2014年上海中考宝山区数学一模试卷附答案
2014年上海市中考数学试卷及答案(Word版)
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A);(;(C)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。
8×109; (C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B)y=x2+1; (C) y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A)∠2; (B)∠3;(C) ∠4;(D) ∠5.15.某事测得一周PM2。
5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。
2014上海中考数学模拟测试参考答案(2014.6)
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
2014年上海市中考数学试卷及答案(Word版)
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.12二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_______________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x , 7, y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.3 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .424.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.5 25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、23、(1)求证:四边形ACED 是平行四边形;(2)联结AE,交BD于点G,求证:DG DFGB DB.24、25、6。
上海市2014年中考数学试卷(含答案)
2014年上海市初中毕业统一学业考试数学试卷一、选择题:(每小题4分,共24分)1 )A B C . D . .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).A .860810⨯;B .960.810⨯;C . 106.0810⨯;D .116.0810⨯.3.如果将抛物线2y x =向右平移1个单位,那么所得的抛物线的表达式是( )A .21y x =-;B .21y x =+;C .2(1)y x =-;D .2(1)y x =+.4.如图,已知直线a 、b 被直线c 所截,那么1∠的同位角是( )A .2∠;B .3∠;C .4∠;D .5∠.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是( )A .50和50;B .50和40;C .40和50;D .40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )A .△ABD 与△ABC 的面积相等;B .△ABD 与△ABC 的周长相等;C .菱形的周长等于两条对角线之和的两倍;D .菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分) 7.计算:(1)a a += . 8.函数11y x =-的定义域是 . 9.不等式组1228x x ->⎧⎨<⎩的解集是 .10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔 支.11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,0k ≠),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且3AB EB =.设A B a =,BC b =,那么DE = (结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________. 17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为__________. 18.如图,已知在矩形ABCD 中,点E 在边BC 上,2BE CE =,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C '、D '处,且点C '、D '、B 在同一条直线上,折痕与边AD 交于点F ,D F '与BE 交于点G .设A B t =,那么△EFG 的周长为 (用含t 的代数式表示).三、解答题:(本题共7题,满分78分) 19.(本题满分10分)1382-+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (C )与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图6),表1记录的是该体温计部分清晰刻度线及其对应水银柱的长度.表1(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.图622.(本题满分10分,每小题满分各5分)如图7,已知Rt △ABC 中,90ACB ∠=,CD 是斜边AB 上的中线,过点A 作AE CD ⊥,AE 分别与CD 、CB 相交于点H 、E ,2AH CH =. (1)求sinB 的值;(2)如果CD BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图8,梯形ABCD 中,AD ∥BC ,AB DC =,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且CDE ABD ∠=∠.(1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(本题满分12分,每小题满分各4分)在平面直角坐标系xOy 中(如图9),已知抛物线223y x bx c =++与x 轴交于()0,1-A 和点B ,与y 轴交于点()2,0-C .(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点()0,t P ,且3t >,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图10,已知在平行四边形ABCD 中,5AB =,8BC =,45cosB =,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G . (1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP ∥CG 时,求弦EF 的长; (3)当△AGE 是等腰三角形时,求圆C 的半径长.【参考答案】1.B .2.C . 3.C .4.A .5.A .6.A7.2a a +.8.1x ≠.9.34x <<.10.352.11.1k <.12.26.13.13.14.1y x=-(答案不唯一).15.23a b -.16.乙.17.-9.18..19.20.0x =. 21.(1)511944y x =+;(2)37.5°.22.(1 (2)3. 23.略. 24.(1)二次函数的解析式为224233y x x =--,对称轴为直线1x =; (2)点F 的坐标为(1,4); (3)5t =.25.(1)CP 的长为5; (2)EF 的长为74;(3)圆C。
2014年上海市中考数学试卷及答案(Word版)
2014年上海市初中毕业统一学业测试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ).(A)△ABD 和△ABC 的周长相等; (B)△ABD 和△ABC 的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带和水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班和初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的分析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r =_______________(结果用a r 、b r 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕和边AD 交于点F ,D ′F 和BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)和水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度. 水银柱的长度x(cm )4.2 … 8.29.8体温计的读数y(℃)35.0 … 40.0 42.0 (1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别和CD 、CB 相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD =5,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)223y x bx c =++和x 在平面直角坐标系中(如图),已知抛物线轴交于点A (-1,0)和点B ,和y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴和x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 和边AD 交于点E 、F (点F 在点E 的右侧),射线CE 和射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业测试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x p p ; 10、352 ; 11、1k p ; 12、26 ; 13、13; 14、1(0y k x=-p 即可); 15、23a b -r r ; 16、乙; 17、-9; 18、23t . 三、 解答题19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g 23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为 (2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、。
上海中考一模数学2014年25题汇编(含答案)
2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,0090305cm C A BC ∠=∠==,,;△DEF 中,090D ∠=,045E ∠=,3cm DE =. 现将△DEF 的直角边DF 与△AB C 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,AD x BE y ==,请你写出y 与x 之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得022.5EBD ∠= ?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分) 如图,在△ABC 中,AB =8,BC =10,3cos 4C =,2ABC C ∠=∠,BD 平分∠ABC 交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。
(1)求证:AB BGCE CF=; (2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。
25、(1)证明:∵BD 平分ABC ∠∴2ABC ABD ∠=∠ ∵2ABC C ∠=∠∴ABD C ∠=∠∵AEC ABC BAE ∠=∠+∠ 即AEF FEC ABC BAE ∠+∠=∠+∠ ∵AEF ABC ∠=∠∴BAE FEC ∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=B(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8 过点A 作AN MB ⊥,垂足为N∵3,cos ,4ABD C C AB AC ∠=∠==∴6,12BN MN BM === ∵AM ∥BC ∴AM MG BE BG =∴812BG x BG -=∴128xBG x =+ ∵AB BGCE CF =∴128810x x xy +=- ∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况: 1°AE AF =,则AEF AFE ∠=∠易证明FE FC y ==, 又∵3cos 4C =易得32EC y =, 又∵10EC x =- ∴2023x y -=又∵2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF =作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x =====∴2810x += ∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。
2014学年上海市宝山区初三一模数学试卷
2014学年上海市宝山区初三一模数学试卷一. 选择题(24分)1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =,下列判断正确的是( )A. 30A ∠=︒;B. 45A ∠=︒;C. 2cot 2A =; D. 2tan 2A =;2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误的是( ) A.AD AE DB EC =; B. AD DE DB BC =; C. AD AE AB AC =; D. AD DEAB BC=;3. 如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c,下列命题中是假命题的是( )A. 如果2a b = ,那么a ∥b ;B. 如果2a b =- ,那么a ∥b ;C. 如果||||a b =,那么a ∥b ; D. 如果2a b = ,2b c = ,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交; 6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D.二. 填空题(48分)7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ; 8. 两个相似三角形的相似比为2:3,则它们的面积比为 ;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ; 10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为 ; 11. 在△ABC 中,3cot A =,3cos B =,那么C ∠= ; 12. B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;13. 抛物线2(3)4y x =--+的对称轴是 ;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ;16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE = ;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =径AB 的长为 ;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;三. 解答题(78分) 19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒;20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC相交于E ,设AB a = ,AD b = ,试用a 、b 表示AN ,AE;(直接写出结果)21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式以及该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证:PA PB =;24. 如图,正方形ABCD 中,(1)E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GFFH; (2)E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GFFH的值;25. (1)数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦 确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同 组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系XOY 中,上述(1)中的抛物线与x 轴交于A 、B 两点(A 在B 的左 边),请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,45AC =,D 为边AB 上一动点(D 和A 、B不重合),过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,(1)请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值;(2)设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数及其定义域; (3)点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;。
宝山区九年级一模数学卷含答案
2014学年第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共 26题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤..选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上.】4. 已知非零向量a 、b 、c ,下列命题中是假命题的是 1.如图,在直角厶 ABC 中, C 90 ° , BC=1 , AC= 2 , F 列判断正确的是A ./A=30 °;B ./A=45 °;C .cotA ,D .tan A 」22.如图,△ ABC 中,D 、E 分别为边 AB 、AC 下歹u 判断错误的是 ..................... (AD AEAD DEADA .; B .; C.-DB EC DB BC AB上的点,DE // BC3.如果在两个圆 中有两条相等的弦,那么 A •这两条弦所对的圆心角相等; C •这两条弦都被与它垂直的半径平分;AE AC ;AD DE D . ■AB BCB •这两条弦所对的弧相等; D •这两条弦所对的弦心距相等.A .如果a 2b ,那么a // b ; b ,那么 a // b ;C .如果a5.已知O O 半径为3, M 为直线B .如果a D .如果aAB 上一点,若 MO=3 ,□ ―►-2b ,那么a //2b , b 2c 那么 a //则直线AB 与O O 的位置关系D .相切或相交1D 为AB 的三等分点(AD= BD ),2三角形边上的动点 E 从点A 出发,沿A T C -B 的方向运动,到达点B 时停止.设点E 运动的路程为x , DE 2=y ,则y 关于x 的函数图象 大致为 ( ................... )A .相切;B .相交;C .相切或相离; 6.如图边长为3的等边△ ABC 中,第1题.填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.线段b 是线段a 和c 的比例中项,若a =i , b =2,则c =_ ▲. & 两个相似三角形的相似比为2:3,则它们的面积比为 一 ▲.9. 已知两圆半径分别为 3和7,圆心距为d ,若两圆外离,贝U d 的取值范围是▲.10. 已知 ABC 的三边之比为2:3:4,若△ DEF 与 ABC 相似,且△ DEF 的最大边长为20, 则厶DEF 的周长为 _ ▲_.11. 在 ABC 中,cotA —,cosB —,那么 C ▲.3 212. B 在A 北偏东30o 方向(距A ) 2千米处,C 在B 的正东方向(距 B ) 2千米处, 则C 和A 之间的距离为_ ▲_千米.13. 抛物线y (x 3)2 4的对称轴是 _▲ _____ .14. 不经过第二象限的抛物线 _______________ y ax 2 bx c 的开口方向向 亠 ▲.15. 已知点A(x 1, y 1)、B(x 2, y 2)为函数y = — 2(x — 1)2 + 3的图象上的两点,若 X 1>x 2>1,则y 1__A __y 2。
上海中考一模数学2014年25题汇编(含答案)
2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,;△DEF 0090305cm C A BC ∠=∠==,,中,,,. 现将△DEF 的直角边DF 与△AB C 的斜边AB 090D ∠=045E ∠=3cm DE =重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,请你写出与之间的函数关系式及其定义域.,AD x BE y ==y x (2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得 ?如果存在,022.5EBD ∠=求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分)如图,在△ABC 中,AB =8,BC =10,,,BD 平分∠ABC 交AC 边3cos 4C =2ABC C ∠=∠于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。
(1)求证:;AB BGCE CF=(2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。
B25、(1)证明:∵BD 平分∴ABC ∠2ABC ABD ∠=∠∵∴2ABC C ∠=∠ABD C∠=∠∵ 即AEC ABC BAE ∠=∠+∠AEF FEC ABC BAE ∠+∠=∠+∠∵∴AEF ABC ∠=∠BAE FEC∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8过点A 作,垂足为NAN MB ⊥∵3,cos ,4ABD C C AB AC∠=∠==∴6,12BN MN BM ===∵AM ∥BC ∴∴∴AM MG BE BG =812BG x BG -=128xBG x =+∵∴AB BG CE CF =128810xx x y +=-∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况:1°,则AE AF =AEF AFE∠=∠易证明, 又∵FE FC y ==3cos 4C =易得, 又∵32EC y =10EC x =-∴又∵2023x y -=2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF=作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x=====∴2810x +=∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。
2014年上海市中考数学试卷及答案(Word版) 中考数学试卷
中考数学试卷 2014年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷含三个大题,共25题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.计算2?3的结果是(). (A)5; (B)6; (C)23;(D)32. 2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(). (A)608×10; (B) 60.8×10; (C) 6.08×10;(D) 6.08×10. 3.如果将抛物线y=x向右平移1个单位,那么所得的抛物线的表达式是(). (A) y=x-1; (B) y=x+1; (C) y=(x-1); (D) y=(x+1). 4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题) (A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5. 22222891011 5.某事测得一周PM2.5的日均值(单位:)如下: 50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是(). (A)50和50; (B)50和40; (C)40和50; (D)40和40. 6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(). (A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等; (C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍. 1二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】 7.计算:a(a+1)=____________. 8.函数y? ?x?1?2,9.不等式组?的解集是_____________. 2x?8?1的定义域是_______________. x?1 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支. 11.如果关于x的方程x-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________. 12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米. 13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数y?2k(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而x增大,那么这个反比例函数的解析式是________________(只需写一个). ??????????????15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB?a,BC?b,那么DE=??_______________(结果用a、b 表示). 216.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x, 7, y, 23,,,,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________. 18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示)三、解答题:(本题共7题,满分78分) 19.(本题满分10分)计算:12? 20.(本题满分10分)解方程: 13?8?2?3. 13x?121. ?2?x?1x?1x?1 321.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)体温计的读数y(℃)(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数. 22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值. 35.0 ,, 40.0 42.0 4.2 ,, 8.29.8 423.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD. 24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线y?22x?bx?c与x轴交于点A(-1,0)和点B,与y轴交于点3C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值. 525.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=4,点P是边BC上的动点,以CP为半径的5圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图 1 6 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、选择题 1、B; 2、C; 3、C; 4、A; 5、A; 6、B 二、填空题 27、a?a; 8、x?1; 9、3?x?4 ; 10、352 ; 11、k?1; 12、26 ; 12??113、;14、y??(k?0即可); 15、a?b ; 16、乙; 17、-9; 18、23t. 33x三、解答题 19、解:原式? 20、x?0;x?1(舍) 21、(1)y?1.25x?29.75, (2)37.5 22、233?CD?5;?AB?25?B??DCB??CAE,?sinB?sinCAE?5?BC?25?cosB?4;AC?25?sinB?25?CE?AC?tanCAE?1?BE?BC?CE?3 23、(1)求证:四边形ACED是平行四边形; ?ABCD为等腰梯形,??ADB??DAC??ABD??DCA,??CDE=?ABD ??DCA??CDE,?AC//DE?AD//CE,?ADEC为? (2)联结AE,交BD于点G,求证:DGDF. ?GBDB 7DGADDFAD?;?GBBEFBBCDFADDFAD??,??FBBCDF?FBAD?BC?ADEC为?,?AD?CE;?AD?BC?BE ?AD//BC,?DFADDFAD???DF?FBAD?BCDBBEDGDF??GBDB? 24、89 25、中考数学试卷。
2014上海中考真题数学(含解析)
F 的坐标;
( 3 )点 D 为该抛物线的顶点,设点 P(t , 0) ,且 t 3 ,如果 △BDP 和 △CDP 的面积相等,求
t 的值.
25. (本题满分 14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小题满分 6 分) 4 如图 1 ,已知在平行四边形 ABCD 中, AB 5 , BC 8 , cos B ,点 P 是边 BC 上的动点, 5 以 CP 为半径的圆 C 与边 AD 交于点 E 、 F (点 F 在点 E 的右侧) , 射线 CE 与射线 BA 交于点 G . ( 1 )当圆 C 经过点 A 时,求 CP 的长; ( 2 )连结 AP ,当 AP∥CG 时,求弦 EF 的长; ( 3 )当 △AGE 是等腰三角形时,求圆 C 的半径长.
DG DF . GB DB
4 / 11
24. (本题满分 12 分,每小题满分各 4 分) 在平面直角坐标系中(如图) ,已知抛物线 y
2 2 x bx c 与 x 轴交于点 A(1, 0) 和点 B ,与 3
y 轴交于点 C (0 , 2) .
( 1 )求该抛物线的表达式,并写出其对称轴; ( 2 )点 E 为该抛物线的对称轴与 x 轴的交点,点 F 在对称轴上,四边形 ACEF 为梯形, 求点
k 14.已知反比例函数 y ( k 是常数, k 0 ) ,在其图像所在的每一个象限内,y 的值随着 x 的值 x
的增大而增大,那么这个反比例函数的解析式是______________(只需写一个) . 15.如图,已知在平行四边形 ABCD 中,点 E 在边 AB 上,且 AB 3EB . 设 AB a , BC b ,那么 DE __________________(结果用 a 、 b 表示) . 16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那 么三人中成绩最稳定的是_____________________.
2014年上海市宝山区中考数学一模试卷
2014年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(共6题,每题4分,满分24分)1.(4分)(2014•宝山区一模)下列各式中,正确的是()A.a4•a2=a8B.a4•a2=a6C.a4•a2=a16D.a4•a2=a2【考点】:整式的运算(加、减、乘、除、乘方)M212【难易度】:容易题【分析】:根据同底数幂的乘法,底数不变指数相加,则a4•a2=a4+2=a6.【解答】:答案B.【点评】:本题考查了同底数幂的乘法,属于送分题,难度不大,熟知同底数幂的乘法,底数不变指数相加可直接得出答案.2.(4分)(2014•宝山区一模)已知Rt△ABC中,∠C=90°,那么cosA表示()的值.A.B.C.D.【考点】:解直角三角形M364特殊角的锐角三角比值M362【难易度】:容易题【分析】:根据余弦函数的定义有:cosA=.【解答】:答案D.【点评】:此题考查锐角三角函数的定义及运用,属于基础题,熟知在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边是解答此类题目的关键.3.(4分)(2014•宝山区一模)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】:二次函数的图象、性质M442不同位置的点的坐标的特征M417【难易度】:容易题.【分析】:根据二次函数的顶点式一般形式的特点,二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).【解答】:答案B.【点评】:本题考查了求抛物线的顶点坐标的方法,难度不大,本题直接给定了顶点式,熟知二次函数顶点式的特点可直接得出答案。
4.(4分)(2014•宝山区一模)如图,在平行四边形ABCD中,如果,,那么等于()A.B.C.D.【考点】:向量的加法与减法M382【难易度】:容易题.【分析】:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,则可得,则,而,所以=+=.【解答】:答案B.【点评】:此题考查了平面向量的运算,难度不大,在图形中运算时,可用平行四边形法则和三角形法则先将向量表示在已知图形中,找到对应的边即可得出答案.5.(4分)(2014•宝山区一模)已知D、E、F分别为等腰△ABC边BC、CA、AB上的点,如果AB=AC,BD=2,CD=3,CE=4,AE=,∠FDE=∠B,那么AF的长为()A.5.5 B.4.5 C.4 D.3.5【考点】:相似三角形性质、判定M33M;等腰三角形的性质和判定M339【难易度】:容易题【分析】:在等腰△ABC,因为AB=AC,所以∠B=∠C,而∠BFD=180°﹣∠B﹣∠FDB,∠EDC=180°﹣∠FDE﹣∠FDB,又∠FDE=∠B,所以∠BFD=∠EDC,则△DBF∽△DCE,故BD:CE=BF:CD,而BD=2,CD=3,CE=4,所以2:4=BF:3,则BF=1.5,又AC=AE+CE=+4=5.5,所以AB=5.5,故AF=AB﹣BF=5.5﹣1.5=4,【解答】:答案C.【点评】:本题考查了等腰三角形的性质,难度不大,解答本题的关键是求AF的长,转化为求BF的长,即将不易求得的值转化到易求的图形中进行求解.6.(4分)(2014•宝山区一模)如图,梯形ABCD中,AD∥BC,BF⊥AD,CE⊥AD,且AF=EF=ED=5,BF=12,动点G从点A出发,沿折线AB﹣BC﹣CD以每秒1个单位长的速度运动到点D停止.设运动时间为t秒,△EFG的面积为y,则y关于t的函数图象大致是()A.B.C.D.【考点】:动点问题的函数图象M415勾股定理M33E【难易度】:中等题【分析】:在Rt△ABF中,AB==13,在Rt△CED中,CD==13,①点P在AB上运动:过点G作GM⊥AB于点M,则GM=AGsin∠A=t,此时y=EF×GM=t,为一次函数;②点G在BC上运动,y=BF×EF=30;③点G在BC上运动,过点G作GN⊥AD于点N,则GN=DGsin∠D=(AB+BC+CD﹣t)=,则y=EF×PN=,为一次函数.综上可得选项A的图象符合.【解答】:答案A.【点评】:此题考查了动点问题的函数图象,难度适中,解答本题的关键是分段讨论y与t 的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式.二、填空题:(共12题,每题4分,满分48分)7.(4分)(2014•宝山区一模)计算(a+1)(a﹣1)的结果是.【考点】:整式的运算(加、减、乘、除、乘方)M212【难易度】:容易题【分析】:由所给式子(a+1)(a﹣1)符合平方差公式:(a+b)(a﹣b)=a2﹣b2,则直接计算得(a+1)(a﹣1)=a2﹣1.【解答】:答案为:a2﹣1.【点评】:此题考查平方差公式的实际运用,属于送分题,难度不大,熟知平方差公式的特点可直接得出答案.8.(4分)(2014•宝山区一模)不等式组的解集是.【考点】:解一元一次不等式(组)M236【难易度】:容易题【分析】:先求出各不等式的解集,再求其公共部分即为不等式组的解集.则.,由①得,x>1,由②得,x<2,所以,不等式组的解集为:1<x<2.【解答】:答案为:1<x<2.【点评】:此题考查了一元一次不等式组的解集,属于基础题,难度不大,是中考的常规题目,正确解出不等式的解集是解决本题的关键.求不等式组的解集时,先求出各不等式的解集,9.(4分)(2014•宝山区一模)关于x的方程x2+px+q=0的根的判别式是.【考点】:一元二次方程的根的判别式M242【难易度】:容易题【分析】:根据根的判别式公式△=b2﹣4ac,则方程x2+px+q=0的二次项系数a=1,一次项系数b=p,常数项c=q,所以△=b2﹣4ac=p2﹣4q.【解答】:答案为:p2﹣4q.【点评】:本题考查了一元二次方程的根的判别式公式△=b2﹣4ac.属于基础题,难度不大,在利用该公式解题时,一定要弄清楚a、b、c的含义.10.(4分)(2014•宝山区一模)二次函数y=2x2+3的图象开口方向.【考点】:二次函数的的图象、性质M442【难易度】:容易题【分析】:因为二次函数y=2x2+3的二次项系数a=2>0,所以抛物线开口向上.【解答】:答案为:向上.【点评】:此题考查了抛物线的开口方向与二次项系数符号的关系.难度不大,熟知二次函数ax2+bx+c=y当a>0时,抛物线开口向上,当a<0时,抛物线开口向下可直接得出答案.11.(4分)(2014•宝山区一模)如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),则a﹣b+c的值是.【考点】:二次函数的图象、性质M442不同位置的点的坐标的特征M417【难易度】:容易题【分析】:由题知,因为二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),所以图象还经过(﹣1,0),则a﹣b+c的值是:x=﹣1时,对应y的值为0.【解答】:答案为:0.【点评】:本题考查了抛物线与x轴交点性质,难度不大,由抛物线的对称轴的特点得出图象与x轴的另一个坐标是解答本题关键.12.(4分)(2014•宝山区一模)抛物线y=(x+2)2﹣3可以由抛物线y=x2﹣3向(平移)得到.【考点】:二次函数的的图象、性质M442【难易度】:容易题【分析】:由抛物线y=(x+2)2﹣3与抛物线y=x2﹣3来看,只有x的表示有变化,所以只需要左右平移,则抛物线y=(x+2)2﹣3可以由抛物线y=x2﹣3向左平移2个单位得到【解答】:答案为:左平移2个单位.【点评】:本题考查了二次函数图象与几何变换,难度不大,熟知函数图象平移的法则:左加右减、上加下减是解答此题的关键.注意左右平移只针对x,上下平移只针对y。
2014年上海市中考数学试卷及答案Word版
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9;18、.三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24、25、。
2014上海中考数学试卷(含答案版本)
2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1 ).(A); (B)(C) ; (D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011. 3.如果将抛物线y =x 2向右平移1个单位,那么所得的抛物线的表达式是( ). (A) y =x 2-1; (B) y =x 2+1; (C) y =(x -1)2; (D) y =(x +1)2. 4.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是( ). (A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是( ). (A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ). (A)△ABD 与△ABC 的周长相等;(B)△ABD 与△ABC 的周长相等;(C)菱形的周长等于两条对角线之和的两倍; (D)菱形的面积等于两条对角线之积的两倍. 二、填空题(每小题4分,共48分) 7.计算:a (a +1)=_________. 8.函数11y x =-的定义域是_________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设A B a=,BC b=,那么DE=_________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分)1382-+-20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sin B 的值;(2)如果CD BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图参考答案一.选择题1.B2.C3.C4.D5.A6.B二.填空题7.a2+a 8.x≠1 9.3<x<4 10.352 11.k<112.2620.x=021. 37522.BE=323.省略。
2014年上海市中考数学试卷及答案word版
2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2; (B)∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ).(A)△ABD 与△ABC 的周长相等;(B)△ABD 与△ABC 的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a +1)=_________.8.函数11y x =-的定义域是_________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x 的方程x2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数k=(k是常数,k≠0),在其图像所在的每yx一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB =3EB.设AB a=,BC b=,那么DE=_________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2, 1, 3, x, 7, y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD 交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分) 计算:13128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度. 水银柱的长度x (cm )4.2 … 8.2 9.8体温计的读数y (℃) 35.0 … 40.0 42.0 (1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)联结AE,交BD于点G,求证:DG DF.GB DB24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A(-1,0)和点B ,与y 轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P(t, 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP//CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案选择题:1.B2.C3.C4.D5.A6.B填空题:7.a2+a8.x≠19.3<x<410.35211.k<112.2620.x=021. 37.522.BE=3 23题24题25题。
2014年上海市中考数学试卷及答案(Word版)
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】).1;; (C) ; (D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109; (C) 6.08×1010; (D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x +1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD及△ABC的周长相等;(B)△ABD及△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带及水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班及初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数k=(k是常数,k≠0),在其图像所在的每一个象限内,yyx的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3,x, 7,y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕及边AD 交于点F ,D ′F 及BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分10分)计算:.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)及水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2…8.29.8体温计的读数y(℃)35.…40.42.(1)求(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别及CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++及x 轴交于点A (-1,0)和点B ,及y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴及x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分),点P是边BC 如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45上的动点,以CP为半径的圆C及边AD交于点E、F(点F在点E的右侧),射线CE及射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、; 15、 ; 16、乙; 17、-9; 18、.三、解答题19、解:原式20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GBDB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24、25、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013学年宝山区第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)5.已知 D 、E 、F 分别为等腰△ ABC 边 BC 、CA 、AB 上的点,如果 AB = AC , BD =2 , CD =3 , CE =4 ,AE. FDE - B ,那么 AF 的长为()2A • 5. 5;B • 4. 5;C • 4;D • 3. 5.6.如图,梯形 ABCD 中,AD // BC , BF 丄 AD , CE 丄 AD ,且 点A 出发,沿折线AB — BC — CD 以每秒1个单位长的速度运动到点的面积为y ,则y 关于t 的函数图像大致是( )1.下列各式中,正确的是 ( )區 4 2 8 A . a a a ; B . 4 26a a a ;C . 4 216a a a ;2. 已知Rt △ ABC 中, .C =90;, 那么cosA 表示() 的值.BCB •BC C .AC A .-;;ACABBC3. 二次函数y - -(x -1)2- 3图像的顶点坐标是( )A • (-1,3);B . (1,3 );C . (-1,-3 );4.如图,在平行四边形 ABCD 中, 如果忒a , 7D4■* -1 那么a b 等于ACABD • (1,-3 ) •A • BD ;C • DB ;AC CA •9 . ,10.二次函数y =2x 3的图像开口方向11 .如图,二次函数 y=ax 2,bx 的图像开口向上,对称轴为直线 的值是 ___________ .12. ____________________________________________________ 抛物线y=(x ,2)2-3可以由抛物线 y =x 2 -3向 __________________ 13. 若a 与b 的方向相反,且 ? >|b ,则a +b 的方向与a 的方向 14. 如图已知△ ABC 中,D 为边AC 上一点,P 为边AB 上一点, ,AD = 6,当 AP 的长度为 ___________ 时厶ADP 和厶ABC 相似. 、选择题:(本大题共6题,每题4分,满分24分) D 停止.设运动时间为第秒题钛EFGDx=1,图像经过((平移)得到. AB =12, AC =817 .在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌(如图所示),已知立杆 AB 的高度是6米,从侧面D 测到路况警示牌顶端 C 点和低端B 点的仰角分别是 60°和45。
,则路况警示牌宽 BC 的值Rt △ OAB 的顶点A 的坐标为(9, 0), AOL =逅,点C 的坐标3为(2, 0),点P 为斜边OB 上的一个动点,则 PA+PC 的最小值为 ______________15 .在△ ABC 中,乙A 、乙B 都是锐角,若 sinA 3 ,2cosB 二丄,则△ ABC 的形状为2________ 三角形. 16•某坡面的坡度为处的海拔高度上升了,某车沿该坡面爬坡行进了 5__________ 米后,该车起始位置和终止位置两地所 5米.18 .如图,在平面直角坐标系中, 分; 19. 解答题:(共8题,第19— 第26题14分,D 共78分)(本题满分8B112化简并求值题图(—— ' 17题B* /20.(本题 4+4=8 分)已知一个二次函数的顶点 (1)求这个二次函数的解析式 (2)设图像与y 轴的交点为 21 .(本题 4+4=8 分)地铁施工 绕道慢行题8 斗———,,其中 ^=2cos45 -tan45 .x 2 -4A 的坐标为(1, 0),且图像经过点B (2, 3).C ,记OA=a ,试用a 表示OC-OB (直接写出答案)已知抛物线h : y =「x 2・2x 3和抛物线l 2 : y =x 2 ・2x-3相交于A 、B ,其中A 点的横坐标比B 点 的横坐标大.(1) 求A 、B 两点的坐标.(2) 射线OA 与x 轴正方向所相交成的角的正弦22.(本题满分 如图已知:8分)AD AB BD ,求证:_ABC=_ADE .AE AC CE4+2+4=10 分)23.(本题满分 通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两一确定,因此边长比与角的大小之间可以相互转化. 类似的我们可以在等腰三角形中建立边角之间的联系 E . 我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如下图在△ ABC 中,AB=AC ,顶角A底边 BC的正对记作sad A ,这时sad A=底厂二亦.我们容易知道一个角的大小与这个角的正对值也是互相唯一 确定的.根据上述角的正对定义,解下列问题:AA(1) sad 60= _________ ; sad 90" = ____________ ;(2) 对于0 <^180 , Z A 的正对值sadA 的取值范围是 ___________________ ; (3) 试求sad36的值. 24.(本题满分 6+4=10分)如图E 为正方形ABCD 边BC 延长线上一点,AE 交DC 于F , FG // BE 交DE 于GA分;第AC(1) 求证:FG =FC ;(2) 若 FG =1, AD =3,求 tan. GFE 的值. 25、 (4+3+2+3=12 分)1如图,已知抛物线 y x 2 bx 4与x 轴相交于 A 、B 两点, 4B (8, 0).求抛物线的解析式及其对称轴方程;连接AC 、BC ,试判断厶 AOC 与厶COB 是否相似?并说明理由; M 为抛物线上BC 之间的一点,N 为线段BC 上的一点,若 MN // y 轴,求MN 的最大值;在抛物线的对称轴上是否存在点 Q ,使△ ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.2013学年宝山区第一学期期末考试九年级数学试卷答案与评分标准、选择题:1. B .2. D .3. B .4. B .5. D .6. A . _ 、填空题: 7. a 2 -1 . & 1 :: x 2 . 9. P 2 -4q . 10. 向上. 11 .0 . 12. 左移两个单位 13. 相同. 14. 4或9 .标为 (1) (2) (3)(4)15.等边.16.13.17.6』3 一6 .18.67 .三、解答题:19.x 一x -2 x -2 x 2x x -2 2x 2x将x =2cos45 -ta n45‘ =、2 -1 代入,原式二空=3+2运. 2分V2-120.2解:(1)根据题意设抛物线解析式为y=a(x_1 ) (a^O) . 2分将B点坐标(2, 3)代入得:a =3 .•••该抛物线解析式为y=3(x—1( . 2分(2)易得:C 0,3._ -2 a .21.解:(1)根据题意得: y = -X2 2x 32y = x 2x -3解得:x1「3(71=2^5 x2 - - . 3 y2 - 3由点A比点B的横坐标大,得: A 3,^ 3 , B - 3, -2 3 .(2)过A作AH丄x轴于H .易得AH =2 .3 , A^ 15 .sin. AOHAH _2. 3__5 AO .15 5 .射线OA与x轴正方向所相交成的角的正弦值为^2-5. 2分2分2分2分2分2分解:原式••• . DAB= EAC ,v Z EAB EDABdEAB £EAC , • / DAE^BAC . ..AD _ AB疋一 AC ,•••△ ADE s\ ABC . •二ABCNADE .23.解: ( 1) 1,2 2 ;(2) 0:::sadA :::2 ; (3) 作.A 的平分线交边AC 于D .利用角度证△ ABC BCD 和BC =BD =AD .‘ BC 齿—1sad36 sadAAD 224.证明:(1)v CF // AB ,• CF EF"AB 一 EA .v FG // AD ,• FG _ EF "AD 一百. • CF _FG "AB 一 AD .v AB =AD ,• CF =FG .(2)根据题意得:DF=2.DF 2 ••• tan. GFE 二tan. DAF 二AD 31解:(1)v 抛物线yx 2 bx 4经过点B (8, 0),43• b =一 .21 23 •抛物线的解析式为 y x x 4.42f12+3 —1 y o2 25又 v y x x 4 x 「34 24‘4•对称轴方程为直线 x =3.(2)△ AOC COB .易得 C ( 0, 4),证明:AD AB BD AEAC " CE1分 1分4分 2分 1分 2分 1分2分2分 1分1分 2分。