∵1209.61200>,∴他们的目标可以实现.【点睛】本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.35.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为x ,则最大数为+8x ,结合已知,利用最大数与最小数的乘积为65列出方程求解即可.【详解】解:设这个最小数为x .根据题意,得()865x x +=.解得15=x ,213x =-(不符合题意,舍去).答:这个最小数为5.【点睛】此题主要考察了由实际问题抽象出一元二次方程,掌握日历的特征,根据已知得出的最大数与最小数的差值是解题的关键.36.(2021·黑龙江齐齐哈尔市·中考真题)解方程:(7)8(7)x x x -=-.【答案】17x =,28x =-【分析】先移项再利用因式分解法解方程即可.【详解】解:∵(7)8(7)x x x -=-,∴(7)8(7)0x x x -+-=,∴(7)(8)0x x -+=,∴17x =,28x =-.【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是找准公因式.37.(2021·湖北黄石市·中考真题)已知关于x 的一元二次方程2220x mx m m +++=有实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x 、2x ,且221212x x +=,求m 的值.【答案】(1)0m ≤;(2)2m =-【分析】(1)根据方程有实数根的条件,即0∆≥求解即可;(2)由韦达定理把12x x +和12x x 分别用含m 的式子表示出来,然后根据完全平方公式将221212x x +=变形为()21212212x x x x +-=,再代入计算即可解出答案.【详解】(1)由题意可得:()()22240m m m ∆=-+≥ 解得:0m ≤即实数m 的取值范围是0m ≤.(2)由221212x x +=可得:()21212212x x x x +-=∵122x x m +=-;212x x m m =+ ∴()()222212m m m --+= 解得:3m =或2m =-∵0m ≤∴2m =-即m 的值为-2.【点睛】本题主要考查的是根的判别式、根与系数的关系,要牢记:(1)当0∆≥时,方程有实数根;(2)掌握根与系数的关系,即韦达定理;(3)熟记完全平方公式等是解题的关键.38.(2021·辽宁本溪市·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【分析】(1)根据题意中销售量y (个)与售价x (元)之间的关系即可得到结论;(2)根据题意列出方程(-2x +220)(x -40)=2400,解方程即可求解;(3)设每星期利润为w 元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.。

专题六(一元二次方程,分式方程实际问题)优秀练习题

专题六(一元二次方程,分式方程实际问题)优秀练习题

专题六一元二次方程,分式方程实际问题1、(2016乌鲁木齐,19,10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?2、(2015乌鲁木齐,18,10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?3、(2014乌鲁木齐,18,9分)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从2017年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)4、(2012乌鲁木齐,19,12分)水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?5、某地大力发展经济作物,其中果树种植已初具规模。

分式方程与一元二次方程应用(20题)

分式方程与一元二次方程应用(20题)

分式方程与一元二次方程应用(20题)一.分式方程1.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?4.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.5.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?二、一元二次方程6.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?7.巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.8.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?9.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?。

北师版九年级初三数学上册《应用一元二次方程》试卷

北师版九年级初三数学上册《应用一元二次方程》试卷

2.6应用一元二次方程一、单选题(共13题;共26分)1.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A. 12 x (x+1)=15 B. 12 x (x ﹣1)=15 C. x (x+1)=15 D. x (x ﹣1)=152.要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x 个队参赛,则根据题意所列方程正确的是( )A. 12x (x+1)=28B. 12x (x ﹣1)=28C. x (x+1)=28D. x (x ﹣1)=283.(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x ,则( )A. 10.8(1+x )=16.8B. 16.8(1﹣x )=10.8C. 10.8(1+x )2=16.8D. 10.8[(1+x )+(1+x )2]=16.84.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程正确的是( )A. x (x+1)=81B. 1+x+x 2=81C. 1+x+x (x+1)=81D. 1+(x+1)2=815.为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A. 2500(1+x )2=1.2B. 2500(1+x )2=12000C. 2500+2500(1+x )+2500(1+x )2=1.2D. 2500+2500(1+x )+2500(1+x )2=120006.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x ,则由题意列方程应为( )A. 100(1+x )2=331B. 100+100×2x=331C. 100+100×3x=331D. 100[1+(1+x )+(1+x )2]=3317.某商品经过两次降价,零售价降为原来的12,已知两次降价的百分率均为x ,则列出方程正确的是( )A. (1+x )2=12B. (x −1)2=12C. (1+x )2=2D. (1﹣x )2=28.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A.9人B.10人C.11人D.12人9.已知矩形ABCD中,AB=1,在BC上取一点E ,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. B. C. D. 210.已知△ABC是等腰三角形,BC=8,AB ,AC的长是关于x的一元二次方程x2-10x+k=0的两根,则()A. k=16B. k=25C. k=-16或k=-25D. k=16或k=2511.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的1.则新品种花生亩产量的增长率为()2A. 20%B. 30%C. 50%D. 120%12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A. (32−x)(20−x)=32×20−570B. 32x+2×20x=32×20−570C. 32x+2×20x−2x2=570D. (32−2x)(20−x)=57013.某产品的成本两年降低了75%,平均每年递降()A. 50%B. 25%C. 37.5%D. 以上答案都不对二、填空题(共8题;共8分)14.菱形ABCD的一条对角线长为6,边AB的长是方程x2−7x+12=0的一个根,则菱形ABCD的周长为________.15.(2017•黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.16.(2017•上海)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是________微克/立方米.17.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是________%。

专题2.6 一元二次方程和分式方程的解法及运用(专项练习)

专题2.6 一元二次方程和分式方程的解法及运用(专项练习)

专题2.6一元二次方程和分式方程的解法及运用(专项练习)一、单选题1.(2021·河南郸城·九年级期中)方程20x x -=的根是()A .1x =B .1x =,0x =C .0x =D .1x =-,0x =2.(2021·全国·九年级专题练习)解分式方程132x 11x-=--,去分母得()A .()12x 13--=-B .()12x 13--=C .12x 33--=-D .12x 23-+=3.(2021·河北滦州·九年级期中)用配方法解一元二次方程2650x x -+=时,下列变形正确的为()A .2(3)14x +=B .2(3)14x -=C .2(3)4x +=D .2(3)4x -=4.(2021·湖北·武汉市洪山区杨春湖实验学校九年级阶段练习)已知m ,n 是x 2-2x -2016=0的两个实数根,则22m n +的值为()A .1008B .2016C .2018D .20205.(2021·湖北随州·九年级阶段练习)用配方法解一元二次方程x 2+8x +7=0,则方程可化为()A .(x +4)2=9B .(x ﹣4)2=9C .(x +8)2=23D .(x ﹣8)2=96.(2021·贵州遵义·中考真题)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是()A .x 2+2x ﹣3=0B .x 2+2x ﹣20=0C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=07.(2021·四川内江·中考真题)某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为()A .20%B .25%C .30%D .36%8.(2021·广西河池·中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数由m 的值确定9.(2021·广东海珠·一模)为了能让更多人接种,某药厂的新冠疫苗生产线开足马力,24小时运转,该条生产线计划加工320万支疫苗,前5天按原计划的速度生产,5天后以原来速度的1.25倍生产,结果比原计划提前3天完成任务.设原计划每天生产x 万支疫苗,则可列方程为()A .32032031.25x x =-B .3205320531.25x xx x --=-C .32032031.25x x=+D .3205320531.25x xx x--=+10.(2021·河北滦州·八年级期中)关于x 的方程32211x mx x -=+++无解,则m 的值为()A .﹣5B .﹣8C .﹣2D .511.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论①c =2;②b 2﹣4ac >0③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0④7a +c <0其中正确的有()x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④12.(2021·全国·九年级专题练习)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为()A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-二、填空题13.(2021·全国全国·八年级专题练习)代数式31x -与代数式23x -的值相等,则x =_____.14.(2021·江西·南昌市心远中学八年级期末)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程_____.15.(2021·全国·八年级专题练习)若关于x 的方程322x m x x-=--有增根,则m 的值为________16.(2021·全国·八年级)已知分式方程21+-x ax=1的解为非负数,则a的取值范围是_____.17.(2021·四川万源·八年级期末)若关于x的分式方程2755x ax x-+=--有增根,则a的值为_______18.(2021·江苏姜堰·八年级期中)近年来,我市大力发展城市快速交通,张老师开车从家到学校有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线A的平均速度。

一元二次方程、分式方程的解法及应用(基础巩固)-中考数学基础知识复习和专题巩固提升训练含答案

一元二次方程、分式方程的解法及应用(基础巩固)-中考数学基础知识复习和专题巩固提升训练含答案

考向07一元二次方程、分式方程的解法及应用—基础巩固【知识梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.方法指导: △≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2121=⋅-=+,.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【基础巩固训练】一、选择题1. 用配方法解方程2250x x--=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 3.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k≥﹣1C .k≠0D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. S a b + B. S av b - C. S av a b -+ D. 2S a b+ 二、填空题7.方程﹣=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .三、解答题13. (1)解方程:x x x x 4143412+-=---;(2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,(1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?答案与解析一、选择题1.【答案】B;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方, 整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D .4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x .6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为()S av -千米。

专题06 一元二次方程及其应用(解析版)

专题06 一元二次方程及其应用(解析版)

专题06 一元二次方程及其应用命题点1配方法1. 一元二次方程x 2-6x -5=0配方后可变形为( )A . (x -3)2=14B . (x -3)2=4C . (x +3)2=14D . (x +3)2=4【答案】A【解析】x 2-6x -5=0,x 2-6x =5,x 2-6x +9=5+9,(x -3)2=14,故选A. 命题点2跟与系数之间的关系2.方程x 2+x -12=0的两个根为( )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=3【答案】D【解析】∵x 2+x -12=0,∴(x +4)(x -3)=0,解得x 1=-4,x 2=3. 命题点3根的个数3. 下列方程中,没有..实数根的是( ) A .2x +3=0 B .x 2-1=0 C .2x +1=1 D .x 2+x +1=0 【答案】D 【解析】选项逐项分析正误A由2x +3=0,得2x =-3,解得x =-324. 关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为( )A. k=-4B. k=4C. k≥-4D. k≥4【答案】B【解析】因为方程有两个相等的实数根,所以b2-4ac=42-4k=0,解得k=4.5. 若关于x的方程x2-2x+c=0有一根为-1,则方程的另一根为( )A. -1B. -3C. 1D. 3【答案】D【解析】设方程的另一个根为x2,则根据根与系数关系有-1+x2=2,解得x2=3.6. 一元二次方程x2-3x-2=0的两根为x1,x2,则下列结论正确的是( )A. x1=-1,x2=2B. x1=1,x2=-2C. x1+x2=3D. x1x2=2【答案】C【解析】根据一元二次方程根与系数的关系,得x1+x2=3,x1x2=-2,排除A、B、D 选项,故选C.命题点4一元二次方程应用7.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆.设2013年底至2015年底该市汽车拥有量的年平均增长率为x.根据题意列方程得( )A. 10(1+x)2=16.9B. 10(1+2x)=16.9C . 10(1-x)2=16.9D . 10(1-2x)=16.9【答案】A【解析】因为年增长率为x ,从2013年到2015年连续增长两年,开始量为10万辆,结束量为16.9万辆,则可列方程10(1+x )2=16.9.8. 方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为______. 【答案】-3【解析】∵ 2x -4=0,解得 x =2,把x =2代入方程x 2+mx +2=0,解得 m =-3. 9.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =________.【答案】2016【解析】把m 代入方程得m 2+2m 的值,再用根与系数的关系求出两根之和m +n 的值,再把所求代数式化成此两代数式的形式, 即可整体代入求解,∵m 、n 是一元二次方程x2+2x -2018=0的两个实数根,∴m 2+2m -2018=0,即m 2+2m =2018,且m +n =-2,则原式=(m 2+2m )+(m +n )=2018-2=2016.10. 用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形,设矩形的一边长为x cm ,则可列方程为______________.【答案】 x (402-x )=64 【解析】矩形一边长为x ,则另一边长为402-x ,所以可列方程x (402-x )=64.命题点5解方程11. 解方程:2(x -3)2=x 2-9.【答案】解:原方程可化为2(x -3)2=(x +3)(x -3), 2(x -3)2-(x +3)(x -3)=0, (x -3)[2(x -3)-(x +3)]=0, (x -3)(x -9)=0, ∴x -3=0或x -9=0, ∴x 1=3,x 2=9. 命题点6化简求值12. 已知关于x 的方程x 2-(2m +1)x +m(m +1)=0. (1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).【答案】(1)证明:根据根的判别式b2-4ac=(2m+1)2-4m(m+1)=4m2+4m+1-4m2-4m=1>0,∴方程总有两个不相等的实数根;(2)解:将x=0代入方程x2-(2m+1)x+m(m+1)=0得:0-(2m+1)·0+m(m+1)=0,即m2+m=0,原式=4m2-4m+1+9-m2+7m-5=3m2+3m+5=3(m2+m)+5,将m2+m=0代入式中,原式=5.13.红旗连锁超市花2000元购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买,结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?【答案】解:设每次降价的百分率是x,则2000元糖果按80%的利润定价为:2000(1+80%)=3600(元),∴3600(1-x)2=2000(1+45.8%),∴(1-x)2=0.81,∴1-x=±0.9,∴x=0.1=10%,或x=1.9(舍去),答:每次降价的百分率是10%.14.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率.(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: 1.21=1.1, 1.44=1.2, 1.69=1.3, 1.96=1.4)【答案】解:(1)设2014年至2016年该地区投入教育经费的年平均增长率为x,由题意得2900(1+x)2=3509,解得x 1=0.1 x 2=-2.1(不合题意,舍去),答:2014年至2016年该地区投入教育经费的年平均增长率为10%.(2)按10%的增长率,到2018年投入教育经费为3509(1+10%)2=4245.89(万元), 因为4245.89<4250.答:按此增长率到2018年该地区投入的教育经费不能达到4250万元. 满分冲关1.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A . 12x(x -1)=45B . 12x(x +1)=45 C . x(x -1)=45 D . x(x +1)=45【答案】A【解析】根据题意:每两队之间都比赛一场,每队参加x -1场比赛,共比赛12x (x -1)场比赛,根据题意列出一元二次方程12x (x -1)=45.故选A.2. 若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +b a的值是( )A . 3B . -3C . 5D . -5【答案】D【解析】根据一元二次方程根与系数的关系得a +b =3,ab =p ,给a 2-ab +b 2=18左边配方得(a +b )2-3ab =18,所以9-3ab =18,得ab =-3,所以b a +a b =a 2+b 2ab=(a +b )2-2ab ab =9+6-3=-5,故选D.3. 定义新运算:a ★b =a(1-b),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b-a ★a 的值为( )A . 0B . 1C . 2D . 与m 有关【答案】A【解析】∵a ,b 是方程x 2-x +14m =0(m <0)的两根.∴a +b =1,ab =14m .∴b ★b -a ★a =b (1-b )-a (1-a )=b (a +b -b )-a (a +b -a )=ab-ab =0.故选A.4. 已知,一元二次方程x 2-8x +15=0的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1与⊙O 2相切时,O 1O 2的长度是( )A . 2B . 8C . 2或8D . 2<O 1O 2<8【答案】C【解析】一元二次方程x 2-8x +15=0两根分别是3和5,所以两个圆的半径分别是3和5,当两圆外切时,圆心距是8,当两圆内切时,圆心距是2.故选C.5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A . 7B . 10C . 11D . 10或11【答案】D【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,所得方程为x 2-7x +12=0,解之得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10,若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. 已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是________.【答案】-2或-94【解析】∵(x 1-2)(x 1-x 2)=0,∴x 1-2=0或x 1-x 2=0.①如果x 1-2=0,那么x 1=2,将x =2代入x 2+(2k +1)x +k 2-2=0,得4+2(2k +1)+k 2-2=0,整理得k 2+4k +4=0,解得k =-2;②如果x 1-x 2=0,那么(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=[-(2k +1)]2-4(k 2-2)=4k +9=0,解得k =-94.又∵b 2-4ac =(2k +1)2-4(k 2-2)≥0,解得k ≥-94.所以k 的值为-2或-94.7. 水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x 元,则每天的销售量是________斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】解:(1)100+200x ;【解法提示】将这种水果每斤的售价降低x 元,则每天的销售量是100+x0.1×20=(100+200x )斤.(2)根据题意得:(4-2-x )(100+200x )=300, 解得x =12或x =1,∵每天至少售出260斤, ∴x =1.答:张阿姨需将每斤的售价降低1元.8. 李明准备进行如下操作实验:把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.【答案】解:(1)设剪成的较短的这段为x cm ,较长的这段就为(40-x )cm ,由题意得(x 4)2+(40-x 4)2=58, 解得x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm , 当x =28时,较长的为40-28=12<28(舍去). 答:李明应该把铁丝剪成12 cm 和28 cm 两段. (2)李明的说法正确.理由如下:设剪成的较短的这段为m cm ,较长的这段就为(40-m )cm ,由题意得(m 4)2+(40-m 4)2=48,化简得:m 2-40m +416=0, ∵(-40)2-4×416=-64<0, ∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48 cm 2.9. 某蛋糕产销公司A 品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B 品牌产销线,以满足市场对蛋糕的多元需求.B 品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增,这样,2016年A ,B 两品牌产销线销售量总和将达到11.4万份,B 品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A 品牌产销线2018年的销售量;(2)求B 品牌产销线2016年平均每份获利增长的百分数.【答案】解:(1)A 品牌产销线2018年的销售量为9.5-(2018-2015)×0.5=8(万份); (2)设A 品牌产销线平均每份获利的年递减百分比为x ,B 品牌产销线的年销售量递增相同的份数为k 万份,依题意可列:⎩⎪⎨⎪⎧(9.5-0.5)+(1.8+k )=11.4(1.8+2k )·3(1+2x )2=10.89, 解得⎩⎪⎨⎪⎧k =0.6x =5%,或⎩⎪⎨⎪⎧k =0.6x =-105%,∵x >0, ∴⎩⎪⎨⎪⎧k =0.6x =5%,∴2x =10%,即B 品牌产销线2016年平均每份获利增长的百分数为10%.。

分式方程和一元二次方程解答题

分式方程和一元二次方程解答题

分式方程和一元二次方程解答题1 / 12一元二次方程与分式方程四、解答题(题型注释)1.解方程:(1)x 2+4x+1=0 (2)(x ﹣1)2+2x (x ﹣1)=0.2.已知关于x 的一元二次方程23410a x x ---=(),(1)若方程有两个相等的实数根,求a 的值及此时方程的根;(2)若方程有两个不相等的实数根,求a 的取值范围.3.永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地. “永定土楼”模型深受游客喜爱.其中某种规格土楼模型的单价y (元)与购买数量x (个)之间的函数关系如下:当0<x ≤10时,y=200;当10<x<20时,y=-5x+250;当x ≥20时,y=150。

(1)若甲旅游团购买该种规格的土楼模型10个,则一共需要 元;若乙旅游团购买该种规格的土楼模型20个,则一共需要 元。

(2)某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)4.现有一块长20cm ,宽10cm 的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm 2的无盖长方体盒子,请求出剪去的小正方形的边长.5.在△ACB 中,∠B=90°,AB=6cm ,BC=3cm ,点P 从A 点开始沿着AB 边向点B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发.(1)经过多长时间,S △PQB =12S △ABC (2)经过多长时间,P 、Q间的距离等于?6.随着铁路运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍。

第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件

 第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件

1.随着我国新能源汽车的生产技术不断提升,市场 上某款新能源汽车的价格由今年 3 月份的 270 000 元/ 辆下降到 5 月份的 243 000 元/辆.若价格继续下降,且
月平均降价的百分率保持不变,则预测到今年 7 月份
该款新能源汽车的价格将会(参考数据: 0.9 ≈0.95)
() A.低于 22 万元/辆 C.超过 22 万元/辆
经检验,x=0.18 为方程的解,且符合题意.
答:电动车每行驶 1 千米所需电费为 0.18 元.
14.(2021·上海)现在 5G 手机非常流行,某公司第 一季度总共生产 80 万部 5G 手机,三个月生产情况如 图.
(1)求 3 月份生产了多少部手机? (2)5G 手机速度很快,比 4G 下载速 度每秒多 95 MB,下载一部 1 000 MB 的 电影,5G 比 4G 要快 190 秒,求 5G 手机 的下载速度.
答:5G 手机的下载速度是每秒 100 MB.
15.甲、乙两个工程队均参与某筑路工程,先由甲 队筑路 60 km,再由乙队完成剩下的筑路工程,已知乙
队筑路总长是甲队筑路总长的 4 倍,甲队比乙队多筑 3
路 20 天. (1)求乙队筑路的总长;
(2)若甲、乙两队平均每天筑路长度之比为 5∶8,
求乙队平均每天筑路多少千米.
解:设计划平均每天修建步行道的长度为 x 米,
则采用新的施工方式后平均每天修建步行道的长度为
1.5x 米,
依题意,得1
200 x
-112.50x0
=5,
解得 x=80,
经检验,x=80 是原方程的解,且符合题意.
答:计划平均每天修建步行道的长度为 80 米.
13.小马驾车从 A 地到 B 地,驾驶原来的燃油汽车

专题09 一元二次方程的应用(原卷版)

专题09 一元二次方程的应用(原卷版)

九年级数学全册北师大版版链接教材精准变式练专题09 一元二次方程应用典例解读【典例1】两个连续负奇数的积是143,求这两个数.【典例2】随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2020年底某市汽车拥有量为16.9万辆.己知2018年底该市汽车拥有量为10万辆,设2018年底至2020年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【典例3】有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也会有一定数量的螃蟹死去,假设放养期间内螃蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活螃蟹1000kg放养在塘内,此时市场价为30元/kg.据测算此后每千克的活蟹的市场价每天可上升1元,但是,放养一天各种费用支出400元,且平均每天还有10 kg的蟹死去,假定死蟹均于当天全部售出,售价都是20元/kg,如果经销商将这批蟹出售后能获利6250元,那么他应放养多少天后再一次性售出?【典例4】一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后又滑行25m后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)?教材知识链接【教材知识必背】一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).诠释:列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用 其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位 数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题 此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想—方程思想.【变式1】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律计算:每件商品降价多少元时,商场日盈利可达到2100元.【变式2】如图,一块长5 m 、宽4 m 的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780. (1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米的造价为100元,求地毯的总造价.精准变式题【变式3】楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)【变式4】如图,A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33 cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q之间的距离是10 cm?【变式5】杭州湾跨海大桥通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h . (1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8 320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?1. 有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .x (x ﹣1)=45B .x (x+1)=45C .x (x ﹣1)=45D .x (x+1)=45 2.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是 ( )A .168(1+a%)2=128B .168(1-a%)2=128C .168(1-2a%)2=128D .168(1-a 2%)=1283.从一块长30cm ,宽12cm 的长方形薄铁片的四个角上,截去四个相同的小正方形,余下部分的面积 为296cm 2,则截去小正方形的边长为 ( )A .1 cmB .2 cmC .3 cmD .4 cm4.甲、乙两人分别骑车从A 、B 两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C 地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A 地的途中因故停了20分钟,结果乙由C 地到达A 地时比甲由C 地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,则甲、乙两人骑车的速度分别为( )千米/时. 综合提升变式练A.2,6 B.12,16 C.16,20 D.20,245.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为 ( )A.20%B.30% C.50% D.120%6.从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.则每次倒出溶液的升数为()A.5 B.6 C.8 D.107.某公司在2009年的盈利额为200万元,预计2011年盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.8.有一间长20 m,宽15 m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空的宽度为________.9.一块矩形耕地大小尺寸如图1所示,要在这块地上沿东西、南北方向分别挖3条和4条水渠.如果水渠的宽相等,而且要保证余下的可耕地面积为8700m2,那么水渠应挖的宽度是米.10.有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得的两位数乘原来的两位数就得1855,则原来的两位数是.11.某省十分重视治理水土流失问题,2011年治理水土流失的面积为400 km2,为了逐年加大治理力度,计划今、明两年治理水土流失的面积都比前一年增长一个相同的百分数,到2013年年底,使这三年治理水土流失的面积达1324 km2,则该省今、明两年治理水土流失的面积平均每年增长的百分数是.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.13.在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?14.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.15.如图所示,AO=OB=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A点以2cm/s的速度向B爬行,同时另一只蚂蚁由O点以3 cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只蚂蚁与O点组成的三角形的面积为450cm2?。

6-应用一元二次方程-练习试题1

6-应用一元二次方程-练习试题1

2.6 应用一元二次方程(一)一、选择题(每题4分,共24分)1.大成游乐园规定:如果一个人参加游戏,则给这个人一个奖品;如果两个人参加游戏,则给每人两个奖品;如果三个参加游戏,则给每个人三个奖品;……如果设x 个人参加游戏,给出奖品一共有36个,则参加游戏的人数为【 】A .4B .6C .8D .102.如图1所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程中,符合题意的是【 】A . x (76-x )=672;B . x (76-2x )=672;C .x (76-2x )=672;D . x (76-x )=672.3.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m ,下列各式中,正确表示这个商店第一季度的总利润的是【 】A .50[m 2+3m +3] 万元;B .50+50(1+m )2万元;C .50+50(1+2m )万元;D .50+50(1+m )+50(1+m )2万元.4.两个连续奇数的积是255.下列的各数中,是这两个数中的一个的是【 】A .-19B .5C .17D .515.小明用一根长为30厘米的铁丝围成一个直角三角形,使斜边长为13厘米,则该三角形的面积等于【 】.A .15厘米2B .30厘米2C .45厘米2D .60厘米26.如图2,在△ABC 中,∠ABC =90°, AB =8cm ,BC =6cm .动点P 、Q 分别 从点A 、B 同时开始移动,点P 的速度为1 cm /秒,点Q 的速度为2 cm /秒,点Q 移动到点C 后停止,点P 也随之停止运动。

下列时间瞬间中,能使△PBQ 的面积为15cm 2的是【 】 A .2秒钟 B .3秒钟 C . 4秒钟 D . 5秒钟 二、填空题(每题4分,共24分)7.如图3所示,在一块正方形空地上,修建一个正方形休闲广场,其余部分铺设草坪,已知休闲广场的边长是正方形空地边长的一半,草坪的面积为是 m 。

一元二次方程应用题精选含答案

一元二次方程应用题精选含答案

一元二次方程应用题精选一、数字问题1、有两个连续整数,它们的平方和为25,求这两个数。

2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.二、销售利润问题3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?三、平均变化率问题增长率(1)原产量+增产量=实际产量.(2)单位时间增产量=原产量×增长率.(3)实际产量=原产量×(1+增长率).6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?四、形积问题8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高.9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是540m2,求小路宽的宽度.五、围篱笆问题10、如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?六、相互问题(传播、循环)11、(1)参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?(2)要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?(3) 某初三毕业班的每一个同学都把自己的照片向全班其他的同学各送一张留作纪念,全班共送了3080张照片.如果该班有x 名同学,根据题意可列出方程为?12、有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?第21题图13、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?七.行程问题:14、甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。

一元二次方程(应用3)销售问题与分式方程

一元二次方程(应用3)销售问题与分式方程
1 2
如何取舍? 销售问题考虑销量
范例 例2、某商场礼品柜台春节期间购进大 量贺年卡,其中一种平均每天可售出 500张,每张盈利0.3元。为了尽快减少 库存,商场决定采取适当降价措施。调 查发现,如果这种贺年卡的售价每降低 0.1元,那么商场平均每天可多售出100 张。商场要想该贺卡平均每天盈利120 元,每张贺年卡应降价多少元?
作业 2、如图,在矩形ABCD中,AB=6cm, BC=12cm,点P从点A开始沿AB边向点 B以1cm/s的速度移动,点Q从点B开始 沿BC边向点C以2cm/s D C 的速度移动。如果P、 Q分别从A、B同时出发. Q (1) 几秒钟后△ PBQ (2) 设△ PDQ 的面积 (3) 求t为何值时,S=28. 为 S,用t表示出 S. 的面积等于 8cm2 ? A B P
销售问题与可化为 一元二次方程的分式方程
范例 例1、某商场销售一批衬衫,平均每天 可售出20件,每件盈利45元。为了扩 大销售、增加盈利,尽快减少库存, 商场决定采取适当的降价措施,经调 查发现,如果每件衬衫降价2元,商场 平均每天可多卖出8件,若商场平均每 天盈利2100元,每件衬衫应降价多少 元? x 10, x 30
(2)在不改变上述关系的情况下,请你帮 助商场经理策划每件商品定价为多少元 时,每日盈利可达到1600元?
作业 1、某商场销售一批衬衫,平均每天 可售出20件,每件盈利45元。为了扩 大销售、增加盈利,尽快减少库存, 元,商场 平均每天可多卖出8件,若商场平均每 天盈利2100元,每件衬衫应降价多少 元?
巩固
2、甲、乙两队学生绿化校园,如果两 队合作,6天可以完成;如果单独工作, 甲队比乙队少用5天。两队单独工作, 各需多少天完成?
巩固 3、某种新产品的进价是120元,在试销 阶段发现每件售价(元)与产品的日销售 量(件)始终存在下表中的数量关系:

一元二次方程应用题专题[分类汇总]

一元二次方程应用题专题[分类汇总]

一元二次方程解应用题专题列方程解应用题的步骤为:1审题;目的是审清题目中的已知量和求知量。

2 •设未知数;包括直接设未知数和间接设未知数两种;3•找等量关系列方程;4.解方程;5 •判断解是否符合题意;一、面积问题:关于面积问题一般都是画出平面示意图,结合图形,利用“数形结合”的思想,来解决实际问题,对于图形进行平移是常用的方法。

(同时还要注意验根)例1:如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?例2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m,另三边用木栏围成,木栏长35m>①鸡场的面积能达到150卅吗?②鸡场的面积能达到180卅吗?如果能,请你给出设计方案;如果不能,请说明理由。

(3)若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用?作业:1•一块长和宽分别为40厘米和25厘米的长方形铁皮,要在它的四角截去四个相等的小正2.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形 .(1)要使这两个正方形的面积之和等于 17cn {,那么这段铁丝剪成两段后的长度分别是多少 ?(2)两个正方形 的面积之和可能等于12cm 吗?若能,求出两段铁丝的长度;若不能,请说明理由二、增长率问题:关于增长率的问题,一般有三个常用量,原产量;增长率(降低率);增长后的产量(降低后的 产量)。

如果把原产量叫做基数(也做始数)用 A 表示,把增长后的产量叫做末数用 B 表示,增长率 (下降率)用x 表示,时间间隔用n 增长率问题的数量关系 A (1 ± x ) n=B,在初中阶段,n 通常取2 .例1、厚辉广场九月份的销售额为 200万元,十月份的销售额下降了 20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了例2、某公司一月份营业额 100万元,第一季度总营业额为 331万元,求该公司二、三月份营业 额平均增长率是多少?作业:1、某厂改进工艺降低了某种产品的成本, 两个月内从每件产品250元,降低到了每件160 元,求平均每月降低率?方形,折成一个无盖的长方体纸盒,使它的底面积为 450平方厘米.那么纸盒的高是多少?193.6万元,求这两个月的平均增长率2、某商店将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

中考数学一元二次方程与分式方程专题练习含解析

中考数学一元二次方程与分式方程专题练习含解析

一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的范围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是m≠±2.【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值范围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值范围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0;若关于x的方程﹣1=0无实根,则a的值为±1.【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b 的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。

专题21.4一元二次方程的解法(精选精练100题)(专项练习)1「含答案」

专题21.4一元二次方程的解法(精选精练100题)(专项练习)1「含答案」

专题21.4 一元二次方程的解法(精选精练100题)(专项练习)【题型目录】1、直接开平方法解一元二次方程(1-20题);2、配方法解一元二次方程(21-40题);3、公式法解一元二次方程(41-60题);4、因式分解法解一元二次方程(61-80题);5、换元法解一元二次方程(81-90题);6、解可化以一元二次方程的分式方程(91-100题).四、因式分解法解一元二次方程1.用因式分解法解方程:(1)2411x x =;(2)()2224x x -=-2.用因式分解法解下列方程:(1)()()()262x x x --=-;(2)()()22167920x x --+=.3.用因式分解法解下列方程:(1)()()120x x +-=;(2)()()3521127x x x --=-+.4.用因式分解法解下列方程:(1)269x x -=-;(2)224(3)25(2)0x x ---=.5.用因式分解法解下列方程:(1)250x x +=;(2)(5)(6)5x x x --=-.6.用因式分解法的方法解下列方程:(1)22150x x --= ;(2)2326x x (+)=+7.因式分解法解方程:(1)()()23525x x -=-;(2)()()22200abx a b x ab ab -++=¹;8.用因式分解法解下列方程:(1)()2236x x +=+;(2)231212x x +=;(3)()223240x x +-=;(4)()()()521123x x x -=-+.9.用因式分解法解下列一元二次方程:(1)21502x x -=;(2)()()23727x x -=-;(3)()22210x x +-=.10.用因式分解法解下列方程:(1))23x x =;(2)()()221210x x x ---=.11.用因式分解法解下列方程.(1)2560x x --=(2)3(2)2(2)x x x -=-12.用因式分解法解下列方程:(1)()2218x x -=-;(2)()()2222x x x -=-;(3)23x -=-.13.用因式分解法解下列方程:(1)2350y y -=;(2)2412x x =;(3)296x x +=-;(4)229(1)x x =-.14.用因式分解法解下列方程.(1)()()222320x x ---=;(2)()2211t t -+=.15.用因式分解法解下列方程:(1)()2212x x -=;(2)()()222310y y +--=.16.用因式分解法解下列方程:(1)(2)(4)0x x +-=; (2)4(21)3(21)x x x +=+.17.用因式分解法解下列方程:(1)(2)(23)6x x --=;(2)()44x x -=-.18.用因式分解法解方程:(1)3x (2x +1)=2(2x +1);(2)22(3)(52)x x -=-.19.用因式分解法解方程.(1)22437365x x x x +-=--(2)()233x x x -=-20.用因式分解法解一元二次方程(1)()()41570x x +-=;(2)2(23)4(23)x x +=+.五、换元法解一元二次方程21.()()233320y y -+-+=.22.解方程:2231712x x x x -+=-.23.若实数x ,y 满足2222()(2)3x y x y ++-=,求22x y +的值.24.解方程:226212x x x x--=-.25.解方程()225160x --=.26.如果2222()(2)3x y x y ++-=,请你求出22xy +的值.27.阅读下面的例题,回答问题:例:解方程:220x x --=令y x =,原方程化成220y y --=解得122,1y y ==-(不合题意,舍去) 2,2x x \=\=±\ 原方程的解是122,2x x ==-.请模仿上面的方法解方程:()21160x x ----=28.阅读下列材料:为解方程4260x x --=可将方程变形为()22260x x --=然后设2x y =,则()222x y =.例:4260x x --=,解:令2x y =,原方程化为260y y --=,解得12y =-,23y =,当12y =-时,22x =-(无意义,舍去)当23y =时,23x =,解得x =\原方程的解为1x =2x =.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即:换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)()()22225260x x x x ----=;(2)()23511x x ++-=.29.阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如: 解方程:2–320x x +=.解:设x t =,则原方程可化为:2–320t t +=.解得:1212t t ==,.当1t =时,1x =,∴1x =±;当2t =时,2x =,∴2x =±.∴原方程的解是:12341122x x x x ==-==-,,,.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:220x x -=;(2)解方程:42–1090x x +=.(3)解方程:221211x x x x +-=+.30.换元法是数学中的一种解题方法.若我们把其中某些部分看成一个整体,用一个新字母代替(即换元),则能使复杂的问题简单化.如:解二元一次方程组2()3()22()3x y x y x y x y ++-=-ìí+--=î,按常规思路解方程组计算量较大.可设x y a +=,x y b -=,那么方程组可化为23223a b a b +=-ìí-=î,从而将方程组简单化,解出a 和b 的值后,再利用x y a +=,x y b -=解出x 和y 的值即可.用上面的思想方法解方程:(1)222432x x x x ++=+;(2)2250x x ++-=六、解可化以一元二次方程的分式方程31.解分式方程:2216111x x x +-=--.32.解分式方程:221226x x x x+++=.33.解分式方程:11133x x +=+-34.解分式方程:()2218111x x x --=+-35.解分式方程:241142x x +=--.36.解分式方程:224124x x x -=-+-37.解分式方程21211x x x -=++38.解分式方程:252112x x x+-=3.39.解分式方程:2164122x x x x +=--40.解分式方程:2212111x x x -+=--1.(1)10x =,2114x =(2)12x =,24x =【分析】本题考查了因式分解法解一元二次方程,掌握因式分解的方法是解题的关键;(1)先移项然后提公因式,根据因式分解法解一元二次方程;(2)先移项然后提公因式,根据因式分解法解一元二次方程,即可求解.【详解】(1)解:移项,得:24110x x -=,因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =.(2)移项,得()22240x x --+=,即()()22220x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=,于是,得20x -=或40x -=,∴12x =,24x =.2.(1)12x =,27x =(2)1227x =,234x =【详解】(1)方程左右两边都有因式()2x -,先移项,然后利用提公因式法将等式的左边因式分解;(2)直接利用平方差公式将方程的左边因式分解.(1)移项,得()()()2620x x x ----=,∴()()2610x x ---=,即()()270x x --=,∴20x -=或70x -=,∴12x =,27x =.(2)因式分解,得()()42836428360x x x x -++---=.化简,得()()072234x x --=,∴7220x -=或340x -=,∴1227x =,234x =.3.(1)11x =-,22x =(2)112x =-,223x =【详解】解:(1)()()120x x +-=Q ,10x \+=或20x -=,11x \=-,22x =.(2)原方程可化为2620x x --=,()()21320x x \+-=,210x \+=或320x -=,112x \=-,223x =.4.(1)123x x ==(2)12164,73x x ==【分析】(1)先移项,然后利用完全平方公式因式分解求解;(2)先移项,然后直接开平方即可解答此方程.【详解】(1)解:269x x -=-2690x x -+=()230x -=解得:123x x ==;(2)解:224(3)25(2)0x x ---=[][]220()5232()x x --=-,[][]2(3)5(2)2(3)5(2)0x x x x -+----=,()5()0232x x --+=或()5()0232x x ---=,解得12164,73x x ==.【点睛】本题考查解一元二次方程,解题的关键是明确方程的特点,选择合适的方法解方程.5.(1)10x =,25x =-(2)15=x ,27x =【分析】(1)直接用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】(1)∵250x x +=∴()50x x +=∴0x =或50x +=∴10x =,25x =-(2)∵(5)(6)5x x x --=-∴()(5)(6)50x x x ----=∴(5)(61)0x x ---=∴50x -=或610x --=∴15=x ,27x =【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解答本题的关键.6.(1)15x =,23x -=;(2)13x -=,21x -=【分析】(1)直接利用因式分解法求解即可;(2)先移项,再利用因式分解法求解即可.【详解】(1)解:22150x x --= ,(x ﹣5)(x +3)=0,则x ﹣5=0或x +3=0,∴15x =,23x -=;(2)解:2326x x ++()=,2323x x ++()=(),移项,得23230x x ++()﹣()=,则(x +3)(x +1)=0,∴x +3=0或x +1=0,∴1231x x --=,=.【点睛】本题考查了因式分解法求解一元二次方程,熟练进行因式分解是解题的关键.7.(1)121353x x ==,(2)12b a x x a b==【分析】(1)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;【详解】(1)解:()()23525x x -=-方程变形为:()()23525x x -+-=0,∴()()50532x x éù+ë-=û-,∴()()53130x x --=,∴12135,3x x ==;(2)解:()()22200abx a b x ab ab -++=¹()()0ax b bx a --=,∵0ab ¹,∴0,0a b ¹¹,∴12,ba x x a b==【点睛】本题考查的知识点是解一元二次方程,掌握用因式分解法解一元二次方程是解此题的关键.12(2)122x x ==(3)12x =-,225x =-(4)112x =,28x =-【分析】利用因式分解法解一元二次方程即可.【详解】(1)原方程可变形为()()2230x x ++-=,即()()210x x +-=,所以20x +=或10x -=,即12x =-,21x =.(2)原方程可变形为2440x x -+=,即()220x -=,所以122x x ==.(3)原方程可变形为()()3223220x x x x +-++=,即()()2520x x ++=,所以20x +=或520x +=,即12x =-,225x =-.(4)原方程可变形为()()21530x x -++=,即()()2180x x -+=,210x -=或80+=x ,∴112x =,28x =-.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握适合因式分解法解一元二次方程——把方程的右边化为0,左边能通过因式分解化为两个一次因式的积的形式的方程是解题的关键.12(2)17x =,2193x =(3)113x =-,21x =-【分析】(1)利用提公因式法进行因式分解,求解即可;(2)通过移项,提公因式法进行因式分解,求解即可;(3)利用平方差公式,进行因式分解,求解即可.【详解】(1)解:21502x x -=因式分解,得1502x x æö-=ç÷èø.于是0x =,1502x -=,解得10x =,210x =;(2)()()23727x x -=-移项,得()()237270x x ---=,因式分解,得()()73720x x --+=éùëû,于是70x -=,3190x -=,解得17x =,2193x =;(3)()22210x x +-=因式分解,得()()21210x x x x éùéù+++-=ëûëû,于是310x +=,10x +=,解得113x =-,21x =-.【点睛】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的有关方法.10.(1)120x x =,(2)12112x x ==,【分析】利用因式分解法解方程即可.【详解】(1)解:∵)23x x =,∴)230x x -=,∴)310x x éù-=ëû,∴)310x -=或0x =,解得120x x ==,;(2)解:∵()()221210x x x ---=,∴()()21210x x x ---=,即()()1210x x --=,∴10x -=或210x -=,解得12112x x ==,.【点睛】本题主要考查了解一元二次方程,熟知因式分解法解一元二次方程的步骤是解题的关键.11.(1)18x =,27x =-(2)12x =,223x =【分析】(1)首先把方程变形可得(8)(7)0x x -+=,进而得到两个一元一次方程,然后分别求出x 的值即可;(2)首先对方程进行整理,得出3(2)2(2)0x x x ---=,再因式分解可得(2)(32)0x x --=,然后得出两个一元一次方程,求解即可得出答案.【详解】(1)2560x x --=,(8)(7)0x x \-+=,80x \-=或70x +=,18x \=;27x =-;(2)3(2)2(2)x x x -=-,移项,得3(2)2(2)0x x x ---=,(2)(32)0x x \--=,20x \-=或320x -=,12x \=;223x =.【点睛】本题考查用因式分解法解一元二次方程,熟练掌握用因式分解法解一元二次方程的方法和步骤是解题关键.12.(1)1212x x ==-(2)12x =,22x =-(3)12x x ==【分析】(1)先移项,再把括号展开进行因式分解,即可求解;(2)先移项,再提取公因式()2x -进行因式分解,即可求解;(3)先移项,再用完全平方公式进行因式分解,即可求解.【详解】(1)解:()22180x x +-=,241840x x x -+=+,24410x x ++=,()2210x +=,210x +=,21x =-,1212x x ==-.(2)解:()()22220x x x ---=,()()2220x x x ---=,()()220x x ---=,20x -=或20x --=,12x =,22x =-.(3)解:230x -+=,(20x =,0x =,12x x ==【点睛】本题主要考查了用因式分解法求解二元一次方程,解题的关键是熟练掌握因式分解的方法.13.(1)1250,3y y ==(2)120,3x x ==(3)123x x ==-(4)1211,42x x ==-【分析】(1)根据题意,利用因式分解法解一元二次方程;(2)根据题意,利用因式分解法解一元二次方程;(3)根据题意,利用因式分解法解一元二次方程;(4)根据题意,利用因式分解法解一元二次方程即可求解.【详解】(1)解:2350y y -=,()350y y -=,解得:1250,3y y ==;(2)解:2412x x =,24120x x -=,()430x x -=,解得:120,3x x ==;(3)解:296x x+=-2690x x ++=即()230x +=,解得:123x x ==-;(4)解:229(1)x x =-,()22910x x --=,即()()22310x x --=,∴()()31310x x x x +--+=,即()()41210x x -+=,解得:1211,42x x ==-.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.14.(1)125,13x x ==(2)1211,2t t ==【分析】(1)利用因式分解法解答,即可求解;(2)利用因式分解法解答,即可求解.【详解】(1)解:()()222320x x ---=,∴()()()()2322320x x x x -+--éùé-ùëûëû-=,∴()()3510x x --=,∴350x -=或10x -=,∴125,13x x ==.(2)解:()2211t t -+=∴()22110t t -+-=,∴()()1210t t --=,∴1211,2t t ==.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.123(2)1213,42y y =-=【分析】(1)根据因式分解法解一元二次方程;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:移项,得()22120x x --=,因式分解,得()()12120x x x x -+--=,得10,130x x -=-=或,解得:1211,3x x ==;(2)解:因式分解,得()()2312310y y x y ++-+-+=,合并同类项,得()()41230y y +-+=,得410230y y +=-+=或,解得:1213,42y y =-=.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.16.(1)12=2,=4x x -;(2)1213,24x x =-=.【分析】运用因式分解法解一元二次方程即可.【详解】解:(1)∵(2)(4)0x x +-=;∴20x +=,40x -=,∴12x =-,24x =;(2)4(21)3(21)x x x +=+,4(21)3(21)0x x x +-+=,(21)(43)0x x +-=,∴210x +=或430x -=,∴112x =-,234x =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解的方法是解本题的关键.122(2)122x x ==【分析】(1)先化为一般形式,再利用因式分解法解一元二次方程;(2)先化为一般形式,再利用因式分解法解一元二次方程即可求解.【详解】(1)解:(2)(23)6x x --=,223466x x x --+=,即2270x x -=,∴()270x x -=,解得:12720,x x ==;(2)解:()44x x -=-,即2440x x -+=,()220x -=,解得:122x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.18.(1)1x =-12,2x =23;(2)1x =2,2x =83.【分析】(1)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值;(2)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值.【详解】(1)解:∵3x (2x +1)-2(2x +1)=0,∴(2x +1)(3x -2)=0,∴2x +1=0或3x -2=0,解得1x =-12,2x =23;(2)解:∵22(3)(52)x x -=-,∴22(3)(5)02x x --=-,∴(352)(3520)x x x x +---+=-,即(2)(308)x x --=,∴2-x =0或3x -8=0,解得1x =2,2x =83.【点睛】本题考查解一元二次方程-因式分解法,解题的关键是掌握因式分解法解一元二次方程的一般步骤.19.(1)113x =-,213x =(2)112x =,23x =【分析】(1)先将原方程化成一般式,然后再因式分解法求解即可;(2)先将原方程化成一般式,然后再因式分解法求解即可.【详解】(1)解:22437365x x x x +-=--2910x -=(3x +1)(3x -1)=03x +1=0,3x -1=0113x =-,213x =.(2)解:()233x x x -=-2263x x x -=-22730x x -+=(2x -1)(x -3)=02x -1=0,x -3=0112x =,23x =.【点睛】本题主要考查了解一元二次方程,掌握运用因式分解法解一元二次方程是解答本题的关键.20.(1)114x =-,275x =(2)132x =-,212x =【分析】(1)将一元二次方程化为两个一元一次方程即可;(2)将一元二次方程化为两个一元一次方程即可.【详解】(1)解:()()41570x x +-=;410x +=,570x -=,解得:114x =-,275x =(2)解:()()223423x x +=+,()()2234230x x +-+=,()()232340x x ++-=;()230x +=,()2340x +-=解得:132x =-,212x =.【点睛】本题考查因式分解法解一元二次方程,解题关键是将它化为两个一元一次方程.21.2y =或1y =【分析】本题考查了解一元二次方程的方法,将()3y -看作一个整体,设3y t -=,利用因式分解法求得t 的值,进而即可求得y .【详解】解:设3y t -=,则原方程即2320t t ++=,∴()()120t t ++=,∴10t +=或20t +=,解得1t =-或2t =-,∴31y -=-或32y -=-,解得,2y =或1y =.22.1234111,22x x x x =+==-=【分析】本题考查了换元法解可以化为一元二次方程的分式方程等知识.设21x y x =-,原方程变为1732y y +=,解得12y =或23y =.再分别代入21x y x =-,求出1x =或12x =-或2x =,代入最简公分母进行检验即可求解.【详解】解:设21x y x =-,则211x x y-=,原方程变为1732y y +=,去分母得:26720y y -+=,解得12y =或23y =.当2112x x =-时,去分母得:2210x x --=,解得:1x =当2213x x =-时,去分母得:22320x x --=,解得:12x =-或2x =,检验:当1x =()()2110x x x +-¹,当12x =-或2x =时,()()2110x x x +-¹,∴分式方程的解为1234111,22x x x x ===-=.23.223x y +=.【分析】本题主要考查用换元法解一元二次方程,解答本题的关键在于,掌握整体代换思想方法的应用,将22x y +看成一个整体t ,转换成一个关于t 的一元二次方程求解即可.【详解】解:令22x y t +=,则,原方程变为,()23t t -=,即,2230t t --=,()()310t t -+=解得:13t =,21t =-;又220x y +³Q ,∴223x y +=.24.123,1x x ==-【分析】本题考查用换元法解分式方程的能力,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.可根据方程特点设22y x x =-,则原方程可化为260y y --=,解一元二次方程求y ,再求x .【详解】设22y x x =-,则原方程化为61y y-=\260y y --=,即()()320y y -+=,解得12y =-,23y =.当12y =-时,222x x -=-,该方程无解,当23y =时,223x x -=.解得13x =,21x =-,检验:当13x =时,原方程左边69632196=--=-==-右边,当21x =-时,原方程左边61232112=+-=-==+右边,∴13x =,21x =-都是原方程的根,∴原方程的根是13x =,21x =-.25.13x =,23x =-,31x =,41x =-【分析】设25y x =-,求出y 后,可得关于x 的方程,再解方程即可.【详解】设25y x =-,原方程化为2160y -=,解得14y =,24y =-,当14y =时,254x -=,29x =,则13x =,23x =-;当24y =-时,254x -=-,21x =,则31x =,41x =-,所以原方程的解为13x =,23x =-,31x =,41x =-.【点睛】本题考查了换元法和直接开平方法解方程,掌握求解的方法是关键.26.22x y +的值为3【分析】设22x z y +=,然后用因式分解法求解即可,求解时注意220x y +>.【详解】设22x z y +=,∴(2)3z z -=.整理得:2230z z --=,∴(3)(1)0z z -+=.∴121,3z z ==-.∵220z x y =+>,∴1z =- (不合题意,舍去)∴3z =.即22x y +的值为3.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.27.1224x x =-=,【分析】本题主要考查了换元法解一元二次方程,令1m x =-,则原方程化为260m m --=,解方程得到3m =,则1=3x -,据此求解即可.【详解】解:令1m x =-,则原方程化为260m m --=,∴()()320m m -+=,解得3m =或2m =-(不合题意,舍去),∴1=3x -,∴13x -=±,解得1224x x =-=,.28.(1)11x =,21x =,341x x ==(2)10x =、25x =-【分析】本题考查了换元法解一元二次方程;(1)令22x x y -=,原方程化为2560y y --=,进而得出226x x -=,221x x -=-,解方程,即可求解;(2y =,原方程化为2321y y -=,解得113y =-,21y =,进而分别解一元二次方程,即可求解.【详解】(1)解:令22x x y -=,原方程化为2560y y --=,解得16y =,21y =-.当16y =时,226x x -=,解得1x =.当21y =-时,221x x -=-,解得1x =.\原方程的解为:11x =,21x =,341x x ==(2y =,原方程化为2321y y -=,解得113y =-,21y =当113y =-13=-(无意义舍去)当21y =1=,解得10x =、25x =-.\原方程的解为10x =、25x =-.29.(1)1234022x x x x ====-,,;(2)12341133x x x x ==-==-,,,;(3)1x =和12x =-.【分析】本题考查了整体换元法,整体换元法是我们常用的一种解题方法,在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.(1)设x t =,则原方程可化为220t t -=,解方程求得t 的值,再求x 的值即可;(2)设2x a =,则原方程可化为2–1090a a +=,解方程求得a 的值,再求x 的值即可;(3)设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,解方程求得m 的值,再求x 的值,检验后即可求得分式方程的解.【详解】(1)解:设x t =,则原方程可化为:220t t -=.解得:1202t t ==,.当0=t 时,0x =,∴0x =;当2t =时,2x =,∴2x =±.∴原方程的解是:1234022x x x x ====-,,;(2)解:设2x a =,则原方程可化为2–1090a a +=,即()()190a a --=,解得:1a =或9a =,当1a =时,21x =,∴1x =±;当9a =时,29x =,∴3x =±;∴原方程的解是:12341133x x x x ==-==-,,,;(3)解:设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,∴()()120m m +-=,解得:1m =-或2m =,当1m =-时,211x x+=-,即210x x ++=,由141130D =-´´=-<知此时方程无解;当2m =时,212x x+=,即2210x x --=,解得:1x =或12x =-,经检验1x =和12x =-都是原分式方程的解.30.(1)1=1x -;2=2x ;31x =41x =(2)11x =-,21x =【分析】该题主要考查了换元思想解方程,一元二次方程的解答,分式方程的解答,解题的关键是运用换元法进行整体代换;(1)设2(0)2x t t x =¹+,将原方程化为2320t t -+=,解得2t =或1t =,再分别代入22x t x =+求解分式方程的解即可;(2()0t t =³,则有222x x t +=,将原方程化为:2450t t +-=,解得5t =-(舍)或1t =t =求解即可;【详解】(1)设2(0)2x t t x =¹+,\原方程化为23t t+=,\2320t t -+=,解得2t =或1t =,当1t =时,212x x =+,解得2x =或=1x -,经检验,=1x -或2x =是方程的解;当2t =时,222x x =+,解得1x =1x =-,经检验,1x =或1x =∴原方程的解为:1=1x -;2=2x ;31x =;41x =(2()0t t =³,则有222x x t +=,\原方程可化为:2450t t +-=,解得5t =-(舍)或1t =,1=,\2210x x +-=,解得11x =-或21x =-;经检验:11x =,21x =是原方程的解.31.4x =-【分析】本题主要考查了解分式方程,根据解分式方程的步骤求解即可,注意解分式方程最后要验根,熟练掌握分式方程的解法是解题的关键.【详解】解:2216111x x x +-=--方程左右同乘以21x -、去分母得:()()()221116x x x ++--=,去括号得:2222116x x x x +++-+=,移项、合并同类项得:2340x x +-=,因式分解得:()()410x x +-=,∴40x +=或10x -=,解得:14x =-,21x =,检验:14x =-,则211150x -=¹,故是原分式方程的根,21x =,则2210x -=,故是原分式方程的增根,∴原分式方程的解为4x =-.32.12x =-,22x =-,31x =【分析】本题考查了解分式方程和解一元二次方程,能把解分式方程转化成解一元二次方程是解此题的关键,注意:解分式方程一定要进行检验.原方程化为211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x +=,则原方程变形为2226a a +-=,求出a 的值,当4a =-时,方程为14x x+=-,求出方程的解,当2a =时,方程为12x x +=,求出方程的解,最后进行检验即可.【详解】解:原方程化为:211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x+=,则原方程化为:2226a a +-=,即2280a a +-=,解得:4a =-或2a =,当4a =-时,14x x+=-,整理得:2410x x ++=,Q 24411120D =-´´=>,x \=解得:12x =-,22x =-;当2a =时,12x x +=,整理得:2210x x -+=,()210x -=,解得:1x =,经检验12x =-,22x =-,31x =都是原方程的解,所以原方程的解是12x =-22x =-,31x =.33.12x x ==【分析】方程两边同乘以()()33x x +-可得一个关于x 的一元二次方程,再利用直接开平方法解一元二次方程即可得.【详解】解:11133x x +=+-,方程两边同乘以()()33x x +-,得()()3333x x x x +--+=+,去括号,得2933x x x --+=+,移项、合并同类项,得215x =,直接开平方,得12x x ==经检验,12x x ==【点睛】本题考查了解分式方程、解一元二次方程,熟练掌握解分式方程的方法是解题关键,需注意的是,分式方程的解要进行检验.34.5x =【分析】根据分式方程的解法步骤求解即可.【详解】解:去分母,得()222181x x --=-,去括号,得2224281x x x -+-=-移项、合并同类项,得2450x x --=,解得11x =-,25x =,经检验,5x =是方程的解.【点睛】本题考查解分式方程、解一元二次方程,熟练掌握分式方程的解法步骤是解答的关键.35.=1x -【分析】方程两边同时乘以()24x -,化为整式方程,解方程即可求解,最后要检验.【详解】解:241142x x +=--,方程两边同时乘以()24x -,得()2442x x +-=+,即220x x --=,()()210x x -+=,解得122,1x x ==-,检验:当2x =时,()24x -0=,当=1x -时,()240x -¹.∴=1x -是原方程的解.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键,注意要检验.36.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可.【详解】解:224124x x x -=-+-,两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.37.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可.【详解】解:21211x x x -=++化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1¹0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点睛】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.38.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18,检验:当x =56或18时,x (2x ﹣1)≠0.即原方程的解为:x 1=56,x 2=18.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键.39.83x =-【分析】将分式方程转化为整式方程,然后解整式方程,注意分式方程的结果要进行检验.【详解】解:整理,得:1641(2)2xx x x +=--,去分母,得:216(2)4x x x +-=,221624x x x +-=,232160x x +-=,(2)(38)0x x -+=,解得:12x =,283x =-,检验:当2x =时,(2)0x x -=,2x \=不是原分式方程的解,当83x =-时,(2)0x x -¹,83x \=-是原分式方程的解,\分式方程的解为83x =-.【点睛】本题考查解分式方程,解一元二次方程,掌握解分式方程和因式分解法解一元二次方程的步骤是解题关键,注意分式方程的结果要进行检验.40.2x =-【分析】先去分母化为整式方程求解,最后记得检验即可.【详解】解:原方程可化为()()2121111x x x x --=-+-去分母得()()()()211211x x x x -+-=+-,解得11x =,22x =-经检验11x =是增根,2x =-是原方程的解,\原方程的解为2x =-.故答案为2x =-.【点睛】本题考查了解分式方程,熟练掌握一般步骤是解题的关键,需要注意的是最后要记得检验是否为方程的根.。

用一元二次方程解决实际问题习题精选

用一元二次方程解决实际问题习题精选

用一元二次方程解决实际问题习题精选(二)一、选择题(每题4分,共24分)1.大成游乐园规定:如果一个人参加游戏,则给这个人一个奖品;如果两个人参加游戏,则给每人两个奖品;如果三个参加游戏,则给每个人三个奖品;……如果设x 个人参加游戏,给出奖品一共有36个,则参加游戏的人数为【】A .4B .6C .8D .102.如图1所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程中,符合题意的是【】A .21x (76-x )=672;B .21x (76-2x )=672;C .x (76-2x )=672;D . x (76-x )=672.3.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m ,下列各式中,正确表示这个商店第一季度的总利润的是【】A .50[m 2+3m +3] 万元;B .50+50(1+m )2万元;C .50+50(1+2m )万元;D .50+50(1+m )+50(1+m )2万元.4.两个连续奇数的积是255.下列的各数中,是这两个数中的一个的是【】A .-19B .5C .17D .515.小明用一根长为30厘米的铁丝围成一个直角三角形,使斜边长为13厘米,则该三角形的面积等于【】.A .15厘米2B .30厘米2C .45厘米2D .60厘米26.如图2,在△ABC 中,∠ABC =90°,AB =8cm ,BC =6cm .动点P 、Q 分别从点A 、B 同时开始移动,点P 的速度为1 cm /秒,点Q 的速度为2 cm /秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是【】A .2秒钟B .3秒钟C . 4秒钟D . 5秒钟二、填空题(每题4分,共24分)7.如图3所示,在一块正方形空地上,修建一个正方形休闲广场,其余部分铺设草坪,已知休闲广场的的边长是正方形空地边长的一半,草坪的面积为147m 2,则休闲广场的边长是m .8.在一幢高125m 的大楼上掉下一个苹果,苹果离地面的高度h (m )与时间t (s )大致有如下关系:h =125-5t 2.秒钟后苹果落到地面.9.一个数的平方等于它本身,你认为这个数是.10.2007年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有支.11.中国民歌不仅脍炙人口,而且许多还有教育意义,有一首《牧童王小良》的民歌还包含着一个数学问题牧童王小良,放牧一群羊.问他羊几只,请你仔细想.头数加只数,只数减头数. 只数乘头数,只数除头数.四数连加起,正好一百数.如果设羊的只数为x ,则根据民歌的大意,你能列出的方程是.12.在实数范围内定义一种运算“*”,其规则为22*a b a b =-,根据这个规则,方程(2)50*x +=的解为.三、解答题13.放铅笔的V 形槽如图4,每往上一层可以多放一支铅笔,现有190支铅笔,则要放多少层?14.2003~2005年陕西省财政收入情况如图5所示.根据图中的信息,解答下列问题:(1)陕西省这三年财政收入共为多少亿元?(2)陕西省2003~2005年财政收入的年平均增长率约为多少?(精确到1%)图4(备用数据27.1326528=,13.1415528=精确到1%)15.某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.如果要使每天销售饮料获利14000元,问每箱应降价多少元?16.如图6,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问几秒后,点P和点Q的距离是10 cm?17.图7是中北居民小区某一休闲场所的平面示意图.图7中阴影部分是草坪和健身器材安装区,空白部分是用做散步的道路.东西方向的一条主干道较宽,其余道路的宽度相等,主干道的宽度是其余道路的宽度的2倍.这块休闲场所南北长18m,东西宽16m.已知这休闲场地中草坪和健身器材安装区的面积为168m2,请问主干道的宽度为多少米?18.一次数学兴趣小组的活动课上,师生有下面的对话,请你阅读完后再解答下列问题. 老师:同学们,今天我们来探索如下方程的解法:()012)(8222=+---x x x x小明:老师,这个方程先去括号,再合并同类项,行吗? 老师:这样,原方程可整理为012872234=++--x x x x ,次数变成了4次,用现有的知识无法解答.同学们再观察观察,看看这个方程有什么特点?小亮:老师,我发现方程中x -2x 是整体出现的,最好不要去括号!老师:很好,如果我们把x -2x 看成一个整体,用y 来表示,即x -2x =y ,那么原方程就变成01282=+-y y . 全体学生:(同学们都特别高兴)噢,这不是我们最熟悉的一元二次方程吗?老师:大家真会观察和思考,太棒了!显然一元二次方程01282=+-y y 的根是61=y ,22=y小丽:对啦,再解这两个方程,可得原方程的根31=x ,22-=x ,23=x ,14-=x ,嗬,有这么根啊!老师:同学们,通常我们把这种方法叫做换元法.在这里,使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.全体同学:OK ,换元法真神奇! 现在,请你用换元法解下列分式方程061512=-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-x x x x19.如图8,用同样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有块瓷砖,每一坚列共有块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围);(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;(4)若黑瓷砖每块4元,白瓷砖每块3元,在问题⑶中,共需花多少元钱购买瓷砖?(5)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算说明为什么?参考答案 1.B 2.A 3.D 4.C 5.B 6.B 7.7 8.5 9.0或110.15 11.x 2+2x+1=100 12.31=x ,71-=x13.解:设190支铅笔,可放x 层.21n (n -1)=190解之得,201=n ,191-=n (不符题意,舍去)答:设190支铅笔,可放20层.14.(1)这三年财政收入为1296亿元;(2)设陕西省2003~2005年财政收入的年平均增长率约x ,那么依据题意得326(1+x )2=528解之得,27.0=x ,27.22-=x (不符题意,舍去)答:陕西省2003~2005年财政收入的年平均增长率约27%.15.解:设要使每天销售饮料获利14000元,每箱应降价x 元,依据题意得(120-x )(100+2x )=14000整理得,020*******=+-x x图8解这个方程,得201=x 502=x答:每箱应降价20元或50元,可使每天销售饮料获利14000元.15.解:设t 秒后,点P 和点Q 的距离是10 cm ,则AP =3t ,CQ =2t ,过点P 作PE ⊥CD 于E ,所以四边形APDE 是矩形,所以AD =PE =6cm ,EQ=16-2t -3t=16-5t .在直角三角形PQE 中,PQ 2=PE 2+EQ 2,100=62+(16-5t )2, 解这个方程,得581=t ,5241=t . 答:58秒或524秒后,点P 和点Q 的距离是10 cm17.解:设主干道的宽度为2xm ,则其余道路宽为xm依题意得:(16-4x )(18-4x )=168,整理,得11=x ,2152=x , 当2152=x 时,16-4x<0,不符题意,故舍去.x=1时,2x=2.答:主干道的宽度为2米.18.解:设y x x =-1,收原方程可化为0652=+-y y ,得61=y ,12-=y ,当61=y 时,61=-x x ,得56=x 当11-=y 时,11-=-x x ,得21=x 经检验:21=x ,56=x 都是原方程的根. 19.(1)n+3,n+2;(2)y=(n+3)(n+2),即y=n 2+5n+6;(3)当y=506时,n 2+5n+6=506,解之得,n 1=20,n 2=-25(舍去);(4)白瓷砖块数是420块,黑瓷砖块数为86块,共需1604元;(5)n (n+1)= (n+3)(n+2)-n (n+1),化简为n 2-3n -6=0,解得n 1=2333+,n 1=2333-(舍去),因为n的值不为正整数,所以不存在黑、白瓷砖块数相等的情形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程,分式方程解应用题
1、某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券低2个百分点,到期后某人的乙种债券可兑换人民币108元,求甲种债券的年利率。

分析:利息=本金×利率×存期
本息=本金+利息
甲种债券利息×(1+乙种债券利率)×存期=108
2、某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月这户只需交10元用电费,如果超过A度,则这个
月除了仍要交10元用电费外,超过部分还要按每度
A
100
元交费。

(1)该厂某户居民2月份用电90度,超过了规定的A度,则超过部分应该交电费多少元(用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况:
月份用电量(度)交电费总数(元)
3月80 25
4月45 10
根据上表的数据,求电厂规定A度为多少?
3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?
4、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,
甲、丙两队合做5天完成全部工程的23
,厂家需付甲、丙两队共5500元。

(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。

5、甲、乙两车同时从A 地出发,经过C 地去B 地,已知C、B相距180千米,出发时,甲每小时比乙多行5千米,因此,乙经过C 地比甲晚半小时,为赶上甲,乙从C 地将车速每小时增加10千米,结果两车同时到达B ,求两车出发时速度?
6、某商场今年一月份销售额为60万元,二月份销售额下降10%,后改进经营管理,月销售额大幅度上升,到四月份销售额已达到96万元,求三、四月份平均每月增长的百分率是多少(精确到0.1%)?
7、小明将勤工俭学挣得的100元钱按一年定期存入少儿银行,到期后取出50元用来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入,若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存款的年利率。

例题答案
例1.解:设甲种债券的年利率为x ,依题意,甲种债券的利息为1000x 元,乙种债券的年利率为x-0.02,则
1000x(1+x-0.02)=108
整理得:250x 2
+245x-27=0
(10x-1)(25x+27)=0
x 1=0.1 x 2=-2725 ∵x 2=-2725
不合题意,舍去 ∴x=0.1=10%
答:甲种债券的年利率为10%。

例2. 分析:本题是原于现实生活中的经济问题,情景熟悉,但问题有障碍,不能直接看出问题的答案,必须认真阅读和思考。

问题(1)较简单,超过部分应交电费
A 100 (90-A)元,问题(2),从表中看到,45<A<80,根据3月份用电80度,交电费25元,可列出方程:
10+
A 100 (80-A)=25 整理得,A 2
-80A+1500=0
解得:A 1=50 A 2=30
但A 2=30<45,不合题意舍去
∴A=50
解略。

例3.解:设每件衬衫应降价x 元,
由题意可得:
(40-x)(20+2x)=1200
整理,得x 2-30x+200=0
x 1=10 x 2=20
根据题意x=10不合题意,舍去
所以x=20
答:每件衬衫应降价20元。

例4.分析:此题是用数学知识解决简单的生产问题,这也是初中数学的教学目的。

第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间。

第二问只要求出每天应各付甲、乙、丙各队多少钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少。

解:(1)设甲队单独做x天完成,乙队单独做y天完成,丙队单独做z天完成
由题意可得:
解这个方程组得:
经检验此解是所列方程组的解
答:甲队单独做10天完成,乙队单独做15天完成,丙队单独做30天完成。

(2)设付给甲队一天a元,付给乙队一天b元,付给丙队一天c元。

解这个方程组得
又∵规定时间要求不超过15天
∴不能用丙队,
∵10a=8000(元) 15b=9750(元)
答:由甲队单独完成此工程花钱最少。

例6.分析:解决此题的关键是:从C地到B地,甲比乙多走半小时。

解:设乙速为x千米/时。

则甲速为(x+5)千米/时
-=
整理得:x2+15x-1750=0
解这个方程:x1=35, x2=-50
经检验:x1=35,x2=-50都是所列方程的根但x=-50不合题意,舍去∴x=35
∴x+5=35+5=40
答:甲出发时速度为40千米/时,乙出发时速度为35千米/时。

2.提示:设三、四月份平均每月增长的百分率为x,则。

,(舍去),∴
4.10%。

相关文档
最新文档