6种粒子群算法程序
粒子群优化算法(详细易懂_很多例子)
![粒子群优化算法(详细易懂_很多例子)](https://img.taocdn.com/s3/m/f55c39dbe43a580216fc700abb68a98271feaccd.png)
惯性权重
1998年,Shi和Eberhart引入了惯性权重w,并提出动态调整惯性权重以平衡收敛的全局性和收敛速度,该算法被称为标准PSO算法 惯性权重w描述粒子上一代速度对当前代速度的影响。w值较大,全局寻优能力强,局部寻优能力弱;反之,则局部寻优能力强。当问题空间较大时,为了在搜索速度和搜索精度之间达到平衡,通常做法是使算法在前期有较高的全局搜索能力以得到合适的种子,而在后期有较高的局部搜索能力以提高收敛精度。所以w不宜为一个固定的常数。
单击此处可添加副标题
粒子群算法的思想源于对鸟群捕食行为的研究. 模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。 马良教授在他的著作《蚁群优化算法》一书的前言中写到: 大自然对我们的最大恩赐! “自然界的蚁群、鸟群、鱼群、 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
社会经验部分
前次迭代中自身的速度
自我认知部分
粒子的速度更新主要由三部分组成:
c1,c2都不为0,称为 完全型粒子群算法
完全型粒子群算法更容易保持收敛速度和搜索效果的均衡,是较好的选择.
粒子群算法的构成要素-最大速度
添加标题
第1步 在初始化范围内,对粒子群进行随机初始化,
添加标题
第5步 更新粒子的速度和位置,公式如下.
添加标题
第3步 更新粒子个体的历史最优位置.
添加标题
第6步 若未达到终止条件,则转第2步.
添加标题
包括随机位置和速度.
添加标题
第4步 更新粒子群体的历史最优位置.
初始位置:
粒子群算法的迭代过程
![粒子群算法的迭代过程](https://img.taocdn.com/s3/m/5dc794e6cf2f0066f5335a8102d276a201296052.png)
粒子群算法的迭代过程粒子群算法(Particle Swarm Optimization, PSO)是一种优化算法,灵感来源于鸟群觅食行为。
其迭代过程包括初始化粒子群、更新粒子速度和位置、更新个体最优解和全局最优解等步骤。
算法初始化一群粒子,每个粒子代表问题的一个解。
粒子的位置表示解的参数值,速度表示解的搜索方向和步长。
然后,通过评估目标函数来计算每个粒子的适应度,即目标函数值。
每个粒子都有一个个体最优解,即在其搜索历史中找到的最好解。
同时,整个粒子群也有一个全局最优解,即所有粒子个体最优解中的最优解。
在迭代过程中,粒子通过更新速度和位置来搜索最优解。
粒子的速度更新包括两部分:个体经验项和社会经验项。
个体经验项表示粒子根据自身最优解进行搜索的能力,即向个体最优解的方向移动。
社会经验项表示粒子根据全局最优解进行搜索的能力,即向全局最优解的方向移动。
通过调节个体和社会经验项的权重,可以平衡局部搜索和全局搜索的能力。
粒子的位置更新基于其速度和当前位置。
新位置的计算可以采用欧式距离公式,即新位置等于当前位置加上速度乘以时间步长。
更新完位置后,重新计算适应度,并更新个体最优解和全局最优解。
迭代过程中,所有粒子不断更新速度和位置,以期望找到更优的解。
通过多次迭代,粒子群逐渐收敛到全局最优解附近。
为了提高算法的收敛速度和避免陷入局部最优解,可以引入惯性权重和加速因子等参数来调节粒子的速度更新规则。
在粒子群算法的迭代过程中,每个粒子都通过个体和社会经验来指导自己的搜索方向和步长。
通过不断更新速度和位置,粒子群逐渐向全局最优解靠近。
这种群体智能的搜索方法在优化问题中具有广泛的应用,尤其适用于连续参数空间的优化问题。
通过合理设置参数和迭代次数,粒子群算法能够高效地搜索到最优解。
粒子群优化算法 程序
![粒子群优化算法 程序](https://img.taocdn.com/s3/m/c734d1be7d1cfad6195f312b3169a4517623e574.png)
粒子群优化算法程序粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,用于解决各种优化问题。
下面我将从程序实现的角度来介绍粒子群优化算法。
首先,粒子群优化算法的程序实现需要考虑以下几个关键步骤:1. 初始化粒子群,定义粒子的数量、搜索空间的范围、每个粒子的初始位置和速度等参数。
2. 计算适应度,根据问题的特定适应度函数,计算每个粒子的适应度值,以确定其在搜索空间中的位置。
3. 更新粒子的速度和位置,根据粒子的当前位置和速度,以及粒子群的最优位置,更新每个粒子的速度和位置。
4. 更新全局最优位置,根据所有粒子的适应度值,更新全局最优位置。
5. 终止条件,设置终止条件,如最大迭代次数或达到特定的适应度阈值。
基于以上步骤,可以编写粒子群优化算法的程序。
下面是一个简单的伪代码示例:python.# 初始化粒子群。
def initialize_particles(num_particles, search_space):particles = []for _ in range(num_particles):particle = {。
'position':generate_random_position(search_space),。
'velocity':generate_random_velocity(search_space),。
'best_position': None,。
'fitness': None.}。
particles.append(particle)。
return particles.# 计算适应度。
def calculate_fitness(particle):# 根据特定问题的适应度函数计算适应度值。
particle['fitness'] =evaluate_fitness(particle['position'])。
粒子群算法文档【精品文档】(完整版)
![粒子群算法文档【精品文档】(完整版)](https://img.taocdn.com/s3/m/af0baf63ddccda38376baf29.png)
§6.4 粒子群优化算法人们提出了群搜索概念,利用它们来解决现实中所遇到的优化问题,并取得了良好的效果.粒子群优化算法就是群体智能中的一种算法.粒子群算法是一种演化计算技术,是一种基于迭代的优化工具,系统初始化为一组随机解,通过迭代搜寻最优值,将鸟群运动模型中栖息地类比为所求问题空间中可能解的位置,利用个体间的传递,导致整个群体向可能解的方向移动,逐步发现较好解.6.4.1 基本粒子群算法粒子群算法,其核心思想是对生物社会性行为的模拟.最初粒子群算法是用来模拟鸟群捕食的过程,假设一群鸟在捕食,其中的一只发现了食物,则其他一些鸟会跟随这只鸟飞向食物处,而另一些会去寻找更好的食物源.在捕食的整个过程中,鸟会利用自身的经验和群体的信息来寻找食物.粒子群算法从鸟群的这种行为得到启示,并将其用于优化问题的求解.若把在某个区域范围内寻找某个函数最优值的问题看作鸟群觅食行为,区域中的每个点看作一只鸟,现把它叫粒子(particle).每个粒子都有自己的位置和速度,还有一个由目标函数决定的适应度值.但每次迭代也并不是完全随机的,如果找到了新的更好的解,将会以此为依据来寻找下一个解.图6.21给出了粒子运动的思路图.图6.21粒子运动的路线图下面给出粒子群算法的数学描述.假设搜索空间是D维的,群中的第i个粒子能用如下D维矢量所表示:12(,,,)i i i iD X x x x '=(6.43)每个粒子代表一个潜在的解,这个解有D 个维度.每个粒子对应着D 维搜索空间上的一个点.粒子群优化算法的目的是按照预定目标函数找到使得目标函数达到极值的最优点.第i 个粒子的速度或位置的变化能用如下的D 维向量表示:12(,,,)i i i iD V v v v '= (6.44)为了更准确地模拟鸟群,在粒子群优化中引入了两个重要的参量.一个是第i 个粒子曾经发现过的自身历史最优点(Personal best ,pbest),可以表示为:12(,,,)i i i iD P p p p '= (6.45)另一个是整个种群所找到的最优点(Global best ,gbest),可以表示为:12(,,,)g g g gD P p p p '= (6.46)PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解.在每一次的迭代中,粒子通过跟踪两个“极值”(i P 和g P )来更新自己.在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置:1122(1)()()(()())()(()())id id id id gd id v t wv t c r t p t x t c r t p t x t +=+-+-,(速度更新公式)(6.46)(1)()(1)id id id x t x t v t +=++(位置更新公式) (6.47)其中w 称之为惯性因子,在一般情况下,取1w =,1,2,,t G = 代表迭代序号,G 是预先给出的最大迭代数;1,2,,d D = , 1,2,,i N = ,N 是群的大小;1c 和2c 是正的常数,分别称为自身认知因子和社会认知因子,用来调整i P 和g P 的影响强度.1r 和2r 是区间[0,1]内的随机数.由(6.46)和(6.47)构成的粒子群优化称为原始型粒子群优化.从社会学的角度来看,公式(6.47)的第一部分称为记忆项,表示上次优化中的速度的影响;公式第二部分称为自身认知项,可以认为是当前位置与粒子自身最优位置之间的偏差,表示粒子的下一次运动中来源于自己经验的部分;公式的第三部分称为社会认知项,是一个从当前位置指向种群最佳位置的矢量,反映了群内粒子的协作和知识共享.可见,粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动.随着迭代进化的不断进行,粒子群逐渐聚集到最优点处,图6.22 给出了某个优化过程中粒子逐渐聚集的示意图.图6.22 粒子群在优化过程聚集示意图 综上所述,我们得到如下基本粒子群算法流程:(1) 设定参数,初始化粒子群,包括随机位置和速度;(2) 评价每个粒子的适应度;(3) 对每个粒子,将其当前适应值与其曾经访问过的最好位置pbest 作比较,如果当前值更好,则用当前位置更新pbest ;(4) 对每个粒子,将其当前适应值与种群最佳位置gbest 作比较,如果当前值更好,则用当前位置更新gbest ;(5) 根据速度和位置更新公式更新粒子;(6)若未满足结束条件则转第二步;否则停止迭代.迭代终止条件根据具体问题一般选为迭代至最大迭代次数或粒子群搜索到的最优位置满足预定的精度阈值.6.4.2 粒子群算法的轨迹分析1998年,Ozcan 在文献[13]中首先对粒子在一维空间的轨迹进行了讨论,并在1999年将粒子运动的轨迹分析推广到多维空间的情形,2002年,文献[14]从矩阵代数的观点讨论了粒子的轨迹问题,本节采用[15]中的差分方程思想分别讨论单个粒子在一维以及二维空间的轨迹问题。
粒子群算法程序(各段路的速度不同)(完整版)
![粒子群算法程序(各段路的速度不同)(完整版)](https://img.taocdn.com/s3/m/53f2e9066f1aff00bfd51eb8.png)
1.用粒子群算法求解路径最短时的路径ticK=3;%车辆数D=200;%粒子群中粒子的个数Q=1000;%每辆车的容量w=0.729;%w为惯性因子c1=1.49445;%正常数,称为加速因子c2=1.49445;%正常数,称为加速因子Loop_max=50;%最大迭代次数%初始化城市坐标City=[18,54;22,60;58,69;71,71;83,46;91,38;24,42;18,40];n=size(City,1);%城市个数,包含中心仓库N=n-1;%发货点任务数for i=1:nfor j=1:nDistance(i,j)= sqrt((City(i,1)-City(j,1))^2+(City(i,2)-City(j,2))^2);%各城市节点之间的距离矩阵endendv=[20,20,20,21,21,19,20,20;20,20,19,20,19,21,20,21;20,19,20,20,20,20,21,20;21,20,20,19,20,21, 21,21;21,19,20,20,20,21,21,20;19,21,20,21,21,20,20,21;20,20,21,21,21,20,19,20;20,21,20,21,20, 21,20,20];for i=1:8for j=1:8if i==jv(i,j)=0;endendendg=[0, 890,140,280,330,210,410,570];%各发货点的货运量%初始化粒子群for i=1:Dfor j=1:NXv(i,j)=randi(K,1);%初始化粒子群中粒子的位置Vv(i,j)=randi(2*K-1,1)-K;%初始化粒子群中粒子的位置变化率Vr(i,j)=randi(2*N-1,1)-N;%初始化粒子群中离子的位置变化率Xvl(i,j)=Xv(i,j);%初始化粒子群中每个粒子的最优位置endendfor i=1:Da=randperm(N);for j=1:NXr(i,j)=a(j);%初始化粒子群中粒子的位置Xrl(i,j)=Xr(i,j);%初始化粒子群中每个粒子的最优位置endLg=100000;%初始化最优粒子对应的配送方案的总路径长度Xvg=ones(1,N);%粒子群中最优的粒子Xrg=ones(1,N);%粒子群中最优的粒子Loop=1;%迭代计数器while Loop<=Loop_max%循环终止条件%对粒子群中的每个粒子进行评价for i=1:Dk1=find(1==Xv(i,:));%找出第一辆车配送的城市编号nb1=size(k1,2);%计算第一辆车配送城市的个数if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);%对找出第一辆车的顺序号进行排序G1(i)=0;%初始化第一辆车的配送量k51=[];am=[];for j1=1:nb1am=find(b1(j1)==Xr(i,:));k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量endk61=[];k61=[0,k51,0];%定义第一辆车的配送路径L1(i)=0;%初始化第一辆车的配送路径长度for k11=1:nb1+1L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度endelse%如果第一辆车配送的城市个数不大于0则G1(i)=0;%第一辆车的配送量设为0L1(i)=0;%第一辆车的配送路径长度设为0endk2=find(2==Xv(i,:));%找出第二辆车配送的城市编号nb2=size(k2,2);%计算第二辆车配送城市的个数if nb2>0%判断第二辆车配送城市个数是否大于0,如果大于0则a2=[Xr(i,k2(:))];%找出第二辆车配送城市的顺序号b2=sort(a2);%对找出的第二辆车的顺序号进行排序G2(i)=0;%初始化第二辆车的配送量k52=[];bm=[];for j2=1:nb2bm=find(b2(j2)==Xr(i,:));k52(j2)=intersect(k2,bm);%计算第二辆车配送城市的顺序号G2(i)=G2(i)+g(k52(j2)+1);%计算第二辆车的配送量k62=[];k62=[0,k52,0];%定义第二辆车的配送路径L2(i)=0;%初始化第二辆车的配送路径长度for k22=1:nb2+1L2(i)=L2(i)+Distance(k62(k22)+1,k62(k22+1)+1);%计算第二辆车的路径长度endelse%如果第二辆车配送的城市个数不大于0则G2(i)=0;%第二辆车的配送量设为0L2(i)=0;%第二辆车的配送路径长度设为0endk3=find(3==Xv(i,:));%找出第三辆车配送的城市编号nb3=size(k3,2);%计算第三辆车配送城市的个数if nb3>0%判断第三辆车配送城市个数是否大于0,如果大于0则a3=[Xr(i,k3(:))];%找出第三辆车配送城市的顺序号b3=sort(a3);%对找出的第三辆车的顺序号进行排序G3(i)=0;%初始化第三辆车的配送量k53=[];cm=[];for j3=1:nb3cm=find(b3(j3)==Xr(i,:));k53(j3)=intersect(k3,cm);%计算第三辆车配送城市的顺序号G3(i)=G3(i)+g(k53(j3)+1);%计算第三辆车的配送量endk63=[];k63=[0,k53,0];%定义第三辆车的配送路径L3(i)=0;%初始化第三辆车的配送路径长度for k33=1:nb3+1L3(i)=L3(i)+Distance(k63(k33)+1,k63(k33+1)+1);%计算第三辆车的路径长度endelse%如果第三辆车配送的城市个数不大于0则G3(i)=0;%第三辆车的配送量设为0L3(i)=0;%第三辆车的配送路径长度设为0endL(i)=0;%初始化每个粒子对应的配送方案总路径长度L(i)=L1(i)+L2(i)+L3(i);%计算每个粒子对应的配送方案总路径长度if L(i)<Lg&&G1(i)<Q&&G2(i)<Q&&G3(i)<Q%如果第i个粒子的总路径长度优于历史最优粒子并且满足车辆容量要求Xvg(:)=Xv(i,:);%将粒子i设为历史最优粒子Xrg(:)=Xr(i,:);%将粒子i设为历史最优粒子Lg=L(i);%将粒子i的总路径长度设为最优粒子对应的配送方案的总路径长度elseXvg(:)=Xvg(:);%最优粒子保持不变Xrg(:)=Xrg(:);%最优粒子保持不变Lg=Lg;%最优粒子所对应的配送方案的总路径长度也不变endLimin(i)=10000000;%初始化每个粒子代表的配送方案的历史最优总路径长度if L(i)<Limin(i)%如果本次循环得到的总路径长度优于粒子i历史最优总路径长度Limin(i)=L(i);%更新本次循环得到的总路径长度为粒子i的历史最优路径长度Xvl(i,:)=Xv(i,:);%更新本次得到的粒子i为i粒子的历史最优位置Xrl(i,:)=Xr(i,:); %更新本次得到的粒子i为i粒子的历史最优位置else%否则,保持粒子i的历史最优位置及历史最优路径长度不变Limin(i)=LL(i);Xvl(i,:)=Xv1(i,:);Xrl(i,:)=Xr1(i,:);endend%记录本次循环得到的所有粒子的位置for i=1:Dfor j=1:NXv1(i,j)=Xvl(i,j);%记录本次循环得到的所有粒子的位置Xr1(i,j)=Xrl(i,j);%记录本次循环得到的所有离子的位置endendLL(i)=0;%初始化每个粒子的历史最优路径总长度for i=1:DLL(i)=Limin(i);%对每个粒子的历史最优路径总长度进行赋值end%对粒子群中每个粒子进行迭代for i=1:Dfor j=1:NVv(i,j)=w*Vv(i,j)+c1*rand(1)*(Xvl(i,j)-Xv(i,j))+c2*rand(1)*(Xvg(1,j)-Xv(i,j));%计算位置变化率Vr(i,j)=w*Vr(i,j)+c1*rand(1)*(Xrl(i,j)-Xr(i,j))+c2*rand(1)*(Xrg(1,j)-Xr(i,j));%计算位置变化率%Vv(i,j)和Vr(i,j)进行上下限的限制if Vv(i,j)>K-1Vv(i,j)=K-1;elseif Vv(i,j)<1-KVv(i,j)=1-K;elseVv(i,j)=Vv(i,j);endendendfor i=1:Dfor j=1:NXv(i,j)=ceil(Xv(i,j)+Vv(i,j));%更新位置坐标%对Xv(i,j)进行上下限的限制if Xv(i,j)>KXv(i,j)=K;elseif Xv(i,j)<1Xv(i,j)=1;elseXv(i,j)=Xv(i,j);endXr(i,j)=Xr(i,j)+Vr(i,j);%更新位置坐标endendzx(Loop)=Lg;Loop=Loop+1;endXvg%输出粒子群中的最优粒子Xrg%输出粒子群中的最优粒子Lg%输出最优粒子所代表方案的总路径长度Loop%输出迭代的次数%计算最优粒子所代表的配送方案k1=find(1==Xvg(:));%找出第一辆车配送的城市编号k1=k1';nb1=size(k1,2);%计算第一辆车配送城市的个数if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xrg(k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);%对找出第一辆车的顺序号进行排序G1=0;%初始化第一辆车的配送量k51=[];am=[];for j1=1:nb1am=find(b1(j1)==Xrg(:));k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号G1=G1+g(k51(j1)+1);%计算第一辆车的配送量endk61=[];k61=[0,k51,0];%定义第一辆车的配送路径L1=0;%初始化第一辆车的配送路径长度for k11=1:nb1+1L1=L1+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度endelse%如果第一辆车配送的城市个数不大于0则G1=0;%第一辆车的配送量设为0L1=0;%第一辆车的配送路径长度设为0endk2=find(2==Xvg(:));%找出第二辆车配送的城市编号k2=k2';nb2=size(k2,2);%计算第二辆车配送城市的个数。
粒子群算法步骤
![粒子群算法步骤](https://img.taocdn.com/s3/m/1be6be4f0a4e767f5acfa1c7aa00b52acec79c54.png)
粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,用于解决优化问题。
下面是粒子群算法的一般步骤:1. 初始化参数:- 定义问题的适应度函数。
- 设置群体规模(粒子数量)和迭代次数。
- 随机初始化每个粒子的位置和速度。
- 设置每个粒子的个体最佳位置和整个群体的全局最佳位置。
2. 迭代优化:- 对于每个粒子:- 根据当前位置和速度更新粒子的新速度。
- 根据新速度更新粒子的新位置。
- 根据新位置计算适应度函数值。
- 更新粒子的个体最佳位置和整个群体的全局最佳位置。
- 结束条件判断:达到预设的迭代次数或满足特定的停止条件。
3. 输出结果:- 输出全局最佳位置对应的解作为优化问题的最优解。
在更新粒子的速度和位置时,通常使用以下公式:速度更新:v(t+1) = w * v(t) + c1 * r1 * (pbest - x(t)) + c2 * r2 * (gbest - x(t))位置更新:x(t+1) = x(t) + v(t+1)其中:- v(t) 是粒子在时间t 的速度。
- x(t) 是粒子在时间t 的位置。
- w 是惯性权重,用于平衡粒子的历史速度和当前速度的影响。
- c1 和c2 是加速因子,控制个体和全局最佳位置对粒子速度的影响。
- r1 和r2 是随机数,用于引入随机性。
- pbest 是粒子的个体最佳位置。
- gbest 是整个群体的全局最佳位置。
以上是粒子群算法的基本步骤,您可以根据具体的优化问题进行调整和扩展。
写出基本的粒子群算法,并用球形函数验证。
![写出基本的粒子群算法,并用球形函数验证。](https://img.taocdn.com/s3/m/19a35e06b207e87101f69e3143323968011cf497.png)
写出基本的粒子群算法,并用球形函数验证。
粒子群算法是一种经典的群体智能算法,通过模拟鸟群捕食过程中群体的协同行为,寻找最优解。
其基本思想是将问题的解看作空间中的一个粒子,并通过考虑粒子周围的信息和个体最优解来更新粒子的位置,以找到全局最优解。
本文将介绍基本的粒子群算法,并通过验证球形函数的方式对算法进行测试。
基本的粒子群算法的步骤如下:1.初始化粒子群:随机生成一定数量的粒子,并给每个粒子分配一个随机的初速度和位置。
同时,记录每个粒子的历史最优位置和历史最优适应度。
2.计算粒子的适应度:根据问题的适应度函数,计算每个粒子当前位置的适应度。
3.更新粒子的速度和位置:根据粒子的历史最优位置和全局最优位置来更新粒子的速度和位置。
设第i个粒子的当前速度为Vi,当前位置为Xi,历史最优位置为Pi,全局最优位置为Pg,学习因子为c1和c2,速度更新公式为:Vi(t+1) = w * Vi(t) + c1 * rand() * (Pi - Xi) + c2 * rand() * (Pg - Xi)位置更新公式为:Xi(t+1) = Xi(t) + Vi(t+1)其中,w为惯性因子,rand()为0到1的随机数。
4.更新粒子的历史最优位置:比较粒子当前位置的适应度与其历史最优适应度,如果当前适应度更优,则更新历史最优位置。
5.更新全局最优位置:将当前适应度最优的粒子位置作为全局最优位置。
6.终止条件判断:如果满足终止条件(如达到最大迭代次数或适应度满足要求),则停止算法;否则,回到步骤2。
接下来,我们使用球形函数作为问题的适应度函数对粒子群算法进行验证。
球形函数(Sphere Function)是优化问题中常用的测试函数之一,其计算公式为:f(x) = x1^2 + x2^2 + x3^2 + ... + xn^2其中,n为变量的维度。
首先,我们需要确定算法的参数,包括粒子数量、迭代次数、惯性因子w、学习因子c1和c2的取值等。
粒子群算法粒子群算法简介
![粒子群算法粒子群算法简介](https://img.taocdn.com/s3/m/2c9fa1ee26fff705cc170af9.png)
粒子群算法(1)----粒子群算法简介二、粒子群算法的具体表述上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。
下面通俗的解释PSO算法。
PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。
大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。
这个过程我们转化为一个数学问题。
寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。
为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。
下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。
直到最后在y=1.3706这个点停止自己的更新。
这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。
该函数的最大值就是鸟群中的食物计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。
下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。
粒子群算法(2)----标准的粒子群算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。
这个公式就是粒子群算法中的位置速度更新公式。
下面就介绍这个公式是什么。
在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
粒子群算法基本流程
![粒子群算法基本流程](https://img.taocdn.com/s3/m/35f3795fa55177232f60ddccda38376bae1fe05f.png)
粒子群算法基本流程粒子群算法(Particle Swarm Optimization, PSO)是一种基于自然界群体智能现象的优化算法,常用于解决各种优化问题,如函数优化、组合优化、机器学习等。
本文将详细介绍粒子群算法的基本流程,包括初始化、适应度评价、移动、更新等环节,希望能对读者理解该算法提供一定的帮助。
一、算法介绍粒子群算法最初由Kennedy和Eberhart于1995年提出 [1],其基本思想来源于鸟群觅食行为。
在野外觅食时,鸟群中的鸟会根据所找到的食物数量来确定自己下一步的移动方向。
PSO算法中的“粒子”类似于鸟群中的鸟,它们以个体和群体为导向,通过速度和位置的调整来进行优化搜索。
PSO算法的目标是寻找最优解,通常是最小化或最大化一个函数的值,可表示为:f(x)=\sum_{i=1}^n{f_i(x)}x 是 n 维实数向量,f_i(x) 表示第 i 个函数。
寻找最优解的目标就是在 x 的搜索空间中寻找函数 f(x) 的全局最优解或局部最优解。
二、基本流程粒子群算法的基本流程如下:1. 初始化:随机生成一群粒子,每个粒子的位置和速度都是随机的。
2. 适应度评价:计算每个粒子的适应度值,也就是函数 f(x) 所对应的值,用来表示该粒子所处的位置的优劣程度。
3. 移动:根据当前位置和速度,移动粒子到新的位置。
4. 更新:根据历史上最好的粒子位置和当前最好的粒子位置,更新每个粒子的历史最好位置和当前最好位置,并更新全局最优位置。
5. 终止:当满足一定的终止条件时,停止迭代,并输出最终的粒子位置和最优解。
下文将分别对各环节进行详细介绍。
三、初始化在PSO算法中,粒子的位置和速度都是随机的。
对于每个粒子,需要随机生成一个 n 维实数向量表示其位置,一个同维度的实数向量表示其速度。
可以采用如下方法进行初始化:1. 对于每一个维度,随机生成一个实数范围内的数值,表示该维度上的位置和速度。
2. 在满足约束条件的前提下,生成一个可行解,作为初始化的位置。
粒子群算法模型
![粒子群算法模型](https://img.taocdn.com/s3/m/2816b4599a6648d7c1c708a1284ac850ac020455.png)
粒子群算法模型一、引言粒子群算法(Particle Swarm Optimization, PSO)是一种群体智能算法,模拟了鸟群捕食过程中的信息交流和协作行为。
它通过不断调整粒子的速度和位置,寻找最优解。
本文将介绍粒子群算法的原理、步骤以及应用领域。
二、粒子群算法原理粒子群算法的原理基于群体智能的观念,将待优化问题看作是一个搜索空间。
算法的每个粒子代表一个解,通过不断地更新速度和位置,最终找到最优解。
粒子群算法的核心是粒子的速度和位置更新公式。
三、粒子群算法步骤1. 初始化粒子群:设定粒子的初始位置和速度,以及目标函数;2. 更新粒子的速度和位置:根据速度和位置更新公式,更新粒子的速度和位置;3. 计算适应度函数:根据目标函数计算每个粒子的适应度;4. 更新全局最优解:根据适应度函数更新全局最优解;5. 判断终止条件:判断是否达到终止条件,如果满足,则输出当前最优解;否则,回到步骤2继续迭代。
四、粒子群算法应用领域粒子群算法具有广泛的应用领域,下面介绍其中几个典型的应用。
1. 函数优化:粒子群算法可以用于求解函数的最优解,如求解复杂的非线性函数、多峰函数等;2. 神经网络训练:粒子群算法可以用于神经网络的权重和偏置的优化,提高神经网络的性能;3. 图像处理:粒子群算法可以用于图像分割、图像去噪、图像增强等;4. 机器学习:粒子群算法可以用于支持向量机、决策树等机器学习算法的参数优化;5. 优化调度:粒子群算法可以用于优化调度问题,如任务调度、车辆路径规划等。
五、粒子群算法的优缺点粒子群算法具有以下优点:1. 简单易实现:粒子群算法的理论基础简单,易于实现;2. 全局搜索能力强:粒子群算法能够全局搜索解空间,收敛速度较快;3. 适用范围广:粒子群算法适用于各种优化问题,具有很好的通用性。
然而,粒子群算法也存在一些缺点:1. 对参数敏感:粒子群算法的性能受到参数设置的影响,不同问题需要调整不同的参数;2. 可能陷入局部最优:粒子群算法容易陷入局部最优,无法保证全局最优。
6种粒子群算法程序
![6种粒子群算法程序](https://img.taocdn.com/s3/m/c750829af242336c1fb95e67.png)
程序1当—。
5.c?c??cc?2121.w?22iii22i a)匕丰函数源程序(main.m)% ------ 基本粒了群算法(particle swann optimization)% ------- 名称:基本粒子群算法% ------- 初始格式化clear all;%清除所有变量clc; %清屏fonnat long;%将数据显示为长整形科学讣数%——给定初始条条件-N=40; %3初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数cll=2; %学习因子1c21=2; %学习因子2cl2=1.5;c22=1.5;w=1.2; %惯性权重eps=10A(-6); %设置精度(在已知最小值的时候用)%-初始化种群个体邙u定位置和速度) -------x=zeros(N,D);^-zeros(N,D);for i=l:Nforj=l:Dx(ij)=randn; %随机初始化位置v(ij)=randn; %随机初始化速度endend%-…一显示群位置——figure(l)forj=l:Dif(rem(D,2)>0)subplot((D+1)/2,2j)elsesnbplot(D/2,2j)endp lot(x(: j ), *b * *); gi id onxlabelC粒子)ylabelC初始位置) tInfb=strcatC 第;char(j+48);维*); if(j>9) thifo=strcat(, ®\char(floor(j/l 0)+48), char(rem(j, 10)+48);维');endtitle(tliifo)end%----显示种群速度figtire(2)forj=l:Dif(rem(D,2)>0) subplot((D+l)/2,2j) elsesubplot(D/2,2j)endplot(x(: j),t b*,);grid onxlabelC 粒子)ylabelC初始速度')tliifo=strc at('Jfj ,char(j +4 8)「维);if(j>9)tliifo=sti,cat(' 3?,char(floor(j/10)+48), char(rem(j ,10)+48),'维);endtitle(tliifo)endfigure(3) %第一个图subplot( 1,2,1)%-初始化种群个体(在此限定速度和位置)-------------xl=x;vl=v;%----初始化个体最优位置和最优值…pl=xl;pbestl=ones(N,l);for i=l:Npbest l(i)=fitness(x 1 (i「)、D);end%-初始化全局最优位置和最优值---------------gl=1000*ones(l,D);gbestl=1000;for i=l:Nif(pbest l(i)<gbestl)gl=pl(i,:);gbestl=pbestl(i);endendgbl=ones(l,T);%浸入主循环,按照公式依次迭代直到满足精度或者迭代次数…fori=l:Tfor j=l:Nif (fitness(x 1 (j, :),D)<pbest 1 (j))pl(j,:)=xl(j,:); pbestl(j)=fitness(xl(j,:),D); endif(pbest 1 (j)<gbest 1)gi=pi(i,:);gbestl=pbestl(j);endvl(j,:)=w*vl(j,:)+cll*rand*(pl(j,:)-xl(j,:))+c21*rand*(gl-xl(j,:));endgbl(i)=gbestl;end plot(gbl)TempSti-spnnt^^ 1 = %g ,c2=%g\cll,c21); title(TempStr);xlabelf迭代次数);ylabel(适应度值工%第二个图subplot(l,2,2)%初始化种群个体(在此限定速度和位置)----------------x2=x;v2=v;%…-初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N, 1);for i=l:Npbest2(i)=fitness(x2(i/),D);end%初始化种全局最有位置和最优解----g2=1000*ones(l,D);gbest2=1000;for i=l:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(l,T);%--…浸入主循环,按照公式依次迭代直到满足精度或者迭代次数…fori=l:Tfor j=l:Nif (fitness(x2(j,:)» D)Vpbest2 (j))p2(j,:)=x2(j,:); pbest2(j)=fitness(x2(j ,:),D);endif(pbest2(j)<gbest2)g2=p2(j/); gbest2=pbest2(j);endv2(j ,:)=w* v2(j, :)+c 12*rand*(p2(j,: )-x2(j, :))+c22 *rand* (g2 -x2(j,;x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempSti-sprint^^ 1 = %g ,c2=%g\cl2,c22);title(TempStr);xlabelf迭代次数);ylabel(适应度值);b)适应度函数%适应度函数(fitness.m)function result=fitness(x,D)sum=O;fori=l:Dsum=sum+x(i)A 2;endresult=sum;程序2当于对比 2.V7?10,c?2,c?c?2?C22iii22ia)%上函数源程序(main.m ) subplot(D/2,2j)end%--…基本粒子群算法 %——名称: %--初始格式化 clear all;clc; fonnat long; %——给定初始条条件N=40;D=10;T=100; cl 1=2; c21=2; (particle 基本粒子群算法swami optimization )%清除所有变量%清屏%将数据显示为长整形科学讣数 %3初始化群体个数 %初始化群体维数%初始化群体最迭代次数%学习因子1%学习因子2 cl2=0; c22=2; w=l ・2; %惯性权重 eps=10A (-6); %设置精度(在已知最小值的时候川) %---初始化种群个体邙R 定位置和速度) ------------ x=zeros(N,D); A-zeros(N,D); for i=l:N foi j=l:D x(ij)=randn; %随机初始化位置 v(ij)=randn; %随机初始化速度 end end %-—一显示群位置 --------------- figtire(l) forj=l:D if(rem(D,2)>0) subplot((D+1 )/2,2 J) elseplot(x(: j ), *b *r); gi id onxlabel(,粒子)ylabel(初始位置)tInfo=strcatC 第',char(j+48)»'维); if(j>9)tlnfb=strcat(, 35f,char(floor(j/l 0)+48), char(rem(j, 10)+48),'维*);endtitle(tliifo)end%-显示种群速度figure(2)forj=l:Dif(rem(D,2)>0)subplot((D+1 )/2,2j)elsesubplot(D/2,2j)endplot(x(: j),'b*');grid onxlabelC 粒子)ylabelC初始速度)tliifo=strc at('第,char(j +4 8)「维');if(j>9)tlnfo=strcat('第\char(floor(j/10)+48), char(rem(j, 10)+48),'维);endtitle(tliifo)endfigiue(3)%第一个图subplot( 1,2,1)%-初始化种群个体(在此限定速度和位置)---------------xl=x;vl=v;%-…-初始化个体最优位置和最优值…pl=xl;pbest 1 =ones(N, 1);foi i=l:Npbest l(i)=fitiiess(x 1 (i,:)Q);end%----初始化全局最优位置和最优值------------gl=1000*ones(l,D);gbestl=1000;for i=l:Nif(pbest l(i)<gbest 1)gl=pl(i,:); gbestl=pbestl(i);endend gbl=ones(l,T);%…-浸入主循环,按照公式依次迭代直到满足精度或者迭代次数…for i=l :Tfor j=l:Nif (fitness(xl(j,:)» D)<pbestl(j))pl(j,:)=xl(j,:);pbest l(j)=fitiiess(x 1 (j ,:),D);endif(pbest 1 (j)<gbest 1)gi=pi(i,:); gbestl=pbestl(j);endvl(j,:)=w*vl(j,:)+cll*rand*(pl(j,:)-xl(j,:))+c21*rand*(gl-xl(j,:)); xl(j,:)=xl(j,:)-H4(j,:);endgbl(i)=gbestl;endplot(gbl)TempSti-sprint^^c 1 = %g .c2=%g\cll,c21);title(TempStr);xlabelC迭代次数ylabel(适应度值J;%第二个图subplot(l,2,2)%…-初始化种群个体(在此限定速度和位置)-------------x2=x;v2=v・%-二初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N, 1);for i=l:Npbest2(i)=fitness(x2(i/),D);end%初始化种全局最有位置和最优解g2=1000*ones(l,D);gbest2=1000;for i=l:Nif(pbest2(i)<gbest2)g2=p2(i,:); gbest2=pbest2(i);endendgb2=ones(l,T);%-浸入主循环,按照公式依次迭代直到满足精度或者迭代次数…fori=l:Tfor j=l:Nif (fitness(x2(j,:)>D)<pbest2(j)) p2(j,:)=x2(j,:); pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:); gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+cl2*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempSti-spnnt^^ 1 = %g ,c2=%g\cl2,c22);title(TempStr);xlabelf迭代次数);ylabel(适应度值工b)适应度函数%适应度函数(fitness.m)ftmction result=fitness(x,D)sum=0;fori=l:Dsum=sum+x(i)A 2;end result=sum;程序3"1 于对比 21 1.2?c?2,c?c o c2,W22i2ii2ia)%Ji 函数源程序(main.m )% --- 基本粒子群算法(particle swami optimization ) %.一_名称:基本粒子群算法%-初始格式化 clear all;clc;%清除所有变量 %清屏fonnat long;%——给定初始条条件-N=40;D=10; T=100; cl 1=2; %将数据显示为长整形科学讣数 %3初始化群体个数 %初始化群体维数%初始化群体最迭代次数 %学习因子1 c21=2; cl2=2;c22=0;w=1.2; eps=10A (-6); %-…-初始化种群个体 %学习因子2%惯性权重%设置精度(在已知最小值的时候用) 邙艮定位置和速度) ------- x=zeros(N,D); ^-zeros(N,D); foi i=l:Nend%-显示群位置 -------------------figure(l) forj=l:Dif(rem(D,2)>0)subplot((D+1)/2,2j)elsesnbplot(D/2,2j)endp lot(x(: j ), *b * *); gi id onxlabelC 粒子)ylabelC 初始位置) tInfb=strcatC 第;char(j+48);维 *); if(j>9) thifo=strcat(, ®\char(floor(j/l 0)+48), char(rem(j, 10)+48);维');forj=l:Dx(ij)=randn;v(ij)=randn; end%随机初始化位置 %随机初始化速度endtitle(tliifo)end%----显示种群速度figtire(2)forj=l:Dif(rem(D,2)>0) subplot((D+l)/2,2j) elsesubplot(D/2,2j)endplot(x(: j),t b*,);grid onxlabelC 粒子)ylabelC初始速度')tliifo=strc at('Jfj ,char(j +4 8)「维);if(j>9)tliifo=sti,cat(' 3?,char(floor(j/10)+48), char(rem(j ,10)+48),'维);endtitle(tliifo)endfigure(3) %第一个图subplot( 1,2,1)%-初始化种群个体(在此限定速度和位置)-------------xl=x;vl=v;%----初始化个体最优位置和最优值…pl=xl;pbestl=ones(N,l);for i=l:Npbest l(i)=fitness(x 1 (i「)、D);end%-初始化全局最优位置和最优值---------------gl=1000*ones(l,D);gbestl=1000;for i=l:Nif(pbest l(i)<gbestl)gl=pl(i,:);gbestl=pbestl(i);endendgbl=ones(l,T);%浸入主循环,按照公式依次迭代直到满足精度或者迭代次数…fori=l:Tfor j=l:Nif (fitness(x 1 (j, :),D)<pbest 1 (j))pl(j,:)=xl(j,:); pbestl(j)=fitness(xl(j,:),D); endif(pbest 1 (j)<gbest 1)gi=pi(i,:);gbestl=pbestl(j);endvl(j,:)=w*vl(j,:)+cll*rand*(pl(j,:)-xl(j,:))+c21*rand*(gl-xl(j,:));endgbl(i)=gbestl;end plot(gbl)TempSti-spnnt^^ 1 = %g ,c2=%g\cll,c21); title(TempStr);xlabelf迭代次数);ylabel(适应度值工%第二个图subplot(l,2,2)%初始化种群个体(在此限定速度和位置)----------------x2=x;v2=v;%…-初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N, 1);for i=l:Npbest2(i)=fitness(x2(i/),D);end%初始化种全局最有位置和最优解----g2=1000*ones(l,D);gbest2=1000;for i=l:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(l,T);%--…浸入主循环,按照公式依次迭代直到满足精度或者迭代次数…fori=l:Tfor j=l:Nif (fitness(x2(j,:)» D)Vpbest2 (j))p2(j,:)=x2(j,:); pbest2(j)=fitness(x2(j ,:),D);endif(pbest2(j)<gbest2)g2=p2(j/); gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+cl2*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:));x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempSti-sprint^^ 1 = %g ,c2=%g\cl2,c22);title(TempStr);xlabelf迭代次数);ylabel(适应度值);b)适应度函数%适应度函数(fitness.m)fimction result=fitness(x,D)sum=O;fori=l:D sum=sum+x(i)A2;endresult=sum;程序4 对,分别对其取值,,,测试函5.?l?.2c?l. 11 c?2wcc?ww?W22i2i2ii数。
粒子群算法分类
![粒子群算法分类](https://img.taocdn.com/s3/m/cae34c5cbe23482fb4da4c44.png)
粒子群算法分类目录粒子群算法分类 (1)一、经典的微粒群算法(PSO)简介 (1)二、经典的微粒群算法的运算过程 (2)三、两种基本的进化模型 (4)四、改进的微粒群算法 (5)五、流程及代码 (7)结论 (19)参考文献 (20)粒子群算法分类一、经典的微粒群算法(PSO)简介微粒群算法(Particle Swarm Optimization)是由美国社会心理学家James Kennedy和电气工程师Russell Eberhart在1995年共同提出的,是继蚁群算法之后的又一种新的群体智能算法,目前已成为进化算法的一个重要分支。
经典粒子群算法的基本思想是模拟鸟类群体行为,并利用了生物学家的生物群体模型,因为鸟类的生活使用了简单的规则:(1)飞离最近的个体;(2)飞向目标;(3)飞向群体的中心;来确定自己的飞行方向和飞行速度,并且成功的寻找到栖息地。
Heppner受鸟类的群体智能启发,建立了模型。
Eberhart和Kennedy对Heppner的模型进行了修正,同时引入了人类的个体学习和整体文化形成的模式,一方面个体向周围的优秀者的行为学习,另一方面个体不断总结自己的经验形成自己的知识库。
从而提出了微粒群算法(PSO)。
该算法由于运算速度快,局部搜索能力强,参数设置简单,近些年已收到学术界的广泛重视,现在微粒群算法在函数优化,神经网络训练,模式分类,模糊系统控制以及其他工程领域都得到了广泛的应用。
二、经典的微粒群算法的运算过程经典粒子群算法和其他的进化算法相似,也采用“群体”与“进化”的概念,同样是根据个体即微粒(particle )的适应度大小进行操作。
所不同的是,微粒群算法不像其他进化算法那样对个体使用进化算子,而是将每个个体看作是在N 维搜索空间中的一个无重量无体积的微粒,并在搜索空间中以一定的速度飞行。
该飞行速度是根据个体的飞行经验和群体的飞行经验来进行动态地调整。
Kennedy 和Eberhart 最早提出的PSO 算法的进化方程如下:其中:下标“i ”表示第i 个微粒,下标“j ”表示的是微粒i 的第j 维分量,t 表示第t 代,学习因子1C 和2C 为非负常数,1C 用来调节微粒向本身最好位置飞行的步长,2C 用来调节微粒向群体最好位置飞行的步长,通常1C 和2C 在[0,2]间取值。
粒子群算法分类
![粒子群算法分类](https://img.taocdn.com/s3/m/ce612325482fb4daa58d4b44.png)
三.算法实现
①随机给出D维空间初始化粒子的速度和位置,并设定迭
代次数N;
②计算每个粒子在当前状态下的适应函数值 pi
;
③将②中计算的适应函数值 pi 与自身的优化解 pbesti 进行比较, 如果
pi pbesti
, 则用新的适
应函数值取代前一轮的优化解, 用新的粒子取代
前一轮粒子。即 pbesti
2. 种群规模N 3.适应度函数
1.学习因子
学习因子(也称加速度系数) 1和 c2分别调节粒 c 子向全局最优粒子和个体最优粒子方向飞行的最大步 长。若太小,则粒子可能远离目标区域;若太大则可 能导致粒子忽然向目标区域飞去或飞过目标区域。合 适的c1 和 c2可以加快收敛且不易陷入局部最优,目前
time=etime(clock,t0)
1.基本粒子群算法输出
2.改进后输出
3.比较
结论
通过粒子群算法能够很快的实现分类。而且通过惯 性权重的线性更新可以有效的防止局部最优。每种聚类 数目下的最优聚类可以根据输出的适应度fg判断,适应
度值越小越好,并且需多次运行判断。
参考文献
[1] 杨淑莹. 模式识别与智能计算[M].北京:电子工业出版
行移动,产生新的粒子,直到适应度不变。
流程图
开始 初始化 计算聚类中心和适应度 求取pid和pgd 更新惯性权重 更新粒子的速度和位置 以粒子位置为聚类中心重新聚类 N
达到终止条件 Y 输出结果
四.部分代码及仿真
clc; clear all; %sam=xlsread('.xls'); t0=clock;%开始计时 sam=[2793.36 1766.08 1207.88 245.75 3009.26 1803.14 1600.62 3373.67 1073.55 1895.18 3123.07 2248.4
粒子群优化算法实例
![粒子群优化算法实例](https://img.taocdn.com/s3/m/27e3f291370cba1aa8114431b90d6c85ec3a8886.png)
粒子群优化算法(PSO)是一种基于群体智能的优化算法,通过模拟鸟群觅食行为中的社会心理学原理来求解优化问题。
下面是一个简单的粒子群优化算法实例:
假设我们要解决一个最小化问题,即找到一个函数f(x)的最小值。
我们可以使用粒子群优化算法来求解这个问题。
初始化粒子群:随机生成一组粒子,每个粒子代表问题的一个解。
粒子的位置表示解的取值,速度表示解的变化方向。
评估粒子适应度:计算每个粒子的适应度值,即函数f(x)的取值。
更新粒子速度和位置:根据粒子当前的位置、速度和全局最优解的信息,更新粒子的速度和位置。
具体更新公式如下:
速度更新公式:v[i] = w * v[i] + c1 * rand() * (pbest[i] - x[i]) + c2 * rand() * (gbest - x[i])
位置更新公式:x[i] = x[i] + v[i]
其中,w是惯性权重,c1和c2是学习因子,rand()是随机数生成函数,pbest[i]是粒子i的历史最优解,gbest是全局最优解。
更新全局最优解:比较每个粒子的适应度值和全局最优解的适应度值,如果某个粒子的适应度值更小,则更新全局最优解。
迭代执行步骤2-4,直到达到预设的迭代次数或满足停止条件。
返回全局最优解作为问题的近似解。
通过上述步骤,我们可以使用粒子群优化算法来求解最小化问题。
需要注意的是,粒子群优化算法是一种启发式算法,不能保证找到全局最优解,但在许多实际问题中,它能够找到较好的近似解。
粒子群算法的各种变体算法
![粒子群算法的各种变体算法](https://img.taocdn.com/s3/m/0ad14315302b3169a45177232f60ddccda38e603.png)
粒子群算法的各种变体算法全文共四篇示例,供读者参考第一篇示例:粒子群算法(Particle Swarm Optimization,PSO)是一种优化算法,源于对鸟群和鱼群等生物群体行为的模拟。
通过模拟个体在搜索空间中的飞行和群体协作,PSO算法能够有效地解决各种优化问题。
PSO算法的基本原理是将每个个体看作是一个粒子,这些粒子在搜索空间中移动,通过互相沟通和协作来寻找最优解。
每个粒子都有自己的位置和速度,在每一次迭代中,根据自身的经验和全局最优解来更新自己的位置和速度,最终收敛到最优解。
在PSO算法的基础上,研究者们提出了各种变体算法,通过对算法的改进和优化,使其在不同的优化问题中表现更好。
下面将介绍几种常见的粒子群算法的变体:1. Multi-Objective Particle Swarm Optimization(MOPSO)多目标粒子群算法是基于PSO算法的一种技术,主要应用于解决多目标优化问题。
在传统的PSO算法中,只有一个优化目标,而在MOPSO算法中,可以同时优化多个目标。
通过引入Pareto前沿等概念,MOPSO算法能够找到一组解决方案,这些解决方案在不同目标下都是最优的,称为非劣解。
混合粒子群算法是将PSO算法与其他优化算法相结合的一种方法,旨在克服各自算法的缺点,发挥各自算法的优势。
常见的混合方法包括将PSO算法与遗传算法、模拟退火算法、蚁群算法等结合起来,形成一个更为有效的优化算法。
量子行为粒子群算法是通过模拟量子力学中的一些基本原理,对传统PSO算法进行改进的一种算法。
QPSO算法引入了量子演化的概念,使得粒子在搜索空间中的行为更为多样化和灵活,能够更好地避免陷入局部最优解。
模糊粒子群算法是将模糊逻辑引入到PSO算法中的一种变体算法。
通过模糊逻辑的模糊隶属度函数,可以更好地描述粒子在搜索空间中的状态和行为,从而提高了算法的搜索效率和鲁棒性。
除了以上几种常见的粒子群算法的变体,还有许多其他的改进和优化方法,如混沌粒子群算法、蜂群粒子群算法、自适应粒子群算法等。
粒子群算法详解
![粒子群算法详解](https://img.taocdn.com/s3/m/4158797e76232f60ddccda38376baf1ffc4fe330.png)
粒子群算法详解
粒子群算法是一种群智能算法,常用于优化问题,如寻找函数的最小值或最大值等。
其基本原理是模拟鸟群或鱼群等生物集体行为,通过不断地调整每个粒子的位置和速度,最终找到最优解。
具体来说,粒子群算法由若干个粒子组成,每个粒子都有自己的位置和速度。
在每一次迭代中,每个粒子会根据自己的位置和速度进行更新,通过与其他粒子的交互来不断调整自己的位置和速度,以期望找到最优解。
具体而言,粒子群算法包括以下几个步骤:
1. 初始化粒子群:设置粒子群大小、每个粒子的位置和速度等参数。
2. 计算适应度函数:根据问题的具体情况,设计适应度函数,用于评估每个粒子的表现。
3. 更新粒子位置和速度:根据当前位置和速度,以及适应度函数的结果,更新每个粒子的位置和速度。
4. 更新全局最优解:根据适应度函数的结果,更新全局最优解。
5. 判断迭代终止条件:通过设定迭代次数或适应度函数的阈值等方式,判断是否需要继续迭代。
6. 输出结果:输出最优解或其他需要的结果。
总体来说,粒子群算法的优点是收敛速度快,易于实现和优化,适用于各种优化问题。
但其缺点是可能会陷入局部最优解,需要合理设置参数和调整算法,以克服这个问题。
粒子群算法的详细介绍
![粒子群算法的详细介绍](https://img.taocdn.com/s3/m/71aa6622dcccda38376baf1ffc4ffe473368fd9a.png)
粒子群算法的详细介绍粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能和进化计算理论的优化算法,由美国社会心理学家尼尔·韦勒等人于1995年提出。
该算法基于模拟鸟群捕食行为而得名,通过模拟鸟群的群体协作行为寻找最优解。
PSO算法基于群体智能的基本原理,将问题的解看做是空间中的一个个粒子,这些粒子在空间中移动,并通过个体和群体的历史经验进行协同优化。
算法的核心思想是通过粒子的移动和信息传递来最优解。
具体而言,PSO算法通过以下步骤进行求解:1.初始化粒子群:确定粒子的初始位置和速度。
2.根据目标函数计算粒子群中每个粒子的适应度值:将粒子的当前位置代入目标函数,得到该粒子的适应度值。
3.更新个体最优解:对于每个粒子,根据其当前的适应度值和历史最优适应度值,更新该粒子的个体最优解。
4.更新群体最优解:在粒子群中,找到适应度值最好的粒子,并更新群体最优解。
5.更新粒子速度和位置:通过更新规则调整粒子的速度和位置,使其朝着个体最优解和群体最优解的方向移动。
6.判断停止条件:重复步骤2至5,直到满足预设的停止条件(如达到最大迭代次数或找到满意的解)。
7.输出最优解:输出迭代完成后的最优解。
PSO算法的核心是粒子的速度更新规则。
速度更新时需要考虑个体最优解和群体最优解的影响,对于每个粒子i,其速度v_i(t+1)的更新可以按以下公式计算:v_i(t+1) = w * v_i(t) + c1 * r1 * (p_i - x_i(t)) + c2 * r2 * (p_best - x_i(t))其中,w是惯性权重,控制粒子速度的惯性程度;c1和c2是学习因子,分别控制个体和群体的权重;r1和r2是随机数,用于控制粒子的随机。
p_i和p_best分别表示粒子i的个体最优解和全局最优解。
x_i(t)表示粒子i在当前迭代次数t的位置。
PSO算法具有以下优点:1.全局能力强:通过粒子群的协同能力,可以快速到全局最优解。
粒子群优化算法介绍
![粒子群优化算法介绍](https://img.taocdn.com/s3/m/5ff66bda18e8b8f67c1cfad6195f312b3169ebf3.png)
粒子群优化算法介绍
粒子群优化算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,通过不断地迭代寻找最优解。
该算法最初由美国加州大学的Eberhart和Kennedy于1995年提出,目前已经被广泛应用于各种优化问题中。
粒子群优化算法的基本思想是将待优化问题转化为一个多维空间中的搜索问题,将每个解看作空间中的一个粒子,每个粒子的位置表示该解的参数值,速度表示该解的变化方向和速度。
在算法的每一次迭代中,每个粒子都会根据自身的历史最优解和群体最优解来更新自己的速度和位置,以期望找到更优的解。
具体来说,粒子群优化算法的实现过程如下:
1. 初始化粒子群,包括粒子的位置和速度等信息。
2. 计算每个粒子的适应度值,即待优化问题的目标函数值。
3. 更新每个粒子的速度和位置,包括考虑自身历史最优解和群体最优解的影响。
4. 判断是否满足停止条件,如果满足则输出最优解,否则返回第2步。
粒子群优化算法的优点在于其简单易懂、易于实现和收敛速度较快等特点。
同时,该算法还具有较好的全局搜索能力和鲁棒性,能够
应对复杂的非线性优化问题。
然而,粒子群优化算法也存在一些缺点,如易陷入局部最优解、对参数的选择较为敏感等问题。
因此,在实际应用中需要根据具体问题进行调整和优化。
粒子群优化算法是一种有效的优化算法,已经被广泛应用于各种领域,如机器学习、图像处理、控制系统等。
随着人工智能和大数据技术的不断发展,相信粒子群优化算法将会有更广泛的应用前景。
粒子群算法的各种变体算法
![粒子群算法的各种变体算法](https://img.taocdn.com/s3/m/4032a18d59f5f61fb7360b4c2e3f5727a4e92473.png)
粒子群算法的各种变体算法
粒子群算法(PSO)是一种启发式优化算法,最初由Kennedy和Eberhart在1995年提出。
它模拟了鸟群或鱼群中个体之间的协作
和竞争关系,在解决优化问题时具有较好的收敛性和全局寻优能力。
随着研究的深入,人们提出了许多粒子群算法的变体,以应对不同
类型的优化问题和改善算法性能。
以下是一些常见的粒子群算法的
变体:
1. 改进的粒子群算法(IPSO),IPSO通过改变粒子的速度更
新公式、邻域拓扑结构或者引入新的搜索策略来增强PSO的全局搜
索能力和局部搜索能力。
2. 多种群粒子群算法(MPSO),MPSO将种群划分为多个子种群,每个子种群独立进行搜索,并通过信息共享来提高全局搜索能力。
3. 自适应粒子群算法(APSO),APSO通过自适应地调整算法
参数或者搜索策略来适应不同的优化问题,提高算法的鲁棒性和适
用性。
4. 混沌粒子群算法(CPSO),CPSO引入了混沌序列来增加算
法的随机性,提高搜索的多样性和全局寻优能力。
5. 多目标粒子群算法(MOPSO),MOPSO针对多目标优化问题
进行了改进,通过引入帕累托最优解集和多目标优化策略来寻找最
优的解集。
6. 基于改进策略的粒子群算法(SPSO),SPSO通过引入新的
搜索策略,如局部搜索、动态权重、自适应参数等,来提高算法的
收敛速度和全局搜索能力。
这些粒子群算法的变体在不同的优化问题中都有其独特的优势,研究人员可以根据具体的问题特点选择合适的算法来进行求解。
同时,随着对粒子群算法的研究不断深入,相信会有更多新的变体算
法被提出来,以满足不断变化的优化问题需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程序1当22111==c c ,5.12212==c c ,2.1=w 。
a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization )%------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数%------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=1.5;c22=1.5;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif (rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b )适应度函数%适应度函数(fitness.m )function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序2当22111==c c 于2.1,2,02212===w c c 对比a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization )%------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数%------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=0;c22=2;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用)%------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:));x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b)适应度函数%适应度函数(fitness.m)function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序3当2.1,22111===w c c 于2.1,0,22212===w c c 对比a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=2;c22=0;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif (rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b )适应度函数%适应度函数(fitness.m )function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序4对21c c ≠,21w w ≠分别对其取值1.11=c ,22=c ,2.11=w ,5.12=w 测试函数。